Figure 1
Illustration: Alan Stonebraker

Figure 1: (Top) Schematic of the Zeeman decelerator and trap. A beam of hydrogen atoms is produced by expanding a gas into vacuum. The hydrogen atoms pass through a small hole into a second vacuum chamber and are decelerated using 12 coils that produce a strong, 2.2 T magnetic field. The atoms come to a near standstill between the last two coils and are subsequently trapped. (Bottom) Periodic table of elements with the maximum effective magnetic dipole of ground-state atoms (in Bohr magnetons) [15] divided by their mass (in amu). For the noble gases this number is also given for the metastable triplet state. The color coding indicates the number of stages required to bring atoms to rest in a setup similar to that used by Hogan et al. Atoms that can be brought to rest with less than 100 stages are in yellow and atoms that require more than 400 stages are in red.