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Viewpoint

Large rare patches of order in disordered boson systems
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The existence, through statistical fluctuation, of arbitrarily large regions with a certain order in an otherwise
disordered system, allow one to set bounds on various important thermodynamic properties.
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The effects of disorder on the phases and phase tran-
sitions in the zero-temperature ground state of many-
body quantum systems have been of intense interest for
many decades. Perhaps most familiar is the transition
from a metal to an insulator in noninteracting electronic
systems, where increasing disorder in the atomic lattice
interferes with an electron’s ability to hop coherently
from site to site, eventually confining each to a finite vol-
ume, a phenomenon known as Anderson localization.

Analogous phenomena occur in Bose systems, such as
“He absorbed in porous media, or magnetically trapped
atomic vapors in periodic or disordered optical poten-
tials, but there is now a fascinating interplay between
disorder, interactions (required in the absence of Pauli
exclusion to avoid system collapse), and superfluidity
[1]. The clean system is visualized in the top panel of
Fig. 1, where one imagines populating a periodic poten-
tial with one boson per site (filling factor n = 1). If the
tunneling amplitude | between sites is weak then, even
in the absence of disorder, the onsite mutual hard-core
repulsion U localizes the effective single-particle wave
functions to a finite size ¢(J). The resulting phase is
known as a Mott insulator, and is identified by the fi-
nite energy gap ¢(J) required to overcome the repulsion
and add a particle (or hole) to the system. This phase is
therefore also incompressible.

This system can now be driven into a superfluid
phase in two distinct ways (bottom panel of Fig. 1).
First, one may increase (or decrease) the chemical po-
tential p, overcome the energy gap, and add a small
density of particles (or holes). These particles are free
to propagate coherently throughout the system, and ef-
fectively form a dilute Bose superfluid on top of a uni-
form insulating background. Alternatively, one may in-
crease the hopping strength | (or lower the repulsion
U) so that the ratio J/U exceeds a critical value (J/U)..
The length ¢(]) diverges, and particles and holes simul-
taneously gain sufficient mobility, tunneling coherently
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through each other to form a dense, strongly interacting
superfluid. This phase transition is characterized by the
existence of an extra particle-hole symmetry, and belongs
to a different universality class [1] compared to the first
scenario.

Consider now the addition of disorder, visualized in
Fig. 2. If it is sufficiently bounded, a shrunken incom-
pressible Mott phase with fixed filling n = 1 still sur-
vives. A sufficiently large chemical potential can again
be applied to overcome the energy gap and add extra
particles (or holes) to the system. A key question now
is “do these particles still form a superfluid?” At least
for small hopping J, the answer must be no; the extra
particles still see a residual random potential due to the
distortion of the background Mott phase by the disor-
der. The usual Anderson localization arguments then
imply that the effective single-particle energy states ex-
perienced by these particles must be localized, and the
system remains insulating. However, the density can
be varied continuously, so this phase, known as a Bose
glass, is compressible.

As one continues to add particles or holes to the sys-
tem, the background becomes gradually more smooth,
the localization length increases, and the system eventu-
ally undergoes a superfluid transition (bottom panel of
Fig. 2). A picture to keep in mind is that of isolated su-
perfluid droplets that grow, join, and percolate to even-
tually span the system.

The question remaining, which has generated much
controversy in recent years, is whether the Bose glass
phase must completely surround the Mott lobe, or
whether, in fact, a direct Mott-superfluid transition
might take place at larger J, closer to the tip, or per-
haps only through the tip. Strong arguments, based
on this superfluid droplet picture, have been presented
[1, 2] that forbid such a direct transition, but a rigorous
proof remained elusive. In a recent paper appearing in
Physical Review Letters[3], Lode Pollet, Nikolai Prokof’ev,
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FIG. 1: (Top) Schematic illustration of lattice bosons near unit
filling. At n = 1 in the Mott insulating phase (MI) when
(J/U) < (J/U), the effective wave function of each particle
spreads only a finite distance (J). For n > 1 (n < 1), the extra
particles (holes) travel freely within the essentially inert back-
ground, and the state is a superfluid (SF) for arbitrarily small
|n —1|. (Bottom) Phase diagram, showing Mott insulating (in-
cluding those with higher integer filling) and SF phases. The
transitions through the tips of the Mott lobes at (J/U). (and
following the dashed lines at constant filling beyond them)
have a special particle-hole symmetry.

and Boris Svistunov at the University of Massachusetts,
US, and Matthias Troyer from ETH Zurich, Switzerland,
have presented precisely such a proof. The previous ar-
guments were based on proposals for the Mott phase
boundary in terms of that of the periodic system, and
the phase just beyond it. Unfortunately, this boundary
is highly model dependent, and depends on reasonable,
but unproven, assumptions about the influence of non-
perturbative, finite amplitude disorder. The key insight
in the rigorous proof is to focus instead on the superfluid
phase boundary, and the nature of the phase just beyond
it [3] (see, however, Ref. [4] where the implications of the
proof for the Mott-Bose glass transition are addressed as
well).

