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Just-in-time DNA replication
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Genome replication originates at random places along the DNA strand, yet replication of the genetic material
finishes within a defined time. A model based on phase-transition kinetics in condensed-matter systems explains

how this just-in-time replication can happen.
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Complete and timely replication of the genome is a
prerequisite to fulfilling the “dream” of every cell to be-
come two cells [1]. So far, biologists have been success-
ful in identifying the processes involved in DNA repli-
cation, but they have not been able to explain a fun-
damental control problem that cells face, the “random-
completion” or “random-gap” problem: how do cells
ensure that every last piece of the genome is replicated
on time [2]? In a paper in Physical Review E, Scott C.-H.
Yang and John Bechhoefer of Simon Fraser University
use insights from condensed-matter physics to answer
this question [3]. Using a physical model originally de-
veloped to describe the kinetics of first-order phase tran-
sitions, they show that, despite the intrinsic stochasticity
of the initiation of DNA replication, cells can still con-
trol the amount of time it takes to replicate the genome.
The authors thus provide a rigorous solution to a long-
standing problem in cell biology. The elegance of their
formal approach bridging physics and biology, and the
depth of their analysis, should inspire scientists from
both disciplines.

The heart of the problem is that the sites at which
replication initiates are randomly distributed along the
chromosomes of Xenopus laevis embryos, a frog widely
used in cell biology experiments. There are on the or-
der of 10° so-called origins where replication can start
in Xenopus embryos, and it was quickly realized that, if
these origins were truly randomly activated, one would
expect an exponential distribution of distances between
origins. Such a distribution would include infrequent
large gaps between origins, suggesting a total replica-
tion time longer than the 20 minutes observed in frog
embryos. In fact, early workers concluded that origin
distribution must not be random, for exactly that reason
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[4]. However, over the years, experimental evidence for
stochastic “firing” of origins has piled up. It is to this
apparent conflict between stochastic origin firing and
well-defined replication times that Yang and Bechhoe-
fer bring analytical rigor.

Similar problems have confronted condensed-matter
physicists. Consider a tray of water that is put into a
freezer at time t = 0. A short while later, the water is
all frozen. What fraction f(t) of water is frozen at time
t > 0? In the 1930s, several scientists independently
derived a stochastic model that could predict the form
of f(t), and this “Kolmogorov-Johnson-Mehl-Avrami”
(KJMA) model [5] has since been widely used by metal-
lurgists and other materials scientists to analyze phase-
transition kinetics [6].

In the KJMA model, the kinetics of freezing results
from three simultaneous processes: nucleation of solid
domains, growth of existing domains, and coalescence,
which occurs when two expanding domains merge (Fig.
1). In the simplest form of KJMA, solid domains nucle-
ate anywhere in the liquid, with equal probability I for
all locations. Once a solid domain has been nucleated,
it grows out as a sphere, typically at constant velocity .
When two growing domains impinge, growth ceases at
the point of contact, while continuing elsewhere. Later
workers revisited and refined KJMA’s methods to take
into account various effects, such as finite system size
and inhomogeneities in nucleation rates I(x, t) in space
and time [7].

About ten years ago, Bechhoefer and colleagues, who
have studied nonequilibrium processes such as the
growth of snowflakes, made the connection that features
of DNA replication can be mapped onto the basic as-
sumptions of the KIMA model [8] (Fig. 1): (i) DNA repli-
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cation starts at a large number of origins, where replica-
tion “forks” are created, (ii) DNA synthesis propagates
at replication forks bidirectionally from each activated
origin, with propagation speed or fork velocity v, and
(iii) DNA synthesis stops when two replication forks
meet. There is, however, one fundamental difference be-
tween the analysis of DNA replication and most other
nucleation-and-growth systems. In crystal growth, for
example, one is interested in f(t) and the size distribu-
tion of “solid” and “liquid” domains for a known I(x, ),
whereas in DNA replication, I(x, t) itself is the unknown
quantity that is important in understanding how the cell
regulates the replication process in space and time. In
other words, I(x,t) is the replication “program” that
varies from organism to organism. For example, if all
the origins are initiated at the beginning of replication,
then I(x, ) = 6(t — ty), where ¢ is the start time. Alter-
natively, if every origin has an equal probability of initi-
ation at any time, then I(x, t) is a constant. The question
becomes, given an observed f (), can one extract I(x, t)?

