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Convection in a fluid heated from below, known as Rayleigh-Bénard convection, is an important turbulent pro-
cess that occurs in the sun, planetary atmospheres, industrial manufacturing, and many other places. Physicists
and engineers have made much progress in understanding this phenomenon in simple laboratory geometries,
but still have a way to go before they are able to extrapolate to the extreme conditions often encountered in
nature.

Subject Areas: Fluid Dynamics

Turbulent convection in a fluid heated from below
and cooled from above, called Rayleigh-Bénard con-
vection [1, 2], plays a major role in numerous natural
and industrial processes. Beyond a particular temper-
ature difference, the heated fluid rises and the cooled
fluid falls, thereby forming one or more convection cells.
Increasing the difference causes the well-defined cells
to become turbulent. Turbulent convection occurs in
earth’s outer core [3, 4], atmosphere [5, 6], and oceans
[7, 8], and is found in the outer layer of the sun [9] and
in giant planets [10]. A beautiful example is seen in
the photosphere of the sun (see Fig. 1), where a dom-
inant feature is an irregular and continuously changing
polygonal pattern of bright areas surrounded by darker
boundaries. These granules are convection cells with a
width of typically 103 km and a lifetime of only about 10
to 20 minutes.

The processes mentioned in the previous paragraph
are exceptionally complex. It is true that buoyancy due
to the density variation associated with the temperature
variation and in the presence of gravity is the central
driving force that produces the fluid flow. However, in
astrophysics this flow often is modified by the influence
of a Coriolis force, for instance due to the rotation of a
star or planet. Further complications arise from the fact
that the fluids involved sometimes are plasmas or liq-
uid metals. In those cases the flow can interact with or
even generate magnetic fields. The equations of fluid
mechanics, i.e., the Navier-Stokes equations, then have
to be supplemented by and are coupled to Maxwell’s
equations. Additional problems may be added by the
shape of the convecting system, which can introduce
complicated boundary conditions.

What then is a physicist to do in these situations of
apparently hopeless complexity? The astrophysicist or
engineer, for instance, will have to come to grips with
the entire problem by making whatever approximations
may be necessary to render it tractable, while not los-
ing any of the main physical aspects. The physicist, on
the other hand, has the luxury of extracting a particular
manageable aspect from the whole and idealizing it in a

FIG. 1: Granules and a sunspot in the sun’s photosphere, ob-
served on 8 August 2003 by Göran Scharmer and Kai Lang-
hans with the Swedish 1-m Solar Telescope operated by the
Royal Swedish Academy of Sciences. (Illustration: Royal
Swedish Academy of Sciences)

carefully constructed laboratory apparatus or computer
program where boundary conditions and other external
conditions are precisely defined. In this idealized sys-
tem quantitative studies of particular fundamental as-
pects of the complex system then become feasible.

The idealization I want to consider is a sample of fluid
in a cylindrical container with a circular cross section, a
vertical axis, and an aspect ratio Γ≡D/L (where D is
the diameter and L the height) that is heated uniformly
over its bottom surface while it is cooled uniformly from
above. In addition to its relevance (or some may say ir-
relevance because it is a major approximation) to astro-
physics and geophysics (as well as numerous industrial
applications), this system turns out to be of remarkable
interest for its own sake. From the fluid mechanics view-
point, it is fascinating because it is dominated over wide
parameter ranges by the physics of boundary layers.
Equally interesting is that it provides a tractable exam-
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ple of interactions between large and small scales, which
are broadly important in fluid-flow problems. More
generally from the viewpoint of statistical mechanics, it
offers the opportunity to study the statistical properties
of a driven (i.e., nonequilibrium) system in which the
small turbulent scales are the noise source that drives
the large-scale flow structures.

Below the onset of turbulence

To easily compare different systems, we express the
strength of the thermal driving as a quantity called the
Rayleigh number

Ra =
αg∆TL3

κν
, (1)

which is a dimensionless form of the temperature dif-
ference. Here α is the isobaric thermal expansion coeffi-
cient, g the local acceleration of gravity, ∆T the applied
temperature difference, κ the thermal diffusivity, and
ν = η/ρ the kinematic viscosity (η is the shear viscos-
ity and ρ the density). For sufficiently small ∆T, the mo-
tionless (pure conduction) state of the fluid is stable, and
convection will set in only when Ra is greater than some
critical value Rac(Γ). For a sample of infinite width and
finite height, i.e., for Γ = ∞, it has long been known
that Rac(∞) = 1708, but for a cylinder of finite Γ, Rac is
larger and depends on the conductivity of the side walls
[13].

