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Viewpoint

Textbook physics from a cutting-edge material
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Tuning the area of the Fermi surface of graphene demonstrates the fundamental physics of electron-phonon
scattering.
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Graphene has garnered significant attention for its un-
usual massless electronic dispersion and the ability to
realize exotic electronic phenomena such as the inte-
ger [1, 2] and fractional [3, 4] quantum Hall effects in
a new condensed matter system. However, graphene is
also a conceptually simple two-dimensional electronic
system, which makes it ideal as a testbed to demon-
strate textbook condensed matter phenomena. In a re-
cent publication in Physical Review Letters, Dmitri Efetov
and Philip Kim at Columbia University, US, do just that,
studying the temperature-dependent scattering of elec-
trons by phonons in graphene [5]. They demonstrate
that the boundary between high-temperature and low-
temperature behavior in the electron-phonon scattering
is set not by the Debye temperature—the characteristic
phonon energy scale—as in conventional metals with
large Fermi surfaces, but rather by the Bloch-Grüneisen
temperature, a characteristic electronic energy scale for
metals with small Fermi surfaces, such as graphene [6]
and doped semiconductors [7]. Efetov and Kim demon-
strate tuning of the Bloch-Grüneisen temperature by al-
most an order of magnitude by varying the Fermi en-
ergy in graphene over a wide range of more than ±1 eV
by applying a voltage to a gate.

The resistivity of metals due to electron-phonon scat-
tering is a basic problem in condensed matter physics.
Scattering of electrons by phonons at finite temperature
is an unavoidable phenomenon, and this “intrinsic resis-
tivity” is typically the dominant source of resistivity in
metals at room temperature. The familiar result is that
at high temperature the resistivity of a metal ρ is pro-
portional to temperature T. This reflects the bosonic na-
ture of the phonons that scatter the electrons: at tem-
peratures greater than the Debye temperature θD, the
characteristic temperature at which all phonon modes
of a crystal are excited, the phonon population in any
given mode is proportional to T, hence the number of
scatterers and the resistivity are proportional to T. Be-
low the Debye temperature, the phonon modes begin to

“freeze out,” and in a typical metal the resistivity drops
much more rapidly. For a three-dimensional metal, the
resistivity is expected to drop as ρ(T) ∼ T5 (T4 for a
two-dimensional metal), the so-called Bloch-Grüneisen
regime [8, 9]. Figure 1 illustrates this effect and the fac-
tors that lead to the T5 or T4 dependences.

What about graphene? Graphene is a strikingly dif-
ferent condensed matter system compared to conven-
tional metals and semiconductors: in graphene, elec-
trons obey the Dirac equation for massless relativistic
Fermions, with a “pseudospin” degree of freedom play-
ing the role of the relativistic spin [10]. But graphene
is also a conceptually simple material: it has strictly
two-dimensional electrons and phonons, and, to very
good approximation, the dispersion of the electronic
bands E = h̄νF|k| is described by a single parameter,
the Fermi velocity νF = 1.1 × 106 m/s. Graphene is
also amazingly tunable: the Fermi energy in a given
piece of graphene can be widely tuned by chemical dop-
ing [11, 12] or an electrostatically coupled gate electrode
[13], and the dielectric constant (and the strength of
electron-electron interactions) can be tuned by chang-
ing the dielectric substrate on which the graphene sits
[14], all while maintaining essentially the same two-
dimensional dispersion relation.

The combination of simplicity and tunability makes
graphene ideal for experiments that illustrate funda-
mental condensed matter phenomena. It was shown as
early as 1980 that the simple band structure of graphene
leads to a particularly simple result for the electron-
phonon resistivity in the high-temperature [ρ(T) ∼ T]
limit [15]. Notably, the high-temperature resistivity is
independent of Fermi energy (and hence carrier den-
sity), explaining the experimentally observed nearly
constant resistivity in intercalated graphite compounds,
even when carrier density varied over more than an or-
der of magnitude [16]. More recently, a resistivity lin-
ear in temperature but independent of carrier density
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FIG. 1: Illustration of high-temperature and low-temperature
electron-phonon scattering behavior in metals. (a)–(c) Typical
metal with large Fermi surface. (a) At temperatures greater
than or equal to the Debye temperature T ≥ θD, all phonon
modes are excited (shaded area) up to the maximum phonon
wave vector in the crystal qD = kBθD/h̄vs. Electron-phonon
scattering processes (black arrows) scatter electrons from one
point on the Fermi surface (blue circle) to another. (b)–(c)
As the temperature is reduced below the Debye temperature
T < θD, only phonons with a maximum wave vector qmax =
kBT/h̄vs are excited (shaded area). In this Bloch-Grüneisen
regime, the area of the Fermi surface available for scatter-
ing shrinks as q2

