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Viewpoint

How Casimir forces are shaping up
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Modification of electromagnetic zero-point fluctuations by closely spaced conductors causes an interaction be-
tween them called the Casimir force. New experiments with nanostructured silicon substrates show that the
geometry of the conducting surfaces has a large effect on this force.
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The last great fundamental discovery in quantum me-
chanics was made in 1948 by Hendrik B. G. Casimir [1].
This discovery, the so-called Casimir effect, is the theo-
retical prediction that two closely spaced plane-parallel
mirrors will be mutually attracted due to the modifica-
tion of the electromagnetic mode structure between the
mirrors. This attractive force comes about from the zero-
point energy associated with the modes; the total en-
ergy decreases as the plates are brought together. As this
force is due to zero-point energy, the force persists even
at absolute zero temperature. This effect has been ex-
perimentally demonstrated many times, and the funda-
mental theory appears sound, at least for the simple sys-
tems that have been studied. Now, in a paper published
in Physical Review Letters[2], Chan et al. at the University
of Florida and Bell Laboratories, go beyond plane par-
allel surfaces and show how more complex surface ge-
ometry can influence the Casimir effect. This may bear
directly on the extent to which Casimir forces contribute
to the behavior of micro- and nanomechanical systems.

The original discovery of the Casimir effect is more
fundamental than one might expect: Every quantum
field has a zero-point energy, so any system that has
accessible states governed by external boundary condi-
tions will have a Casimir-like contribution to its energy.
For example, there is a Casimir-like contribution to the
energy of quarks bound in a nucleus as a described in
the bag model due to boundary that is introduced in this
model. These effects and others are well described in the
book by Milton [3].

Casimir himself attempted to apply his namesake
force to one of the simplest of the elementary particles,
the electron. Casimir modeled the electron as a con-
ducting ball of uniform charge that would contract due
to the zero-point energy of the external electromagnetic
modes. This contractive force would be balanced by
the space-charge repulsion of the uniform charge den-

sity, when the conducting sphere of constant total charge
was just the right diameter. The fine structure con-
stant α ≈ 1/137, which relates to the electron diameter,
could then be determined from fundamental parame-
ters along with a calculation of how the electromagnetic
mode zero-point energy changes as the sphere contracts
[4].

So compelling was this possibility of determining
the fine structure constant that Boyer did the calcu-
lation of the spherical mode problem [5]. He found
that the Casimir force, or stress, due to the conduct-
ing sphere modes, causes the sphere to expand. Thus
Casimir’s lovely model fails. Boyer’s result was inter-
esting enough that it led to the exploration of the effects
of geometry on the Casimir force. It has been shown, for
example, that for rectangular bodies, the sign and mag-
nitude of the stress depends on the aspect ratio of the
rectangle.

Until now, no significant or nontrivial corrections to
the Casimir force due to boundary conditions have been
observed experimentally. The form of boundary defor-
mations so far considered, together with the accuracy
and precision of experimental studies, have been ade-
quately theoretically described by straightforward ge-
ometrical averaging. For the systems that had previ-
ously been considered, it is not clear that an experimen-
tal measurement of the external stress is even possible.
Cutting a sphere in half clearly changes the boundary
value problem; it is unlikely that the two halves of such
a sliced sphere will be repelled with a force that is given
by the external stress on the unsliced sphere.

However, there are other possible ways to generate a
geometrical influence on the Casimir force. A conceptu-
ally straightforward way is to contour the surfaces of the
plates at a length scale comparable to the mode wave-
lengths that contribute most to the net Casimir force.
For a plate separation z, the wavelengths that contribute
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most are≈ πz. This means that a surface nanopatterned
at 400 nm level should show significant geometrical ef-
fects for separations below 1 µm. Indeed, the work of
Chan et al. has produced a convincing measurement of
a nontrivial geometrical influence on the Casimir force
[2].

These measurements, between a nanostructured sili-
con surface (upper left panel of Fig. 1) and a gold sphere,
were made using a micromechanical torsional oscillator
(upper right panel of Fig. 1). The change in resonant fre-
quency of the oscillator, as a function of separation be-
tween the sphere and the surface, provided a measure of
the gradient of the Casimir force. The gold sphere, actu-
ally a glass sphere of radius 50 µm coated with 400 nm of
gold, was attached to one side of the oscillator that com-
prised a 3.5 µm thick, 500 µm square silicon plate sus-
pended by two tiny torsion rods. The sphere–oscillator
assembly was moved toward the nanostructured sur-
face by use of a piezoelectric actuator.