In what follows, I will consider the case Γ = 1. Histor-
ically this is the case that was studied most extensively
because it allows the use of a fairly large height L [ and
thus large Ra, see Eq. (1) ] without becoming too wide
to fit conveniently into a laboratory. For nonconducting
walls, one then has Rac(1) ≈ 4000. Above onset, the
azimuthal symmetry of the fluid flow can be described
well by the eigenfunctions of the Laplace operator in
cylindrical coordinates, i.e., it has the form exp(imθ).
For our Γ = 1 case, and close to Rac, the flow consists of
a single convection roll with upflow along the wall at an
azimuthal orientation θ0 and downflow at the opposite
side θ0 + π, corresponding to m = 1. As Ra increases,
the pattern becomes more complex, corresponding to
larger values of m and possibly also to more compli-
cated vertical structures. When Ra is sufficiently large,
the flow goes from steady to time-varying. Precisely
what happens then will depend on another dimension-
less quantity, the Prandtl number Pr ≡ ν/κ (which tells
us about the relative importance of viscous and thermal
dissipation). Typically, the time dependence at first is
periodic or chaotic—remnants of the cellular flow struc-
ture with m > 1 are still recognizable, and the fluid flow
remains laminar—but as Ra is increased further beyond
some Rat, all internal structure disappears except for a
single roll (m = 1). In that Ra range, vigorous small-
scale fluctuations become important and we regard the

sample as being turbulent. The precise sequence of
events leading to turbulence and the value of Rat de-
pend both on Γ and on Pr (see Ref. [14]). For Pr ≈ 30
and Γ = 1, for instance, we found that Rat ≈ 107. The
transition from laminar to turbulent flow was not sharp,
with the turbulence evolving gradually from chaos as
Ra was increased near Rat.

The turbulent range

In the turbulent regime much experimental and nu-
merical work has been done for Γ ≈ 1 (for details see
Ref. [1]). We find that this system indeed contains a
single convection roll, known as a “large-scale circula-
tion,” just as it did close to Rac, albeit in the presence of
vigorous fluctuations on smaller length scales. The up-
per part of Fig. 2 is a shadowgraph visualization, look-
ing sideways through the sample. This method is based
on the bending of light rays by refractive-index gradi-
ents and thus provides an image closely related to the
temperature field. One sees plumes of relatively warm
fluid rising on the left and plumes of relatively cold fluid
falling on the right. These plumes originate at thermal
boundary layers [15] of thickness λb << L just below
the top and just above the bottom plate.

An example of plume emission is shown in the bot-
tom of Fig. 2. As a very crude approximation, the
boundary layers can be viewed as quiescent fluid, with
each layer supporting a temperature difference roughly
equal to ∆T/2. This then would leave the entire sam-
ple interior at a nearly constant temperature. In reality
the situation is a great deal more complicated because
the temperature and velocity fields are fluctuating vig-
orously, both in the interior and in much of the bound-
ary layers. Again roughly speaking, the boundary lay-
ers will adjust their thicknesses so that, according to Eq.
(1), the Rayleigh number based on the boundary layer
thickness λb (rather than L) approximately reaches its
critical value. The plume emission can then be viewed
as a manifestation of the near-marginal stability of the
boundary layers.

