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Glasses are liquids that have ceased to flow on experi-
mentally measurable time scales. By constrast, superflu-
ids flow without any resistance. The existence of a phase
characterized by simultaneous glassiness and superflu-
idity may seem like a clear contradiction. However, in
a paper in Physical Review B, Giulio Biroli (Institut de
Physique Théorique, France), Claudio Chamon (Boston
University), and Francesco Zamponi (École Normale
Supérieure, France) prove that this is not so [1] and il-
lustrate theoretically the possibility of a “superglass”
phase. This phase forms an intriguing amorphous coun-
terpart to the “supersolid” phase [2, 3] that has seen a
surge of interest in recent years [4]. Within a “super-
solid” phase, superfluidity can occur without disrupting
crystalline order.

Interacting quantum particles can indeed form such
a superglass phase at very low temperatures and high
density, and the work of Biroli et al. confirms the ear-
lier suggestion by Boninsegni, Prokof ’ev, and Svistunov
[5] and an investigation by Wu and Philips [6] of such
a phase. The superglass phase is characterized by an
amorphous density profile, yet at the same time a finite
fraction of the particles flow without any resistance as if
they were superfluid. Thus the superglass constitutes a
glassy counterpart to the supersolid phase.

The approach invoked by Biroli et al. to prove the ex-
istence of a superglass is particularly elegant. It relies
on mapping [7] viscous classical systems, whose prop-
erties are well known, to new many-body quantum sys-
tems. In realizing the link between classical and quan-
tum systems to gain insight into the quantum many-
body phases, Biroli et al. nicely add an important new
result to earlier investigations that built on such simi-
lar insights elsewhere. Chester [3] suggested the exis-
tence of a supersolid by relying on such a connection.
In a similar fashion, Laughlin invoked a highly inspira-
tional analogy [8] between variational (the so-called Jas-
trow type) wave functions describing fractional quan-
tum Hall systems and a previously studied system of

classical charged particles interacting via a logarithmic
potential. By using the classical plasma analogy and
using known results on it, Laughlin was able to make
headway on the challenging many-body quantum prob-
lem and construct his highly successful wave functions.

The mapping used by Biroli et al. similarly enables ex-
act results on the quantum problem of superglasses and
a detailed correspondence of spatial and temporal corre-
lations between the classical and quantum systems. The
authors apply this mapping to a classical system well
known to exhibit glassy dynamics—the Brownian hard
sphere problem. The quantum counterpart of the clas-
sical hard sphere problem is a natural system contain-
ing hard sphere interactions [Fig. 1,1]. On the classi-
cal side of the correspondence, the hard sphere system
has been heavily investigated [9–11]. When the sphere
packing density is slowly varied, the classical Brownian
hard sphere system undergoes a transition from a liquid
at low density to an ordered crystal at high density [9].
When crystallization is thwarted by a rapid increase of
the packing density or by, for example, a change of the
particle geometry, the system cannot order nicely into a
crystal and instead jams into a dense amorphous glass
[10, 11].

Biroli et al. noticed that by using the mapping be-
tween quantum systems with classical glass-forming
systems such as the Brownian spheres, they can ob-
tain nontrivial results. In its simplest form, the map-
ping of [7] casts the first-order differential equation in
time for the dynamics of viscous classical particles as
a Schrödinger equation with an effective Hamiltonian.
Biroli et al. find that under this mapping, the glassy
phase of the classical system translates into a quantum
glass of a Bose system. Similarly, the classical solid
maps onto a quantum bosonic crystal, resulting in an
interesting phase diagram [Fig.1]. The spatiotemporal
correlations of the (bosonic) quantum counterpart may
be computed by mapping to the classical system. Both
the glassy and solid phases harbor a finite Bose-Einstein
condensate fraction. Putting all of the pieces together,
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Biroli et al. provide an important proof of concept of the
superglass phase in a simple and precise way. This route
may be replicated for classical systems other than the
Brownian hard sphere that also display solid and glass
phases.

What physical systems might exhibit the new super-
glass phase? Recent experiments [4, 12] on solid helium-
4 exhibit supersolid-type features and have led to a
flurry of activity. In the simplest explanation of obser-
vations, a fraction of the medium becomes, at low tem-
peratures, a superfluid that decouples from the mea-
surement apparatus. However, the condensate frac-
tion that is required for such an explanation to account
for the data does not simply conform with thermody-
namic measurement [12]. Rittner and Reppy [13] fur-
ther found that the measured putative supersolid-type
feature is acutely sensitive to the quench rate for solidi-
fying the liquid, while Aoki, Keiderling, and Kojima ob-
served rich hysteresis and memory effects [14]. All of
these features can arise from glassy characteristics alone
[15, 16]—precisely as in the superglass phase discussed
by Biroli et al. It may be that a confluence of both su-
perfluid and glassy features (and their effects on elastic
properties of a medium) [17] is at work.

These effects should be observable as experimental
consequences of (super-) glassy dynamics, such as dis-
parate relaxation times that could be measured [15].
Typical glass formers indeed typically exhibit relax-
ations on two different time scales. Cold atom systems
may provide another realization of a superglass state.
Indeed, a supersolid state of cold atoms in a confining
optical lattice was very recently achieved [18]. It is nat-
ural to expect a superglass analog of these cold atomic
systems.