In a series of papers since 2002, Bechhoefer and col-
leagues have shown how one can map the DNA repli-
cation process onto the basic assumptions of the KIMA
model [8-10]. Importantly, by reversing the KJMA for-
malism, they managed to recover a spatially averaged,
“mean-field” I(t) from experimentally measured distri-
butions of replicated and unreplicated domains of chro-
mosome [8]. To this end, they focused on the model sys-
tem of Xenopus early embryo replication, in which data
collection is relatively easy. It is also a perfect system to
study the random-completion problem because, unlike
cells of adult animals, which take many hours to repli-
cate their genomes, these embryos finish everything in
20 minutes, making replication time a critical issue.

Biologists have proposed two solutions to the
random-completion problem [3]. The first is that repli-
cation avoids big gaps (Fig. 1) altogether by using a
nonrandom spacing mechanism. However, this model
has received little experimental support. The second as-
sumes there is an excess of potential origins that are ran-
domly distributed and that origins that do not fire early
in replication, but become more likely to fire as replica-
tion progresses, i.e., I(t) increases with time. The intu-
itive idea is that if a gap persists late in replication, it
will be much more likely to have origins within it fire
and thus get replicated in a timely manner. The draw-
back to this kind of model has been that it is not clear
how robust a solution it would be.

Recently, various theoretical and experimental stud-
ies have strengthened the second view, and the emerg-
ing consensus is that there is a pool of potential origins
present in Xenopus embryos and probably all other an-
imal cells, much larger than the actual number of ini-
tiations during replication [11, 12], and the probability
of initiation increases steeply [8, 11]. However, these
observations still did not completely solve the random-
completion problem because the solution requires un-
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FIG. 1: DNA replication and the nucleation-and-growth

model. (A) When water freezes, for example, nucleation sites
grow to fill the entire volume (only one spatial dimension
is shown as a function of time increasing upwards). (B) In
cells, the last coalescent event at time ¢ between the growing
replication bubbles determines the duration of DNA replica-
tion. The distribution of p(t) depends on the “nucleation”
rate I(x,t) as well as the growth rate v. (C) If origin firing
is randomly distributed in space and time, occasional large
gaps will greatly delay the completion of replication. (D) Yang
and Bechhoefer have shown rigorously how the optimal tim-
ing can be achieved so all the bubbles finish at the same time
[3]. Even with a random distribution of origin firing in space, if
the probability of origin firing increases with time, large gaps
are efficiently replicated. Because large gaps are rare, this in-
creased origin firing late in the replication phase does not sig-
nificantly increase the total number of origins fired. (Illustra-
tion: Alan Stonebraker/stonebrakerdesignworks.com)
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derstanding the distribution (as opposed to the mean)
of the replication timing for a given I(t) and spatial dis-
tribution of potential origins. That is, knowing the av-
erage time it takes for replication to complete does not
help; what one cares about is how often replication fails
by taking longer than some threshold time T.

With this in mind, Bechhoefer and co-workers in-
terpreted the time it takes to complete replication as
a “first-passage” time t* of a stochastic process gov-
erned by probability I(f), which concerns the distribu-
tion p(t*) of a probabilistic event of interest to occur for
the first time at time t* or, equivalently, as the largest
value t* of the timing of collisions between two growing
replication bubbles. For biological success, t* does not
have to be less than T for every cell, but the frequency
of t* > T has to be less that some acceptable failure
rate. This question belongs to the domain of extreme-
value statistics (a branch of statistics that is also used to
evaluate things like rare but catastrophic events), and
the random-completion problem can be translated into
finding conditions where I(t, x) results in the observed
average time to complete replication and the observed
failure rate [10].

Yang and Bechhoefer have provided the final, clear
answer to the random-completion problem: For cells to
achieve an acceptable distribution of replication com-
pletion times, the initiation rate I(t) should increase
during replication (Fig. 1), in agreement with extracted
values of I(t) from experimental data [8]. They show
that this model can produce arbitrarily low failure rates,
but more importantly, that it can produce the observed
failure rate using plausible parameters that also produce
reasonable mean completion times. And finally, Yang
and Bechhoefer show that their result is robust; the in-
creasing I(t) produces timely replication regardless of
whether the potential origins are randomly or nonran-
domly distributed. This latter point should allay biolo-
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gists’ fear that in this model the replication time would
double if one or two origins fail to initiate and create a
gap that is too large to finish replication within 20 min-
utes.

Given the strong theoretic foundation provided by
Yang and Bechhoefer for the increasing I(t) model in
frog embryos, the big question is whether this model is
applicable to all animal cells. Much of this work will
fall to the experimental biologists, but theoretical treat-
ments that capture the more structured replication of
adult cells will certainly be important.
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