Recent experimental work for Γ ≈ 1 revealed that
the large-scale circulation carrying the plumes, and in
turn being driven by their buoyancy, displays very in-
teresting dynamics. In samples of circular cross section,
the orientation of the near-vertical circulation plane un-
dergoes azimuthal diffusion, as revealed by the obser-
vation that its mean-square azimuthal displacement is
proportional to the elapsed time [16–19]. A further fas-
cinating feature of the large-scale circulation is a tor-
sional oscillation, with azimuthal displacements that are
out-of-phase by π in the top and bottom parts of the
sample [20, 21]. An important question was whether
this mode is a characteristic of the underlying deter-
ministic dynamics. Such a deterministic oscillator mode
would have a probability distribution p(θ − θ0) of the
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FIG. 2: (Top) Shadowgraph visualization of rising and falling
plumes at Ra = 6.8×108, Pr = 596 (dipropylene glycol) in
a Γ = 1 cell (from Ref. [11]). (Bottom) Small thermochromic
liquid-crystal spheres are seeded in the convecting fluid. Their
Bragg-scattered light changes color from red to blue in a nar-
row temperature range. Streak pictures of the spheres with a
long exposure time show the temperature and velocity fields
simultaneously. Cooler regions appear brown and warmer re-
gions appear green and blue. This image was taken near the
top surface at Ra = 2.6×109 and Pr = 5.4 (water). The view
shows an area of 6.5 cm by 4 cm. Near the middle top one sees
a brownish (cold) plume detaching from the boundary layer,
extending down and to the left into the fluid, and forming a
mushroom head consisting of two swirls (from Ref. [12]).

azimuthal displacement θ away from the mean value
θ0 with two maxima, one each near the two displace-
ment extrema. However, it turned out that p(θ− θ0) was
Gaussian distributed [21] with a maximum at θ − θ0 =
0. Such a distribution is indicative of a stochastically
driven damped harmonic oscillator [22]. Thus both
the azimuthal diffusion and the nature of the torsional
mode suggest to us that we are dealing with a large-
scale circulation of the system that is driven by the noise

consisting of the small-scale turbulent background fluc-
tuations.

Another experimentally observed property of the
large-scale circulation is that it occasionally slows down
and virtually comes to a halt, only to start up again,
albeit usually at a different orientation [18, 23]. These
“cessations” are events reminiscent of the cessations ob-
served in the geo-dynamo that are associated with re-
versals of earth’s magnetic field [3, 4]. Much earlier it
had been realized already that there are also rare occa-
sions when the large-scale circulation orientation under-
goes rotations at exceptionally high rates without com-
pletely loosing its circulation [24]. Both the “rotations”
and the cessations occupy only a small fraction of the to-
tal time, and are superimposed upon the otherwise dif-
fusive azimuthal dynamics. Yet another unexpected ex-
perimental observation was that the probability distri-
bution of θ0 had a broad peak rather than being uniform
as would be expected based on the rotational invariance
of the sample.

Stimulated by some of these experimental findings
and hopeful for an explanation of others, Eric Brown
and I derived a simple model for the large-scale circu-
lation [25, 26]. The idea was to identify the smallest
number of necessary components of the large-scale cir-
culation, to retain the terms of the Navier-Stokes equa-
tions that are physically relevant to these components,
to perform a volume average so as to reduce the field
equations to ordinary differential equations, and to add
phenomenological stochastic driving terms (with inten-
sities derived from the measured diffusivities) to rep-
resent the action of the small-scale fluctuations on the
large-scale excitation.

There turn out to be at least two necessary compo-
nents, namely, the circulation strength U and the az-
imuthal orientation θ0 of the circulation plane. The
strength U is driven by the buoyancy term and damped
by viscous velocity boundary layers near the walls. The
equation for U is coupled to that for θ0 by a term that
arises from the nonlinear term in the Navier-Stokes
equation; this term represents the angular momentum
of the large-scale circulation and is proportional to U.
We assumed further that U is proportional to the ampli-
tude δ of the measurable sinusoidal temperature vari-
ation around the circumference at the horizontal mid-
plane of the cylinder. This procedure yielded two
stochastic ordinary differential equations, one for the
first time derivative of δ, the other for the second deriva-
tive of θ0[1, 25, 26].

We find that there is an unstable fixed point at δ = 0
and a stable one at the mean value of δ = δ0. Normally δ
will undergo diffusion in the depth of the potential well
surrounding δ0, but on rare occasions δ will be driven
by the noise to the unstable fixed point. Such an event
corresponds to a cessation. The equation for the second
derivative of θ0 is equally interesting: reflecting the ro-
tational invariance of the system, it has no potential ex-
trema. It will yield diffusion, but at a typical rate con-
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trolled by an effective damping term, proportional to δ,
that represents the angular momentum of the large-scale
circulation. Thus rapid and large changes of θ0 can, but
do not have to occur when δ (and thus the angular mo-
mentum) is small. This feature explains the observed
occasional rapid rotations.