Superglasses may also have realizations in other ar-
eas such as superconductivity and I speculate on these
below. For example, consider a lattice version of the
continuum system investigated by Biroli et al.: a “lat-
tice superglass.” For charged bosons (e.g., Cooper pairs)
on a lattice, such a superglass would correspond to
a superconductor with glassy dynamics. In a similar
vein, a “lattice supersolid” of Cooper pairs would cor-
respond to a superconductor concomitant with well-
defined crystalline (i.e., charge-density wave) order. In-
deed, in some heavy fermion compounds as well as
in the cuprate and the newly discovered iron arsenide
family of high-temperature superconductors [19] there
are some indications of nonuniform mesoscale spatial
electronic structures and glassy dynamics. Classical
glass formers are known to exhibit “dynamical hetero-
geneities”—a nonuniform distribution of local veloci-
ties [20]. I also speculate that “quantum dynamical het-
erogeneities” may be derived by applying the mapping
used by Biroli et al. to classical glass forming systems
that exhibit dynamical heterogeneities..

“Spin superglasses” are another possibility. Quantum
spin systems in a magnetic field [21] can exhibit a del-
icate interplay between the formation of singlet states

FIG. 1: (a) A classical system of Brownian spheres may crys-
tallize at low temperatures if cooled slowly. By contrast, a
bi-disperse system (i.e., consisting of two different kinds of
hard spheres) such as the one shown cannot crystallize and
will jam into a glass at high densities and low temperatures.
Similarly, a rapidly cooled system of hard spheres does not
have enough “time” to crystallize and forms a glass instead.
Using the mapping of [7], it is seen that the quantum ana-
log of the classical hard-sphere Brownian system is that of
spheres with sticky interactions. In the classical hard-sphere
limit, only pair interactions appear in the corresponding quan-
tum system. (b) The pair potential in the corresponding quan-
tum system given by Biroli et al.[1] (for two values of λ, a
parameter that adjusts how hard the classical potential is,
where r is the interparticle distance and σ is the sphere di-
ameter) and the corresponding phase diagrams, shown in (c).
Top: The solid curve indicates the classical Brownian hard-
sphere phase diagram (pressure P versus volume fraction φ)
for uniform annealed systems wherein spheres forming a liq-
uid at low densities pack into a face-centered-cubic (FCC)
crystal structure at high densities. The dashed curve shows
the phase diagram of a rapidly quenched or bi-disperse sys-
tem in which crystallization is thwarted and the system be-
comes a glass instead [random close packing (RCP)]. Bottom:
The corresponding quantum phases obtained by the map of
[7]. The liquid-to-solid transition of the classical Brownian
sphere system maps into a superfluid to supersolid transition.
Similarly, the superfluid to superglass transition constitutes
an analog of the classical liquid to glass transition. [ Panels
(b) and (c) adapted from Biroli et al.[1].] (Illustration: Alan
Stonebraker/stonebrakerdesignworks.com)
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and the tendency of spins to align with the field direc-
tion. These systems can be mapped onto a system of
bosons with hard-core interactions—just as in the sys-
tem investigated by Biroli et al. In some spin S = 1/2
antiferromagnets in an external magnetic field, triplet
states with spins aligned along the field direction can
be regarded as hard-core bosons. In many other sys-
tems, interactions between quantum spins may also be
mapped onto hard-core-type bosonic systems [22, 23].
Invoking these bosonic representations, if a solid or
glassy phase appears in a classical Brownian system,
then a mapping similar to that of Biroli et al. suggests su-
persolidity/superglassiness in the corresponding quan-
tum spin system. Recently, there has been much work
examining supersolidity in such spin systems, e.g., [23].
It is highly natural to expect new lattice spin superglass
counterparts

Finally, even more intriguing superglasses might be
possible. In transition-metal compounds, the fractional
filling of the 3d atomic shells allows for cooperative
orbital ordering [24]. Perhaps low-temperature Bose-
condensed glasses of orbitals could appear, forming an
orbital superglass. The orbital states may be described
by pseudospins [24] that may be mapped to hard-core
bosons [22]. The work of Biroli et al. allows us to
investigate the possibility of an orbital superglass by
knowing the dynamics of hard-core Bose model derived
from a classical counterpart. In addition, the classical-
to-quantum map of [7] may also suggest a new quan-
tum critical point in related systems. The classical zero
temperature jamming transition [25] of hard spheres or
disks is a continuous transition with known (dynam-
ical) critical exponents, e.g., [26, 27]. Replicating the
mapping used by Biroli et al., we may derive an analog
quantum system harboring a zero temperature transi-
tion with similar critical exponents. Thus the classical
critical point [25–27] may rear its head anew in the form
of “quantum critical jamming.” All of the systems dis-
cussed above were free of quenched disorder. Apply-
ing the same mapping to classical viscous systems with
quenched disorder, we may further arrive at quenched
super spin glass analogs of classical spin glass systems
[28]. The tantalizing superglass phase may have numer-
ous ramifications.
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