Figure 1
APS/Alan Stonebraker; top panel adapted from [1].

Figure 1: (Top) Optical centrifuge pulse (red) for making molecules rotate to form superrotors. Its linear polarization rotates, pulling the molecule with it. The unidirectional molecular rotation thus created is observed directly by coherent Raman scattering induced by the probe pulse (blue). (Bottom) Milner and colleagues have found that superrotors have interesting quantum coherence properties. Imagine the molecule as a dancer—slow rotation allows decoherence (the green dancer in the left; a fuzzy image) while fast rotation maintains coherence (the green dancer in the right; sharper image) against environmental influences (other dancers).