Recently this model was extended by including terms
that break the azimuthal invariance of the system [27].
An example of such a term is a noncircular cross sec-
tion of the cylinder. The model then predicts that the
circulation plane will tend to align along the largest di-
ameter, with fluctuations about this alignment. Another
example is a system with a tilt of the vertical axis relative
to gravity. Both of these cases will, for appropriate pa-
rameter values, lead to oscillations of θ0 corresponding
to a damped stochastically driven harmonic oscillator.
For the tilted case, these oscillations have actually been
observed and their properties have been measured [27].
Note that they are unrelated to the torsional oscillations
mentioned earlier.

A particularly interesting symmetry-breaking term is
the Coriolis force due to the rotation of the earth, which
couples to the circulation [17]. In the northern hemi-
sphere it turns out that up- or downflow more or less
parallel to the cylinder axis yields a preferred westerly
orientation of θ0, whereas flow more or less horizon-
tal, and thus parallel to the cylinder diameter, applies
a torque that tends to rotate the circulation plane in the
clockwise direction when seen from above. These two
competing effects yield a periodically varying potential
(with period 2π) with a sloping background. Such a po-
tential is sometimes known as a “washboard potential”
and arises in many condensed-matter physics problems,
including charge-density waves in semiconductors and
constant-current-biased Josephson junctions. Knowing
the azimuthal diffusivity and the potential of the sys-
tem, one can calculate the probability distribution p(θ0)
using a Fokker-Planck equation. The result, obtained
without any adjustable parameters, agrees extremely
well with the measured broad peak in p(θ0) that had
been so surprising in view of the perceived rotational
invariance of the system. Here we have a wonderful
application of the methods of statistical mechanics to a
fluid-mechanical problem.

Extensive measurements were made also for cylin-
ders with Γ = 0.5 and Pr = 5 (see Refs. [16, 28, 29]).
Among other interesting results, this work showed that
cessations are more frequent by an order of magnitude
than they are for Γ = 1. It remains to be seen whether
this difference can be explained in terms of the model
equations discussed earlier, with appropriate parameter
choices.

What are the unresolved issues?

Several variations of the basic Rayleigh-Bénard con-
vection problem are of current interest. One of them is
the influence of deliberately imposed rotation about an
axis parallel to the cylinder axis and at angular speeds
Ω much larger than that of earth’s rotation. For not too
large values of Ω, the Coriolis force will twist the plumes
emitted from the boundary layers into vertically aligned
tubes known as Ekman vortices. This is illustrated by
the direct numerical simulation results shown in Fig. 3.
These vortices, by virtue of the reduced pressure along
their axes, will extract extra fluid from the boundary
layers and significantly increase the heat transport. En-
hancements in the ratio of convective to conductive heat
transport (the Nusselt number, Nu) of over 30% have
been observed [30]. However, at larger Ω the Nusselt
number is suppressed because globally the rotation sup-
presses flow parallel to the rotation axis. Understand-
ing these phenomena has significant industrial conse-
quences, for instance, in the growth of crystals from the
melt. It is relevant as well to the elucidation of convec-
tion in astrophysical objects where rotation can have a
much larger influence than it does on earth. Much more
is to be learned about the physics that is involved.

Another interesting problem arises when the applied
temperature difference straddles a first-order phase
transition [31]. The heat transport can then be enhanced
by an order of magnitude or more. This problem is im-
portant, for instance, in understanding the formation of
rain in clouds and for the understanding of convection
in earth’s mantle. And of course it has numerous in-
dustrial applications ranging from miniaturized heat ex-
changers for cooling of computer components to large-
scale power plants.

Other issues that are beginning to be investigated are
the turbulent state in liquid crystals, where the rodlike
molecules can be given a preferred orientation by the
application of a magnetic field and where the fluid prop-
erties are then anisotropic. In this system the instabili-
ties of the boundary layers are expected to differ from
those of the isotropic fluid, and it will be interesting to
see how this affects the turbulent state. Other variations
of current interest include the influence of suspended
particles and the effect of polymers on the heat trans-
port and flow structure.

