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Nonreciprocal Frustration Meets
Geometrical Frustration

New theoretical work establishes an analogy between systems that are

dynamically frustrated, such as glasses, and thermodynamic systems

whose members have conflicting goals, such as predator-prey

ecosystems.

By Peter Littlewood

system is geometrically frustrated when its members

cannot find a configuration that simultaneously

minimizes all their interaction energies, as is the case for
a two-dimensional antiferromagnet on a triangular lattice. A
nonreciprocal system is one whose members have conflicting,
asymmetric goals, as exemplified by an ecosystem of predators
and prey. New work by Ryo Hanai of Kyoto University, Japan,
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Figure 1: An initially randomly ordered one-dimensional spin
chain evolves differently depending on whether the coupling
between members is either reciprocal (top) or nonreciprocal
(bottom). The x axis corresponds to each of the 512 sites (i) of the
chain. The y axis corresponds to time. The color coding
corresponds to the angle of each spin’s orientation (between 0 and
7r). Whereas the reciprocal case acquires long-range nematic order,
the nonreciprocal case remains geometrically frustrated.

Credit: R. Hanai [1]

has identified a powerful mathematical analogy between those
two types of dynamical systems [1]. Nonreciprocity alters
collective behavior, yet its technological potential is largely
untapped. The new link to geometrical frustration will open
new prospects for applications.

To appreciate Hanai’s feat, consider how different geometric
frustration and nonreciprocity appear at first. Frustration defies
the approach that physics students are taught in their
introductory classes, based on looking at the world through
Hamiltonian dynamics. In this approach, energy is to be
minimized and states of matter characterized by their degree of
order. Some of the most notable accomplishments in statistical
physics have entailed describing changes between states—that
is, phase transitions. Glasses challenge that framework. These
are systems whose interactions are so spatially frustrated that
they cannot find an equilibrium spatial order. But they can find
an order that’s “frozen” in time. Even at a nonzero temperature,
everything is stuck—and not just in one state. Many different
configurations coexist whose energies are nearly the same.

Nonreciprocity is a common feature of the real world, which
lacks Hamiltonian regularity. Besides thermally jiggling in the
vicinity of an equilibrium configuration, states also dynamically
cycle. Energy flows in and out, and conservative dynamics
breaks down. Even Newton’s third law may not hold: the force
on one agent from another need not be identical to the reverse
force. Such nonreciprocal interactions are the norm in biology,
ecology, and neuroscience, and they allow systems to
spontaneously settle into states that are not stationary in time.
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The dynamical behavior of these nonreciprocal systems earned
the field the name active matter. Much of that behavior is
determined by frustration involving the agents.

Hanai set out to explore the parallel between spatial frustration
in Hamiltonian systems and nonreciprocal frustration in
dynamical systems. This goal might seem difficult at first sight.
The equation of motion in a nonreciprocal dynamical system is
not derived by minimizing an energy. Glasses have many
distinct minima of the energy, which are so deep that once a
system at low temperature has found a minimum, it stays there
forever. These energy minima are far apart in configuration
space but lie very close in energy. In 1975, physicists David
Sherrington and Scott Kirkpatrick developed their profoundly
influential model of a glass made of frustrated spins [2]. In 1980
Nobel Laureate Giorgio Parisi showed that in this model a
multitude of energy states are degenerate [3]. Usually,
degeneracy arises from a symmetry, but not in this case.

A dynamical system might settle down to a time-stationary
fixed point in phase space where all the relevant variables
become constant. Or it might become chaotic, meaning that
some variables are wildly fluctuating, while others are tightly
constrained. How does one characterize these time-dependent
states? Because the equation of motion of their trajectories
does not come from a Hamiltonian, there is no energy to be
minimized to attain energetic stability. A better approach
entails examining the stability of the trajectories themselves.

Aleksandr Lyapunov addressed that question in his doctoral
thesis of 1892, which continues to provide tools for dynamical
studies. Imagine perturbing a system infinitesimally. Does its
orbit in phase space return to the initial trajectory or does it run
away? Perturbations decay or grow as e, where the growth
rates A are known as Lyapunov exponents. If all of them are
negative, the system is stable and occupies a fixed point. If one
of them is positive, then the orbit is unstable, and often this will
presage chaos. If at least one is zero and the rest are negative,
the system traces a limit cycle where the system oscillates in
time—a time crystal (see Viewpoint: How to Create a Time
Crystal). A Lyapunov exponent of zero tells you that you can
reset the origin of that trajectory in time with no change in the
physics. The negative values of the other Lyapunov exponents
imply that there are directions in phase space that are on the
margins of stability. And because the limit cycle orbits can be
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complicated, the marginal directions are not necessarily
determined by symmetry.

Hanai’s starting point is a well-known model of coupled
oscillators developed by physicist Yoshiki Kuramoto in the
1970s. This model consists of an array of overdamped, coupled
circular pendula where the force between each of them
depends in part on a coupling constant J;; between oscillator i
andj. If J; are all of the same sign, the oscillators will
synchronize, and all the Lyapunov exponents will be negative
but for one that is zero. When it comes to nonreciprocity, the
extreme limit is perfectly antireciprocal: J;; = -J;;. Hanai derives
a remarkable result: in such a case, all the Lyapunov exponents
are zero. The system is fine tuned only in the sense of the
antireciprocity: whereas Jj; =-Jj;, every J;; can be different. That
result means that for N oscillators there are still N2/2
independent parameters. Despite there being no global
symmetries, there is a huge manifold of marginal states.

What happens if internal symmetries are weakly broken?
Hanai’s second major achievement is to identify what happens
if small fluctuations, such as noise or heat, are added. He shows
that, paradoxically, small fluctuations can lead to order. This
finding is analogous to one in statistical physics. In 1980 a team
led by physicist Jacques Villain pointed out that temperature
reveals broken-symmetry states that are not visible at absolute
zero, a phenomenon they dubbed "order as an effect of
disorder” [4]. In their original example, a two-dimensional
lattice model exhibited disordered paramagnetism at T =0 yet
long-range ferromagnetic order at nonzero temperatures.

Hanai’s work offers a set of new directions to pursue in
frustrated dynamical systems of active agents. Neural networks
are one potential arena. In 1982 spin glasses inspired John
Hopfield to propose a Hamiltonian model of a neural network
[5], which has since become a thread woven into modern
machine-learning models. Two years ago, Kamesh
Krishnamurthy and his collaborators studied gated neural
networks as a large-scale statistical dynamical system [6]. They
showed that one of the remarkable features of such models is
that they all have many near-zero Lyapunov exponents. This
feature is a useful idea for machine learning, because it means
that images identifying, say, a dog are smoothly connected
between breeds of dogs.
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Ideas of marginal stability have a long history in physics, from
glasses to sandpiles. Now, thanks to the work of Hanai and
others, they may start to play out in neural networks and other
dynamical systems.

Peter Littlewood: Department of Physics, University of Chicago,
Chicago, IL, US
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