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Viewpoint

Observation of directed percolation—a class of nonequilibrium phase tran-
sitions
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Directed percolation, a class of nonequilibrium phase transitions as prominent as the Ising model in equilibrium
statistical mechanics, is realized experimentally for the first time, after more than fifty years of research.

Subject Areas: Statistical Mechanics, Soft Matter

A Viewpoint on:
Experimental realization of directed percolation criticality in turbulent liquid crystals
Kazumasa A. Takeuchi, Masafumi Kuroda, Hugues Chaté and Masaki Sano
Phys. Rev. E 80, 051116 (2009) – Published November 16, 2009

In statistical physics, a large number of theoretical
studies are concerned with continuous phase transitions
far from equilibrium [1]. Generically, the critical be-
havior near the transition is found to be universal, in
the sense that apparently unrelated models may ex-
hibit the same type of long-range behavior characterized
by the same set of critical exponents and scaling func-
tions. As in the equilibrium case, this allows one to cat-
egorize such transitions into universality classes deter-
mined by the symmetry properties of the model. How-
ever, nonequilibrium phase transitions are much more
diverse than their equilibrium counterpart, since time is
involved as an active degree of freedom, on equal foot-
ing with the spatial coordinates.

The best studied and probably simplest model with
a nonequilibrium phase transition is directed percola-
tion, which was introduced in 1957 by Broadbent and
Hammersley [2] as a model for a porous medium in a
gravitational field, an illustration of which can be seen
in Fig.1. The pores of the medium are represented by
the sites of a tilted square lattice, in which neighboring
pores are connected by small channels that have a cer-
tain probability of being open or closed. When a liq-
uid is poured onto the surface, it percolates downwards
along the open channels, driven by gravity (red lines in
the figure), and it turns out that there is a well-defined
probability for the medium to become macroscopically
permeable, at which point the system undergoes a con-
tinuous phase transition with a nontrivial critical behav-
ior.

Another example of directed percolation behavior is
the so-called contact process for epidemic spreading [3].
In this model the sites of a lattice represent “healthy”
(inactive) and “infected” (active) individuals who spon-
taneously recover or infect nearest neighbors. Depend-
ing on the rates for infection and recovery, the infection

FIG. 1: Illustration of directed percolation in 1 + 1 dimensions:
Bonds of a tilted square lattice are open (black lines) with prob-
ability p and closed (no lines) otherwise. A preferred direc-
tion is introduced, which may be interpreted as time. Initially
all sites are active (red dots). Activity percolates along the
preferred direction through open bonds (red lines), activating
nearest neighbors and giving rise to a certain spatiotemporal
cluster of activity. (Illustration: Alan Stonebraker)

may either spread over the whole system or disappear
after some time. Once the infection becomes extinct
the system enters a completely inactive configuration
where the dynamics become trapped in a nonfluctuat-
ing so-called “absorbing state.” In this state all sites are
inactive (healthy), meaning that the epidemic has com-
pletely disappeared. The system can enter this state, but
cannot leave it.

Although there have been various attempts to find an
actual example of directed percolation [4], none of the
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experiments showed clear and reproducible evidence of
the critical behavior of this phase transition. This is re-
marked upon by Grassberger [5]: “. . . there is still no
experiment where the critical behavior of DP was seen.
This is a very strange situation in view of the vast and
successive theoretical efforts made to understand it. De-
signing and performing such an experiment has thus
top priority in my list of open problems.” Now, in a pa-
per appearing in Physical Review E, Kazumasa Takeuchi,
Masafumi Kuroda, Hugues Chaté, and Masaki Sano
[6], of the University of Tokyo, Japan, and CEA-Saclay,
France, follow their first report of directed percolation
in liquid crystals [7] with a detailed discussion of the ex-
periment and analysis that will allow their results to be
tested against a long history of theoretical predictions.
In these studies, they clearly observe directed percola-
tion critical behavior.

The group’s experimental setup consists of a 12-µm-
thick layer of nematic liquid crystals sandwiched be-
tween two glass plates that are covered by transparent
electrodes, through which light is transmitted. A suffi-
ciently high voltage applied at the electrodes causes a
turbulent flow between the two plates due to the Carr-
Helfrich instability. Above a certain threshold voltage,
additional turbulent regimes emerge that exhibit spa-
tiotemporally intermittent dynamics. These appear as
gray spots. Within these spots, the excited turbulent
state is topologically different from the surrounding one
and can be detected by an increased absorption of light.
The spots disappear spontaneously and also induce the
creation of new spots nearby, thus spreading in just the
same way as in a 2+1-dimensional contact process.

Unlike previous experimental attempts [4], the work
by Takeuchi et al. reports measurements of as many as
12 critical exponents, including even nonstandard ones
such as persistence exponents. All estimates are found
to be in agreement with directed percolation and the ex-
pected scaling relations.

This impressive evidence for directed percolation is
supported even further by a quantitative test of scaling
functions. For example, according to the scaling theory
of directed percolation the density of gray spots is ex-
pected to obey the scaling form ρ(V, t) = t−αR(t(V −
Vc))νt , where α and νt are numerically known critical
exponents and R is a scaling function. Scaling func-
tions like R are as universal and robust as critical expo-
nents, and since functions carry much more information
than a set of numbers, a quantitative comparison of scal-

ing functions provides a much tougher test of univer-
sality than the comparison of critical exponents alone.
Takeuchi et al. have tested various scaling functions,
finding all of them in agreement with the correspond-
ing numerical results. Given this impressive evidence of
directed percolation critical behavior, one can consider
this experiment as the first successful realization of di-
rected percolation in nature.

Why is this experiment more successful than previ-
ous ones? On the one hand, timescales of milliseconds
are much shorter than in other settings. To verify scal-
ing laws, one has to average over many statistically in-
dependent realizations, i.e., repeat the experiment many
times. If you try to realize directed percolation by arti-
ficial forest fires, each run takes hours. In the present
case this is a matter of seconds, allowing one to obtain
good statistical averages in a reasonably short time. An-
other fortunate circumstance for this experiment lies in
the fact that “inactive” and ”active” patches of the sys-
tem are both turbulent. The fully turbulent background
dynamics provides the necessary randomness and sup-
presses long-range correlations. Apparently it also elim-
inates any kind of quenched randomness, which in
other experimental setups is known to hide or even to
destroy the transition. Either of these factors could be
responsible for the success of this study, and further ex-
perimental effort is needed to clarify what role they play
in this achievement. However, the demonstration of di-
rected percolation opens up the possibility of investigat-
ing other universality classes using similar experimental
methods.
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