Returning to pure Rayleigh-Bénard convection with-
out the above variations or complications, there also re-
main major open issues. Let us consider just two of
them. First, it is obvious that convection in a cylinder
with Γ ≈ 1 does not correspond very closely to many
of the problems of interest, for instance, to the gran-
ules seen in the photosphere of the sun (see Fig. 1). We
would love to know whether an irregular polygonal pat-
tern of vigorously fluctuating convection cells such as
seen in Fig. 1 would also be the pattern of large-scale
circulation in a system of very large Γ. To answer this
simple question is difficult. In experiments there gen-
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FIG. 3: Visualization for Ra = 108 of two temperature isosur-
faces in a cylindrical sample with Γ = 1 for Pr = 6.4 and at a
modest rotation rate (from Ref. [30]).

erally is a limit to the lateral extent of an apparatus.
Thus large Γ is often achieved only at the expense of
the height L. However, according to Eq. (1), small L
will lead to small Ra, and yet large Ra is desired as well.
Nonetheless, no doubt this will be one of the directions
of future research. If an irregular polygonal pattern does
indeed exist, then an interesting question will be how
this pattern is influenced by a prevailing lateral current
imposed upon the system. This issue is relevant, for
instance, to the formation of cloud streets (lines of cu-
mulus clouds) in the atmosphere. It has been studied at
some length near the onset of convection [32], but, to my
knowledge, not for the turbulent system. The common
view is that the irregular convection cells will be orga-
nized into more or less ordered rolls by the prevailing
wind.

A second question of great importance is how
Rayleigh-Bénard convection, even in a cylinder with Γ
of order unity, will behave at very large Ra. With a few
exceptions to be mentioned below, laboratory experi-
ments have been limited to Ra ≤ 1012, and direct nu-
merical simulations have not yet been able to reach such
high values. Reliable calculations, taking many days
of CPU time on modern computers, have reached only
Ra ≈ 1010 for a cylindrical sample with Γ = 1/2[33].
In the explored Ra range, measurement and numerical
simulations indicate that Nu is proportional to Raγ, with
γ changing gradually from about 0.28 to about 0.31 as
Ra changes from 107 to 1012[34–37]. This behavior is ex-
plained very well by a model of Grossmann and Lohse
[38, 39], which is based on a decomposition of the ki-
netic and thermal dissipations into boundary and bulk

contributions. As Ra increases, bulk contributions gen-
erally become more important and for that reason the
effective exponent changes.

One might be quite satisfied with the understanding
of Rayleigh-Bénard convection developed on the basis
of the existing measurements for Ra ' 1012, except
for the fact that theoretically the physics of this sys-
tem is expected to change dramatically as Ra grows fur-
ther. With increasing Ra the large-scale circulation is ex-
pected to become more vigorous. Its maximum speed
is near the boundary layer at the top and bottom, but
directly at the plates the velocity has to vanish for a
viscous fluid. Thus the large-scale circulation applies a
shear to the boundary layers. When the shear becomes
large enough, the heretofore laminar (albeit fluctuating)
boundary layers will themselves become turbulent and
in a sense be swept away. An estimate [40] suggests that
this will occur for Ra = Ra∗ ≈ 3x1014 when Pr = 1, and
that Ra∗ is proportional to Pr0.7. The nature of Nu(Ra)
for Ra > Ra∗ was investigated theoretically long ago
by Kraichnan [41], and his predictions have stimulated
the community ever since to search for ways to explore
this high-Ra regime. His prediction for a system without
boundary layers is that Nu ∼ Ra1/2, i.e., that Nu should
increase much more rapidly with Ra than it does below
Ra∗. Of course our actual laboratory system does have
top and bottom boundaries, and even though the lami-
nar boundary layers may be gone, there remains the re-
striction that the velocity must vanish at the solid-liquid
interface. This condition leads to so-called “viscous sub-
layers,” which are thinner than the laminar boundary
layers; in Kraichnan’s theory they lead to logarithmic
corrections to the relation between Ra and Nu, yielding
Nu ∼ Ra1/2/[ln(Ra)]3/2.

