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Viewpoint

Glimmers of a connection between string theory and atomic physics
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Results from string theory, generalizing the anti-de Sitter/conformal field theory correspondence, may offer a
fresh set of mathematical tools for understanding some kinds of phase transitions that occur in cold atomic
systems.
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String theory is well known as a possible route to uni-
fication of gravity and quantum mechanics. But its his-
torical roots lie in another direction: strings were orig-
inally proposed as a way to describe the strong force
that governs quarks—called quantum chromodynam-
ics (QCD)—when the particles are at low energies (in-
tuitively, the strings are the tubes of glue that connect
and confine the two quarks in a meson).

One of the most interesting features of this theory is
that the strong force only becomes strong at low en-
ergies. It is hard to carry out computations in this
strongly coupled theory, since perturbation theory in
the coupling doesn’t work. It would be useful there-
fore if one could guess a correct new set of variables
with which to describe the theory, which would interact
weakly and make the most relevant physics evident. A
familiar example of such a “dual” theory is the Landau-
Ginzburg description of superconductors, where a sim-
ple description in terms of a scalar order parameter cap-
tures the complicated physics of the underlying funda-
mental electron bound-state Cooper pairs. It has long
seemed likely that QCD should have an “effective” (that
is, weakly coupled) description in terms of a theory
where the fundamental objects are strings (which bind
quarks into mesons) instead of point particles.

Effective string descriptions have also been consid-
ered for spin systems like the Ising model in three di-
mensions, where two-dimensional surfaces separate the
domains of “up” and “down” spin and hence compu-
tations involving two-dimensional worldsheets (anal-
ogous to the worldlines of a single particle—in other
words a string rather than point particle picture) seem
natural. In recent years, these two sets of considerations,

involving “fundamental” vs “effective” strings, have
dovetailed nicely: it has turned out that certain special
solutions of fundamental string theory provide effective
string descriptions of normal field theories, similar in
many ways to QCD.

The papers by D. T. Son in Physical Review D[1] and
by K. Balasubramanian and J. McGreevy in Physical Re-
view Letters[2] propose an intriguing new extension of
the relation between fundamental and effective strings.
They find that under certain special circumstances, the
strings commonly studied by string theorists can pro-
vide a description of nonrelativistic field theories simi-
lar to those that govern gases of cold atoms in atomic
traps. This work, along with a growing body of other
papers, is another step in a promising recent trend of
finding special string solutions that capture the dynam-
ics of strongly coupled field theories whose behavior
is similar (in some respects) to field theories realized
in laboratory condensed-matter or atomic systems. In
coming years, we can expect further papers trying to
sharpen these results, with the goal of finding effective
string descriptions that quantitatively (as opposed to
qualitatively) describe atomic or condensed-matter sys-
tems. But as with QCD, where we currently have string
solutions describing QCD-like theories but not QCD it-
self, we can hope to learn fascinating qualitative lessons
even without a precise quantitative match between the
string theory and the atomic system.

It helps to recall how our current string descriptions of
QCD-like theories were discovered. In the 1970s, field
theorists interested in the study of strong interactions
quickly realized that quantum chromodynamics is too
difficult to solve but, ironically, ‘t Hooft showed that
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analogues of this theory with a very large number (N2)
of gluons could be analytically tractable [3]. There were
also impressive hints that the three-dimensional Ising
model might be recast as a string theory [4], however
this was, and still remains, difficult to make precise.

Progress in finding a string theory of QCD occurred in
the late 1990s, after Polchinski’s discovery of the impor-
tance of a special class of objects called branes [5], clas-
sical solutions of the field equations of ten-dimensional
fundamental string theory. A brane is a slice of space
(imagine a sheet of paper extending to infinity) on which
closed loops of string can break open and end. For
each p-dimensional brane, there is a p+1-dimensional
quantum theory describing the possible excitations (e.g.,
the collective coordinates that allow the plane to move
around in the larger space). On N parallel branes, one
in fact obtains a relative of the N2 gluon QCD theory
proposed by ‘t Hooft.

Maldacena (building on the work of Klebanov and
Polyakov) realized that there is another useful descrip-
tion of this theory [6], namely a gravitational solution
that is weakly curved in the limit of a large number
of branes. There is by now very convincing evidence
for the correctness of this conjecture. In further work,
theories that exhibit some of the hallmark properties of
QCD, like confinement of quarks, have been given pre-
cise string descriptions [7]; but no useful description of
QCD itself has yet emerged.

This set of discoveries has come to be known as the
“AdS/CFT” correspondence. The gravitational solution
of string theory that applies here looks like anti-de Sit-
ter spacetime (AdS), that is, a solution of Einstein’s field
equation in which there is no matter present, but the
cosmological constant is attractive (i.e., negative vac-
uum energy). A Lorentz-invariant theory that has scale
invariance typically enjoys a larger group of symme-
tries, called the conformal group. The “CFT” refers to
the name for such theories, “Conformal Field Theories.”
The equivalence between the two objects implies that
AdS space should have the symmetries of the confor-
mal group. These symmetries appear as generalized ro-
tations and translations of the AdS geometry.