Two different nanostructured plates, compared with
a smooth plate, were measured in this work. The geom-
etry of the nanostructures—rectangular trenches etched
in the surface of highly p-doped silicon—were chosen
because the effects are expected to be large in such a ge-
ometry. Previously, Büscher and Emig had calculated
the effective modification of the Casimir force due to
such a geometry, but for the case of perfect conductors
[6]. Even though the calculations were not for real mate-
rials, these theoretical results appeared as a reasonable
starting point for a comparison with an experiment.

Casimir’s calculation addressed perfectly conducting
plates. The theory of the force was subsequently gener-
alized by Lifshitz to real materials at finite temperature
in his seminal 1956 paper [7]. Although much progress
has recently been made toward a realistic and believable
accuracy and precision with which the Casimir force
can be calculated for real materials [8], problems as-
sociated with the well-known experimental variability
of sputtered or evaporated films were avoided in the
work of Chan et al. by comparing two different nanos-
tructured plates with a smooth plate, all made from
the same silicon substrate, and all using the same gold-
sphere–oscillatory assembly.

The geometric modification of the Casimir force was
detected by measuring a deviation from that expected
by use of the so-called proximity force approximation
(PFA), or the pairwise additive approximation (PAA).
Briefly, the PFA was introduced in relation to the
Casimir force by Derjaguin in 1957 [9] to describe the
force between curved surfaces, and this approximation
is known to be extremely accurate when the curvature
is much less than the separation between the surfaces.
Indeed, the use of a sphere and a flat plate vastly simpli-
fies the experiment because the system is fully mechan-
ically defined in terms of the point of closest approach
and the radius of curvature of the sphere. For two flat
plates the system is specified by two tilt angles, the ar-
eas, long-scale smoothness, and a separation, which all

FIG. 1: (Upper left) A nanostructured silicon surface is used as
one plate in a Casimir experiment. The structure dimensions
are chosen to affect the electromagnetic modes that contribute
most to the Casimir force at distances on the order of a few 100
nm. (Upper right) Schematic of the experiment, partially to
scale. The gradient of the force is measured through a change
in oscillation frequency of a micromechanical torsion oscilla-
tor fabricated from silicon (shown in bottom micrograph) as
the distance between the upper sphere and the nanostructured
surface is changed. The lower sphere serves as a simple me-
chanical spacer. (Image courtesy of H. B. Chan, University of
Florida)

need to be defined, measured, and controlled—a daunt-
ing problem, particularly when small deviations of the
force are being measured.

The success of the PFA is so good that it suggests a
means of detecting a geometrical effect. Basically, the
surface is divided into infinitesimal units, and it is as-
sumed that the total force can be determined by adding
the Casimir force, appropriately scaled by area, between
surface unit pairs in opposite surfaces; this is the PAA.
Thus, for the nanostructured surfaces used by Chan et
al., roughly a 50

The theory of Büscher and Emig predicts deviations
from the PAA twice as large as were observed. Nonethe-
less, the results of Chan et al. indicate a clear effect of
geometry on the Casimir force in the clear deviation
from the PAA. This deviation was detectable through
the experimental trick of comparing different aspect ra-
tio trenches to a smooth surface in otherwise identical
materials. So even though ab initio calculation of the
Casimir force for a real material using tabulated optical
properties cannot be accurate to better than 10
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Much theoretical work remains to be done toward
gaining a complete understanding of the experimen-
tal observations. The already difficult calculations are
made more so by the finite conductivity effects of the
plates, and the real smoothed shape of the trenches as
opposed to ideal sharp features. However, the creativ-
ity of theorists on this subject appears limitless, as does
the numerical computing power offered by even a mod-
est cluster of computers for problems of this type. We
can expect that in the near future the discrepancy be-
tween theory and experiment will be resolved; the ex-
citement of further efforts lie in the possibility that our
understanding of the Casimir force is incomplete in a
significant way.
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