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Performance Capacity of a
Complex Neural Network
A new theory allows researchers to determine the ability of arbitrarily
complex neural networks to perform recognition tasks on data with
intricate structure.

By Julia Steinberg

E very day, our brain recognizes and discriminates the
many thousands of sensory signals that it encounters.
Today’s best artificial intelligence models—many of

which are inspired by neural circuits in the brain—have similar
abilities. For example, the so-called deep convolutional neural
networks used for object recognition and classification are
inspired by the layered structure of the visual cortex. However,
scientists have yet to develop a full mathematical
understanding of how biological or artificial intelligence
systems achieve this recognition ability. Now SueYeon Chung of
the Flatiron Institute in New York and her colleagues have
developed amore detailed description of the connection of the
geometric representation of objects in biological and artificial

Figure 1: Researchers have developed amethod that allows them
to determine the performance capacity of a complex neural
network.
Credit: solvod/stock.adobe.com

neural networks to the performance of the networks on
classification tasks [1] (Fig. 1). The researchers show that their
theory can accurately estimate the performance capacity of an
arbitrarily complex neural network, a problem that other
methods have struggled to solve.

Neural networks provide coarse-grained descriptions of the
complex circuits of biological neurons in the brain. They consist
of highly simplified neurons that signal one another via
synapses—connections between pairs of neurons. The
strengths of the synaptic connections change when a network is
trained to perform a particular task.

During each stage of a task, groups of neurons receive input
frommany other neurons in the network and fire when their
activity exceeds a given threshold. This firing produces an
activity pattern, which can be represented as a point in a
high-dimensional state space in which each neuron
corresponds to a different dimension. A collection of activity
patterns corresponding to a specific input form a “manifold”
representation in that state space. The geometric properties of
manifold representations in neural networks depend on the
distribution of information in the network, and the evolution of
the manifold representations during a task is shaped via the
algorithms training the network to perform the specific task.

The geometries of a network’s manifolds also constrain the
network’s capacity to perform tasks, such as invariant object
recognition—the ability of a network to accurately recognize
objects regardless of variations in their appearance, including
size, position, or background (Fig. 2). In a previous attempt to
understand these constraints, Chung and a different group of
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Figure 2: The image shows representations of three neural
manifolds containing three neurons. Eachmanifold represents a
different object.
Credit: A. J. Wakhloo et al. [1]

colleagues studied simple binary classification tasks, ones
where the network must sort stimuli into two groups based on
some classification rule [2]. In such tasks, the capacity of a
network is defined as the number of objects that it can correctly
classify if the objects are randomly assigned categorizing labels.

For networks where each object corresponds to a single point in
state space, a single-layered network with N neurons can
classify 2N objects before the classification error becomes
equivalent to that of random guessing. The formalism
developed by Chung and her colleagues allowed them to study
the performance of complex deep (multilayered) neural
networks trained for object classification. Constructing the
manifold representations from the images used to train such a
network, they found that the mean radius and number of
dimensions of the manifolds estimated from the data sharply
decreased in deeper layers of the network with respect to
shallower layers. This decrease was accompanied by an
increased classification capacity of the system [2–4].

This earlier study and others, however, did not consider
correlations between different object representations when
calculating network capacity. It is well known that object
representations in biological and artificial neural networks
exhibit intricate correlations, which arise from structural

features in the underlying data. These correlations can have
important consequences for many tasks, including
classification, because they are reflected in different levels of
similarity between so-called pairs of classes in neural space. For
example, in a network tasked with classifying whether an
animal was a mammal, the dog and wolf manifold
representations will be more similar than those of an eagle and
a falcon.

Now Chung’s group has generalized their performance-capacity
computation of deep neural networks to include correlations
between object classes [1]. The team derived a set of
self-consistent equations that can be solved to give the network
capacity for a systemwith homogeneous correlations between
the so-called axes (the dimensions along which the manifold
varies) and centroids (the centers of manifolds) of different
manifolds. The researchers show that axis correlations between
manifolds increase performance capacity, whereas centroid
correlations push the manifolds closer to the origin of the
neural state space, decreasing performance capacity.

Over the past few years, the study of neural networks has seen
many interesting developments, andmore data-analysis tools
are increasingly being developed to better characterize the
geometry of the representations obtained from neural data.
The new results make a substantial contribution in this area, as
they can be used to study the properties of learned
representations in networks trained to perform a large variety
of tasks in which correlations present in the input data may play
a crucial role in learning and performance. These tasks include
those related to motor coordination, natural language, and
probing the relational structure of abstract knowledge.
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