How is the conformal group related to sets of sym-
metries that most physicists play with? We are famil-
iar with Einstein’s realization that in a world where the
speed of light is a universal constant in each reference
frame (i.e., frames moving with different velocity rela-
tive to one another), the mechanics of Newton must un-
dergo a dramatic modification. The symmetry group
in Einstein’s theory is something called the “Lorentz
group.” It includes the transformations that allow one to
switch from one reference frame to another, in a world
(like ours) where the speed of light c is a universal con-
stant.

One can further assume that there are symmetries un-
der dilation or scale transformations of spacetime. That
is, one can take x → λx and t → λt, while leaving the
action of the theory invariant. Here, λ rescales the phys-

FIG. 1: In a scale-invariant system, objects may be found that
look the same at all levels of magnification, as in this im-
age of objects called Sierpinski pyramids. The pyramids are
made from smaller and smaller pyramids. The papers by Son,
and by Balasubramanian and McGreevy, find connections be-
tween aspects of string theory and scale-invariant nonrela-
tivistic field theories. (Peter Bertok (http://en.wikipedia.
org/wiki/Image:Sierpinski_pyramid.png)

ical coordinates, so such transformations are called scale
transformations. A theory with this symmetry, in addi-
tion to Lorentz symmetry, can be shown (almost always)
to have a much larger group of symmetries: the confor-
mal group.

In any attempt to describe QCD, conformal invariance
is a nuisance: QCD has strong coupling and confine-
ment at large distances, while the short-range theory is
one of free quarks and gluons. But in many atomic and
condensed-matter systems, the opposite is true. By tun-
ing the strengths of interactions in a laboratory to a crit-
ical value, experimentalists can arrange to sit at a point
of transition between two different phases of behavior.
These points of transition are special, and often exhibit
scale invariance (Fig. 1). The understanding of the role
of scale-invariant theories in the theory of phase tran-
sitions of materials is one of the triumphs of quantum
field theory, attributed to Wilson and many others.

There is a catch: in experiments there is a preferred
frame—the laboratory frame. The atoms or other con-
stituents of the experiment are interacting on time scales
that are very long compared to the travel time of light
over the scale of the experiment: the speed of light is
irrelevant (it can be considered infinite). The symme-
try group in some of these systems is effectively the
Galilean group (where physics in frames differing by a
constant shift of velocity must be invariant), instead of
the Lorentz group.

What happens in a theory that has both Galilean in-
variance and scale invariance? In the Galilean group,
time plays a different role from space. The proper no-
tion of scale invariance requires that under a dilation
x → λx, then we must have t → λ2t. (This is fa-
miliar from nonrelativistic quantum mechanics: in the
Schrödinger equation for a free particle, if one rescales
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x to λx, one must rescale t to λ2t to get a symmetry
of the equation because it is first order in time deriva-
tives but second order in spatial derivatives.) The full
group of symmetries of such theories is enhanced, be-
yond just such dilations and Galilean transformations,
to a group known as the Schrödinger group. This is the
analogue, for Galilean invariant systems, of the confor-
mal group. Recently, various experimental groups have
succeeded in tuning interacting atomic systems close
to a Schrödinger invariant phase transition [8]. These
experiments involve extremely cold trapped atoms; by
tuning a magnetic field that controls hyperfine splittings
of atomic levels, one can find a transition between con-
ventional BCS and BEC phases of atoms that is well de-
scribed by a Schrödinger invariant theory. The theory
at the transition point is believed to be strongly coupled
and inaccessible to analytical calculations. In this sense,
it is similar to QCD at low energies.

Is there an effective description of the theory gov-
erning these phase transitions, using different degrees
of freedom? The recent work of Son, Balasubra-
manian, and McGreevy, suggests that the answer is
“yes.” They have found solutions of higher-dimensional
gravity theories (which could very plausibly emerge
from string theory) that have the correct symmetries,
the Schrödinger symmetries, to be dual to Galilean-
invariant field theories (nonrelativistic field theories)
with the anisotropic scale invariance x → λx, t → λ2t.
Of course, as with the case of QCD, one expects that
their solutions are describing theories that are only qual-
itatively similar to the atomic systems of interest.

Since this work, in fact, the solutions of these groups
have been successfully embedded into string theory in
three recent papers [9]. The known string solutions are
dual to Schrödinger-invariant theories with some no-
table differences from the atomic system. But just as
with the duality between string theory and QCD, we
can expect that further research will reveal mechanisms
to remove some of the unwanted features of the known
string solutions, approaching the behavior of the cold
atomic phase transition ever more closely. It remains un-
clear whether one can find a dual of an experimentally
realizable atomic system, but the hunt is on.
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