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Quasi-integrable Arrays: The
Family Grows
A new approach to solving arrays of two-dimensional differential
equations may allow researchers to go beyond the one-dimensional
oscillator paradigm.

By Diego Pazó

A frictionless pendulum and a pendulum clock behave
alike, but they belong to different worlds: Hamiltonian
systems and dissipative systems, respectively. In the

Hamiltonian world, completely integrable—that is,
solvable—systems serve as a mathematical basis for dealing
with more general cases that aren’t integrable. An analogous
strategy doesn’t work for nonlinear non-Hamiltonian
dissipative systems, however. In that case, the best researchers
can achieve is partial integrability. Until recently, it was thought
that an array of globally coupled oscillators could be partially
integrable only if each oscillator has only one degree of
freedom. Now Rok Cestnik and Erik Martens, both at Lund
University in Sweden, report on a quasi-integrable system
consisting of N two-dimensional oscillators described by

Figure 1: Stereographic projection of the trajectories of the
unit-length orientable agent (solid lines) onto trajectories of the
Riccati equation (dotted lines) in the complex plane (shown in
yellow).
Credit: D. Pazó/University of Cantabria

ordinary differential equations (ODEs) [1]. The duo obtained a
drastic reduction in dimensionality: from N complex-valued
ODEs to three complex-valued global coordinates and N − 3
complex-valued constants of motion. Their feat could establish
a base camp fromwhich to launch attacks onmore convoluted
problems, such as arrays of spiking neurons or neural rate
models.

Arrays of dissipative oscillators are ubiquitous in nature, from
cells to ecosystems, and in technology. Unfortunately, their
mathematical analysis is a frustrating challenge. Closed
expressions do not even exist for one isolated oscillator. To
cope with this difficulty, theorists have developed a convenient
framework that works with one-degree-of-freedom oscillators,
such as the integrate-and-fire model or the phase oscillator.
This approach is well grounded in the so-called phase
approximation, which entails removing degrees of freedom
other than the phase from the equations of motion [2].

A family of globally coupled phase oscillators is amenable to
exact analysis, thanks to two complementary theoretical
milestones. The first was obtained in 1993 by mathematicians
Shinya Watanabe and Steven Strogatz [3]. The duo proved that
the dynamics of certain arrays of identical phase oscillators are
quasi-integrable. The system of N oscillators can be described
by N − 3 constants of motion—conserved quantities determined
by the initial conditions—and by only three nontrivial degrees
of freedom, which obey ODEs. The latter degrees of freedom
can fully capture the system evolution, providing an
extraordinary reduction in the problem’s dimensionality. This
simplification allowed theorists to explain features, including
the stability of arrays of superconducting Josephson junctions
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[4] and arrays of quadratic integrate-and-fire (QIF) neurons [5].

The Watanabe-Strogatz theory was limited to identical
oscillators. In 2008, a second, complementary theory overcame
this restriction. Theorists Edward Ott and Thomas Antonsen
found an exact dimensionality-reduction scheme for ensembles
of heterogeneous oscillators [6]. The Ott-Antonsen theory was
initially applied to an ensemble of phase oscillators known as
the Kuramotomodel [2]. Researchers went on to include
interactions through pulses in phase models. In 2015, Ernest
Montbrió, Alex Roxin, and I showed that a scheme equivalent to
that of Ott and Antonsen’s could describe ensembles of
heterogeneous QIF neurons in terms of a biologically
meaningful global variable, the firing rate [7].

The Watanabe-Strogatz and Ott-Antonsen theories might seem
unrelated. The first applied to finite arrays of identical
oscillators, whereas the second was valid for infinite
heterogeneous oscillators. However, physicists Arkady Pikovsky
and Michael Rosenblum soon discovered a link: the
Ott-Antonsen scheme is tantamount to a uniform distribution of
constants of motion in each subpopulation of identical
oscillators [8].

Being stuck with one-dimensional oscillators appeared to be
the inevitable price to pay for any exact reduction in
dimensionality. That’s no longer the case according to the new
results of Cestnik and Martens, who generalized the
Watanabe-Strogatz theory to arrays of two-dimensional
systems. The researchers expound their theory with three
demonstrations. The first shows that the new theory includes
the Watanabe-Strogatz theory as a subclass. The second shows
that the theory can describe arrays of generalized QIF neurons
that adopt complex-valued variables. The third example
involves a complex generalization of the phase oscillator,
equivalent to phase oscillators supplemented with a free
amplitude.

A building block of the Cestnik-Martens theory is the complex
Riccati equation, which is characterized by a quadratic
nonlinearity; it is not part of the physicist’s standard toolbox. An
important limitation of this ODE is that, unlike a pendulum
clock, it cannot exhibit a periodic attractor (that is, an isolated
limit cycle). At best, it can display a continuum of periodic
orbits. Despite this limitation, Cestnik and Martens suggest that

their theory might have interesting links with other models. For
example, the firing-rate equation derived in [7] turns out to be a
complex Riccati equation. Although this is only true when
self-coupling vanishes, perturbation theory on top of
Cestnik-Martens quasi-integrability might allow us to describe
arrays of rate neurons, a basic setup in computational
neuroscience.

Cestnik and Martens envisage higher-dimensional extensions of
their theory, in analogy to the generalization of the
Watanabe-Strogatz theory previously developed by the
mathematician Max Lohe [9] for arrays of orientable agents on a
D-dimensional sphere. Orientable agents in three dimensions
are used to study the alignment of velocity vectors in flocks of
birds, schools of fishes, and swarms of flying drones. The phase
space of the isolated unit can “choose” among a continuum of
uniformly rotating solutions, plus two neutral fixed points
(Fig. 1). Those dynamics and the Riccati equation are linked
through a stereographic projection. Specifically, closed
trajectories on the sphere map to periodic orbits of the Riccati
equation on the complex plane. This mapping explains the
consistency of the Cestnik-Martens theory with the results in [9].
Both array models have the potential to enrich each other. In
fact, a counterpart of the Ott-Antonsen scheme for orientable
agents was found [10], which could be leveraged for arrays of
heterogeneous Riccati equations.

Quasi-integrable non-Hamiltonian systems are of fundamental
interest because they constitute special systems amenable to
dimensionality reduction. Such reductions have the potential
to enable the efficient investigation of collective phenomena in
any field. Finding quasi-integrability provides perhaps the most
promising strategy for tackling high-dimensional nonlinear
systems.

Diego Pazó: Institute of Physics of Cantabria, University of
Cantabria–Spanish National Research Council, Santander, Spain
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