Pollet and his colleagues use so-called “large rare re-
gion” arguments that are based on the simple but pow-
erful idea that a finite set of random variables will,
with finite probability, take values within any specified
range, no matter how restricted. Moreover, in an infi-
nite, translation invariant system, any such finite proba-
bility event will take place infinitely often somewhere in
the system. For example, independently assigned ran-
dom site potentials will, through statistical fluctuations,
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FIG. 2: (Top) Schematic illustration of lattice bosons near unit
filling in the presence of bounded disorder. If the disorder
is not too strong there is still a Mott phase with a finite en-
ergy gap €(J) for adding or removing particles. Unlike in the
pure case, superfluidity is not generated immediately with the
addition of particles. For sufficiently small |n — 1|, the addi-
tional particles are Anderson localized by the residual random
background potential of the effectively inert layer. The finite
compressibility distinguishes this Bose glass phase from the
Mott phase. The superfluid critical point pg(J) occurs only
once the added particles have sufficiently smoothed the back-
ground potential that its lowest lying states become extended.
(Bottom) Phase diagram, showing Mott, Bose glass, and super-
fluid phases. The Bose glass phase, as now proven in Ref. [3],
always intervenes between the Mott and superfluid phases.
Being effectively detached from the underlying lattice, the na-
ture of the Bose glass-superfluid transition is believed to be
independent of position along the line—there are no points of
special symmetry.

give rise to arbitrarily large, arbitrarily near-uniform re-
gions that mimic the properties of the bulk periodic sys-
tem. Within the Bose glass phase, for example, there
must exist arbitrarily large superfluid droplets. Though
isolated, the known properties of these droplets allow
one, for example, to prove that the superfluid excitation
spectrum is gapless.

Taking this a step further, one may focus on large re-
gions over which one probability distribution mimics an-
other. Thus, for example, an infinite sequence of flips of
a fair coin, will have arbitrarily long subsequences that
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appear to be those of an unfair coin, with, say, 2:1 (or
any other) ratio of heads to tails. Applying this idea to
the insulating phase near the superfluid transition line,
it follows that there always exist large rare regions in
which the disorder distribution mimics that of a system
that lies on the superfluid side of its transition line. Thus
the insulating phase must contain arbitrarily large su-
perfluid droplets. Since the superfluid phase is com-
pressible, this can be used to show that this phase not
only has no energy gap, but is in fact compressible, i.e.,
it must be a Bose glass not a Mott phase [3, 4].

Such large rare regions are the bane of Monte Carlo
simulations, which necessarily are limited to (relatively
small) finite domains. This easily explains how very rare
compressible regions could be missed in what otherwise
numerically looks like a Mott phase. The weak disorder
limit in some studies also leads to situations where the
superfluid compressibility is irresolvably small for en-
tirely different reasons, again mimicking a Mott phase.

Field-theoretic approaches contain all “rare region ef-
fects” because disorder is fully averaged from the be-
ginning, but choosing the form of the action that de-
scribes the correct universal “fixed point” structure of
the model is a subtle issue [2]. One may consider dis-
order that preserves particle-hole symmetry on average,
and leads to no change in average filling; or disorder
that breaks particle-hole symmetry outright and leads
to a net change in filling. The latter generates terms in
the action that appear to provide a much stronger per-
turbation to the periodic model than those generated
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ment for more than 25 years.
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by the former. However, the rare regions arguments of
Pollet et al. prove this to be illusory. The operative no-
tion is “spontaneous restoration of symmetry”, and oc-
curs in many systems [5, 6]—the most familiar being the
restoration of up-down Ising symmetry at liquid-vapor
critical points. Thus it turns out that the former choice
describes the correct fixed point model, and the terms
breaking global particle-hole symmetry actually disap-
pear at the superfluid transition. A fundamental error
often made, then, is to not bother including the weaker
terms under the assumption that they are not impor-
tant, thereby obtaining an incorrect description of both
the insulating phase and the superfluid phase transition.
The key observation is that apparently weak terms that
break a fundamental symmetry of the problem can have
an outsized effect, and this is indeed the case here.
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