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Viewpoint

A little entanglement helps
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A new algorithm allows for the extremely efficient calculation of thermally averaged quantities in one dimension,
in conjunction with the density matrix renormalization group method. The key is the judicious selection of a
few representative states.
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Over the past decades, the numerical simulation of
quantum many-body systems has evolved into a ma-
jor field of condensed matter physics. Strongly inter-
acting Hamiltonians on lattices, such as the Hubbard
and Heisenberg models, are of particular interest as
they are relevant for a variety of physical systems, in-
cluding low-dimensional magnets, high-Tc supercon-
ductors, and ultracold atomic gases in optical lattices.
Writing in Physical Review Letters[1], Steve White at the
University of California, Irvine, provides, at least in one
dimension, a new algorithm (see Fig. 1) that for a given
quantum system allows for a highly efficient calcula-
tion of static quantities (e.g., energy or magnetization
of a chain of spins) at arbitrary finite temperature and
holds promise for dynamical quantities. The underlying
theme of this success is the peculiar behavior of entan-
glement in many-body systems.

Why are simulations of strongly interacting Hamilto-
nians difficult? The principal challenge is that the num-
ber of states needed to describe a quantum system in-
creases exponentially with its size. For N classical two-
valued spins versus N quantum spins of 1/2, a point in
state space is characterized by 2N versus 2N variables.
Numerical methods have to adapt to this exponential
growth: exact diagonalization techniques analyze the
full state space, while Monte Carlo techniques explore
it stochastically. But does one have to work with the
entirety of the Hilbert space? A wealth of other tech-
niques try to find and work with much smaller, hope-
fully physically relevant, subspaces. Examples include
all renormalization group and variational techniques,
and among them is the density matrix renormalization
group (DMRG) pioneered by White [2, 3] in 1992.

DMRG is an already highly successful method that
currently generates a lot of excitement because it is
profoundly connected to quantum information theory

through the idea of entanglement. Expanding on this
well-established connection to ground states at zero
temperature, White shows that one can use entangle-
ment even at finite temperature, where it is understood
poorly, to design a highly efficient simulation method
based on DMRG.

DMRG is a method which, for a given Hamilto-
nian, variationally optimizes over a particular set of
states—the so-called matrix product states (MPS). These
are states where the scalar coefficients of the wave func-
tion expansion are derived from a product of D× D di-
mensional matrices, depending only on local lattice site
states. D is the key control parameter, determining both
accuracy and computation time: compared to the ex-
ponential number of wave-function coefficients for the
full Hilbert space, there is only a polynomial number of
parameters in an MPS. Verstraete and Cirac [4] recently
proved that MPS approximate ground-state physics of
generic local Hamiltonians in one dimension, even for
small D, to almost exponential accuracy—an observa-
tion that had intrigued practitioners of DMRG for a long
time. In ground-state physics, therefore, the enormously
large Hilbert space is, in some sense, only an illusion.

The nice feature exploited by White is that the effi-
ciency of MPS and DMRG can be motivated (if we aban-
don rigor and focus on “physically” realistic Hamilto-
nians) by the existence of area laws for quantum me-
chanical entanglement in ground states. Let us parti-
tion a lattice into parts A and B, and measure pure state
entanglement as the von Neumann entropy of part A,
S = −TrρA log2ρA with the reduced density operator
defined as ρA = TrB|ψ〉〈ψ| by explicit summation over
the states in part B. S will be extensive for a random state
from Hilbert space (e.g., it will depend on the number of
lattice sites comprising part A). However, ground states
turn out to be highly atypical: for gapped systems, en-
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FIG. 1: The algorithm begins with a classical state. Minimally
entangled typical thermal states (METTS) are created by evolv-
ing a classical state in imaginary time. Subsequently, by per-
forming a quantum measurement on the METTS, a new classi-
cal state is created and the circle closes. After discarding the
first few METTS produced from this loop in order to erase
any memory of the initial choice, an ensemble of only a few
states allows calculation of static quantities (such as energy or
magnetization) with high accuracy. (Illustration: Alan Stone-
braker)

tanglement scales merely as the surface of A (e.g., in one
dimension it is a single lattice site), with possible loga-
rithmic corrections at criticality.

