Figure 1
Illustration: Alan Stonebraker

Figure 1: The torsional oscillator used to study optomechanical stochastic resonance. A gold-coated glass plate is suspended from a tungsten wire, and a laser reflected from the center point indicates the deflection of the plate, while feedback electrodes are used to drive the oscillator dynamics. A mirror fastened to the end of the plate forms an optical cavity with a second laser, which couples the oscillator to a multiwell potential created by radiation pressure. The optical cavity thus causes the resulting torsion arm to pop into one of several positions. A weak noisy signal applied to the electrodes yields an enhanced deflection signal via the stochastic resonance effect if the noise amplitude is in the right range. (Adapted from Mueller et al. [4].)