max ∼ T2 in three dimensions (qmax ∼ T
in two dimensions), and as the allowed scattering angle be-
comes small, the momentum lost by a scattering event de-
creases as ∆q||,max ∼ q2

max ∼ T2. The electron-phonon cou-
pling constant is also proportional to q, leading to an addi-
tional factor of T in the resistivity ρ, and the result is that
in the Bloch-Grüneisen regime ρ(T) ∼ T5 in three dimen-
sions, and ρ(T) ∼ T4 in two dimensions. (d)–(f) Behavior for
small Fermi-surface metal (e.g., graphene). (d) For T ≥ θD,
all electron-phonon scattering events on the Fermi surface are
possible. (e) At the Bloch-Grüneisen temperature T = TBG,
the maximum phonon wave vector qmax = kBTBG/h̄vs just
spans the Fermi surface, i.e., qmax = 2kF, and all electron-
phonon scattering events are still allowed. (f) Only for temper-
atures T < TBG do the typical excited phonons (shaded area)
lack enough momentum to span the Fermi surface, the phase
space for electron-phonon scattering on the Fermi surface be-
comes restricted, and the low-temperature Bloch-Grüneisen
regime is entered. (Credit: Alan Stonebraker)

was observed in graphene devices where carrier den-
sity could be tuned by a gate [17]. The resistivity is
also extremely small; at room temperature the intrinsic
two-dimensional resistivity is only about 30 Ω [17], cor-
responding to a three-dimensional resistivity of about
1 µΩ cm, lower than silver (the material with the lowest

known intrinsic resistivity at room temperature). Cou-
pled with graphene’s high transparency [18], the low
intrinsic resistivity may make graphene the ultimate
transparent conducting electrode material.

Graphene is an extraordinarily stiff material, leading
to an unusually high Debye temperature of ∼ 2800 K,
much higher than the temperature in the experiments
of [5] and [17]. Why is the high-temperature resistiv-
ity behavior ρ(T) ∼ T observed at all? The answer
is that in most metals, the Fermi surface is large, such
that all phonons in the material have q ≤ 2kF and are
able to scatter electrons. In graphene, the Fermi surface
is very small, and only a small portion of the phonons
have q ≤ 2kF and can scatter electrons. This collection
of small-q phonons has a smaller characteristic temper-
ature; they are all populated above the Bloch-Grüneisen
temperature θBG = h̄νskF/kB < θD, leading to high-
temperature behavior ρ(T) ∼ T persisting down to
T = θBG < θD. Uniquely in graphene, both the electron
energy and the phonon energy are linear in wave vector,
so the Bloch-Grüneisen temperature has a particularly
simple form θBG = (2νs/νF)TF, where TF = EF/kB is
the Fermi temperature. Thus the Bloch-Grüneisen tem-
perature is an electronic energy scale, simply propor-
tional to the Fermi temperature, but downscaled appro-
priately by twice the ratio of the sound velocity to the
electron velocity, about 2% in the case of graphene.

The above reasoning leads to a prediction that had
never before been tested: the Bloch-Grüneisen temper-
ature θBG is tunable with Fermi energy. In graphene,
EF can be widely tuned by chemical doping or gating
and yet remains strictly two-dimensional—there are no
higher-energy subbands in play as would be the case
in a two-dimensional quantum well in a semiconduc-
tor heterostructure. Efetov and Kim used an electrolytic
gate to tune the Fermi energy in graphene over a very
wide range, exceeding ±1 eV. They carefully measured
the temperature-dependent resistivity at various Fermi
energies and confirmed that they had tuned the Bloch-
Grüneisen temperature over almost an order of mag-
nitude, from 100 to 900 K, observing the proportion-
ality θBG ∼ EF. At high temperature, they observed
ρ(T) ∼ T with a magnitude independent of Fermi en-
ergy, confirming theoretical expectations [6]. In the low-
temperature regime, they observed ρ(T) ∼ T4, as ex-
pected theoretically for two-dimensional graphene [6].

The experiment of Efetov and Kim will undoubtedly
be used as a textbook illustration of electron-phonon
scattering in metals. It was enabled by some under-
appreciated aspects of graphene: the simplicity of its
dispersion relation, the strict two-dimensional confine-
ment of electrons, and the ability to effect wide changes
in Fermi energy with a gate. Other phenomena pre-
dicted long ago are waiting to be demonstrated with this
new material.
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