There are at least two reasons why the Kraichnan tran-
sition is so important. First, it is associated with a fun-
damental change in the heat transport mechanism. Be-
low Ra∗ the heat transport was limited primarily by
laminar boundary layers. Above Ra∗ the limiting fac-
tor presumably is a thermal gradient in the bulk fluid.
We certainly would like to understand this basic change
in the physics of the system. Second, we know that
what we learned below Ra∗ cannot be extrapolated to
Ra > Ra∗ because of this change in the mechanism. It
turns out that many of the astrophysical applications in-
volve Ra > 1020, i.e., values above Ra∗ by several or-
ders of magnitude. So we really cannot extrapolate ex-
isting measurements to the Ra ranges of these natural
phenomena.

Achieving large Rayleigh numbers
and strong turbulent convection

How then can we reach very large values of Ra? From
Eq. (1) one sees that either a fluid can be chosen for

DOI: 10.1103/Physics.2.74
URL: http://link.aps.org/doi/10.1103/Physics.2.74

c© 2009 American Physical Society



Physics 2, 74 (2009)

which the combination α/κν is particularly large, or
an apparatus with very large L can be built. The for-
mer choice was pursued by Castaing and co-workers in
Chicago, US, followed by Chavanne et al. in Grenoble,
France, who used fluid helium at about 5 K near its crit-
ical point and reached Ra ≈ 1015[42]. Another group,
Niemela et al. in Oregon, US, went further by using
low-temperature helium as well, and at the same time
also constructing a large apparatus with D ≈ 0.5 m and
L ≈ 1 m[43]. Unfortunately the two sets of measure-
ments do not agree. The Grenoble results found a tran-
sition in Nu at Ra ≈ 1011 from a low-Ra regime with
γ ≈ 0.31 to a high-Ra regime with γ ≈ 0.39, which they
interpreted as the Kraichnan transition even though it
occurred at an unexpectedly low value of Ra∗. The Ore-
gon group reached unprecedented values of Ra as large
as 1017 corresponding to Nu ≈ 20000; their data were
consistent with γ ≈ 0.31 over their entire Ra range and
did not reveal any transition.

Researchers needed to address this discrepancy with a
different type of experiment that was not dependent on
cryogenic techniques and instead used classical fluids at
ambient temperatures. To that end, Denis Funfschilling,
Eberhard Bodenschatz, and I used a very large pressure
vessel at the Max Planck Institute for Dynamics and Self-
Organization in Göttingen, Germany. It is a cylinder of
diameter 2.5 m and length 5.5 m, with its axis horizontal,
and with a turret above it that extends the height to 4 m
over a diameter of 1.5 m. Because of its shape, this vessel
has become known as the “U-boat of Göttingen .” It can
be filled with various gases at pressures up to 19 bars. In
the section containing the turret we placed a Rayleigh-
Bénard sample cell with L = 2.24 m and D = 1.12 m (the
“High Pressure Convection Facility” or HPCF), yielding
Γ = 0.500. Figure 4 shows the insertion of the HPCF into
the turret of the U-boat. After insertion, a dome is bolted
to the top of the turret section to complete the pressure
enclosure.

Using sulfur hexafluoride at 19 bars, we reached Ra ≈
2× 1015[44]. Up to Ra = 4× 1013 our results were con-
sistent with the Oregon experiment, but differed from
the Grenoble measurements: we did not find the Kraich-
nan transition in Nu. At Ra = 4× 1013 we observed a
sharp transition in Nu(Ra) to a new state, but the de-
pendence of Nu(Ra) for this state was not as predicted
by Kraichnan; we found an effective exponent that was
less than 0.3 rather than the predicted 0.39 or so. Work
with the HPCF is still under way, and we look forward
to what the future will bring. We expect to learn quite a
bit more about how the large-scale circulation evolves as
Ra becomes large. However, at this point it is not clear
whether the ultimate, or asymptotic, regime predicted
by Kraichnan can ever be reached in a system with rigid
top and bottom plates. But then the granules in the sun’s
photosphere for instance do not have any such confining
plates.

FIG. 4: The High-Pressure Convection Facility, weighing ap-
proximately 2000 kg, is being inserted into the turret of the
“U-boat.”
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