For a MPS, reduced density operators have dimension
D, and the maximum entanglement the state can carry
is S = log2D. Conversely, we will need at least D = 2S

as the dimension of a MPS that is an accurate descrip-
tion of a state with entanglement S. DMRG therefore
succeeds or fails depending on the amount of entangle-
ment present! In one dimension, where S is roughly a
constant in the system size L (or logarithmic at critical-
ity), D does not grow substantially, i.e., at most polyno-
mially with L. In two dimensions, for systems of size L2,
S ∝ L entails exponential growth of D, and DMRG fails,
at least for larger systems.

At finite temperature, however, the special nature of
ground states will not help in DMRG, and therefore it
seems a natural expectation that setting up a DMRG
procedure would be a real challenge, if not impossible.
But the apparent complexity of the thermal density op-
erator e−βH = Σie−Ei |Ei〉〈Ei| as an ensemble of expo-
nentially many pure states is again, in some sense, only
an illusion! Indeed, we can interpret any mixed state of
some physical system A as the reduced density operator
ρA for some pure state |ψ〉 living on system AB, where B

is just a copy of system A: a mixed state on a spin chain
corresponds to a pure state on a spin ladder. This trick
has been used recently for thermal mixed states e−βH

to develop a finite-temperature DMRG algorithm. One
starts with a pure state with maximal entanglement be-
tween A and B (e.g., a spin singlet on each bond for the
spin ladder) [5], which leads to a maximally mixed state
on A, i.e., the infinite temperature (β = 0) density oper-
ator. This state is then subjected to an imaginary time
evolution using time-dependent DMRG [6] to the de-
sired temperature β.

This works well, but as White points out, one can
avoid purification entirely. This is particularly rele-
vant at low temperatures, where the mixed state of A
evolves towards the pure ground state. But then A is
not entangled with B anymore, and DMRG simulates a
product of two pure states. That amounts to describ-
ing a ground state with D2 states where only D would
have been enough. As a result, low-temperature simu-
lations, where most relevant quantum effects occur, be-
come overly costly.

What White proposes instead is to move away from
the focus on the energy representation of ρ—as al-
ready pointed out by Schrödinger many decades ago,
although mathematically correct, such a representation
is unphysical since real systems at finite temperature
will usually not be in energy eigenstates. Equilibration
would be exponentially slow, and eigenstates are highly
fragile. White rather exploits unitary freedom in the rep-
resentation of ρ and introduces “typical” states by doing
imaginary time evolutions on any complete orthonormal
set of states and constructing ρ from those. The intrigu-
ing part of White’s work is that he considers a special set
of such typical states: as his initial set he simply takes
the “classical” product states, which have no entangle-
ment. Subsequently, the imaginary time evolution in-
troduces entanglement due to the action of the Hamil-
tonian, but it is a reasonable expectation that the final
entanglement will be lower than for similar evolutions
of already entangled states. Hence he calls the typical
states he obtains “minimally entangled typical thermal
states” (METTS). The computational cost is low: dimen-
sions will not blow up as in the purification approach,
and low entanglement means that the DMRG comput-
ing cost will be low.

Still, this would not be useful if it had to be done for
all classical product states. However, White formulates
the procedure by analogy to the updates in Monte Carlo
steps: the last METTS is used to produce the next classi-
cal state (and from there the next METTS) by a quantum
measurement of all spins in the current METTS (see Fig.
1). It turns out that–after discarding the first few METTS
to eliminate effects of the initial choice–averaging quan-
tities over only a hundred or so states allows calculation
of local static quantities (magnetizations, bond energies)
with high accuracy and extremely low computational
cost compared to previous approaches. This is surpris-
ing and exciting.
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Intriguing questions concerning both the potential
and the foundation of the algorithm remain. How well
will it perform for correlation functions? Dynamical
quantities can be accessed easily, as the time-evolution
of the weakly entangled METTS is not costly, but will
the efficiency of averaging over only a few “typical”
states continue to hold? This relates to the fundamen-
tal question: Why are so few METTS sufficient? My
conjecture is that the choice of classical initial states is
not only convenient for entanglement reasons, they also
have large variance in energy and overlap with many
eigenstates, such that sequences of imaginary time evo-
lution and quantum measurement should mimic a ther-
malized ensemble very quickly (the most inefficient ap-
proach would be to start from the eigenstates them-
selves). In any case, we seem to get a tantalizing hint

that for physical manifestations, only small parts of the
Hilbert space really matter, and that we can find them
systematically.
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