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The transmission of light through a disordered medium is described in microscopic detail by a high-dimensional
matrix. Researchers have now measured this transmission matrix directly, providing a new approach to control
light propagation.

Subject Areas: Optics

A Viewpoint on:
Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in
Disordered Media
S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara and S. Gigan
Phys. Rev. Lett. 104, 100601 (2010) – Published March 8, 2010

Optical elements such as lenses and polarizers are
used to modify the propagation of light. The transfor-
mations of the optical wave front that these elements
perform are described by simple and straightforward
transmission matrices (Fig. 1). The formalism of trans-
mission matrices is also used to microscopically de-
scribe the transmission through more complex optical
systems, including opaque materials such as a layer of
paint in which light is strongly scattered. A micro-
scopic description of this scattering process requires a
transmission matrix with an enormous number of ele-
ments. Sébastien Popoff, Geoffroy Lerosey, Rémi Carmi-
nati, Mathias Fink, Claude Boccara, and Sylvain Gigan
of the Institut Langevin in Paris now report in Physi-
cal Review Letters an experimental approach to micro-
scopically measure the transmission matrix for light
[1]. Knowledge of the transmission matrix promises a
deeper understanding of the transport properties and
enables precise control over light propagation through
complex photonic systems.

At first sight, opaque disordered materials such as pa-
per, paint, and biological tissue are completely different
from lenses and other clear optical elements. In disor-
dered materials all information in the wave front seems
to be lost due to multiple scattering. The propagation
of light in such materials is described very successfully
by a diffusion approach in which one discards phase in-
formation and considers only the intensity. An impor-
tant clue that phase information is very relevant in dis-
ordered systems was given by the observation of weak
photon localization in diffusive samples [2, 3]. Even ex-
tremely long light paths interfere constructively in the
exact backscattering direction, an interference effect that
can be observed in almost all multiple scattering sys-
tems. Interference in combination with very strong scat-

FIG. 1: Two optical elements fully characterized by their trans-
mission matrix, which relates the incident wave front to the
transmitted one. In the case of a thin lens, the transformation
of the wave front is described by a 2× 2 matrix operating on a
vector describing the wave front curvature [27]. For more com-
plex elements such as a sugar cube the transmission matrix
operates in a basis of transversal modes, which is very large.
Full knowledge of the transmission matrix enables disordered
materials to focus light as lenses.

tering will even bring diffusion to a halt when condi-
tions are right for Anderson localization [4]. Since light
waves do not lose their coherence properties even af-
ter thousands of scattering events, the transport of light
through a disordered material is not dissipative at all,
but coherent, with a high information capacity [5].

A propagating monochromatic light wave is charac-
terized by the shape of its wave front. By choosing a
suitable basis, the wave front incident on a sample can
be decomposed into orthogonal modes. Typical choices
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for this basis of modes are the orthogonal modes of
a waveguide or a basis of plane waves in free space.
As only propagating waves need to be considered, the
number of modes is finite and they form the basis in
which the transmission matrix is written. The transmis-
sion matrix of the sample specifies the transmitted field
amplitude for each combination of incident and trans-
mitted modes. From a theoretical viewpoint, transmis-
sion matrices are useful tools to understand correlations
in transport of light and other waves. Much insight
into the properties of the transmission matrix has been
gained in the framework of mesoscopic transport theory
[6]. The transmission matrix has played a less impor-
tant role in experiments due to its enormously high di-
mensionality: it is an N×N matrix of complex numbers,
where N represents the number of modes of the inci-
dent (and transmitted) light field coupled to the sample.
Each incident mode corresponds to a discrete incident
angle, and the number of resolvable discrete angles is
N = 2πA/λ2 [7], with A the illuminated surface area,
λ the wavelength, and where the factor 2 accounts for
two orthogonal polarizations. Hence, a 1-mm2 sample
has about a million transversal optical modes. Until re-
cently, measuring a matrix with the corresponding large
number of elements was beyond technological capabil-
ities. Progress in digital imaging technology has now
enabled measuring and handling such large amounts of
data. In particular, spatial light modulators—computer-
controlled elements that control the phase in each pixel
of a two-dimensional wave front—are now creating a
digital revolution in optics and are at the heart of the
experiment by Popoff and colleagues.

In their experiment they used a spatial light modula-
tor to precisely control the wave front of a monochro-
matic laser beam, which permitted them to address dif-
ferent incident modes of a strongly disordered sam-
ple. By cleverly using part of the transmitted light as
a phase reference, they were able to capture amplitude
and phase information on a two-dimensional CCD ar-
ray of 16 × 16 pixels. Thanks to this parallel detec-
tion, they measured 164 elements of the transmission
matrix in only 162 steps. Their method enables a deep
characterization of light transport through turbid me-
dia, which enables them to control light propagation,
as they demonstrated by transforming their sample into
a focusing and detection element. To focus light they
used the information in the transmission matrix to con-
struct wave fronts that formed a tight focus after being
scattered by the sample. Their approach is more flexi-
ble than first-generation “opaque lens” experiments [8]
since the data to produce a focus at any desired position
is already in the transmission matrix. To detect objects
placed in front of the scattering sample they compared
the transmitted field with the information stored in the
transmission matrix.

Direct access to the individual elements of the ma-
trix makes it possible to perform statistical analysis on
them. The statistical properties of the transmission ma-

trix are described using random matrix theory, an ana-
lytic approach that focuses on symmetries and conser-
vation laws rather than detailed interactions (for an in-
troduction see Ref. [9] and references therein). For ex-
ample, the transmission matrix elements are correlated
due to the fact that none of the matrix elements or singu-
lar values can ever be larger than unity, since in that case
more than 100% of the incident power would be trans-
mitted [10]. However, this correlation is subtle and can
only be observed if the complete transmission matrix is
measured.

In the current experiments the number of measured
matrix elements is impressive (65536), yet the transmis-
sion matrix of the full area of the sample is even larger.
Nevertheless, the matrix measured by Popoff et al. was
sufficiently large to test an important baseline predic-
tion of random matrix theory: The histogram of its sin-
gular values should have a peculiar quarter-circle shape
[11, 12]. The fact that the data follows this quarter-circle
law means that the matrix elements are not significantly
correlated, which is a good indication that the experi-
mental procedure does not introduce spurious correla-
tions. By measuring considerably larger matrices, in-
trinsic correlations can be brought to light. In a large
enough matrix, the singular value distribution will de-
viate from the quarter-circle law and converge to a bi-
modal distribution consisting primarily of completely
transmitting (open) and completely reflecting (closed)
channels (for reviews, see Refs. [13–15]). Using the in-
formation in such a matrix it will be possible to create a
perfect wave front that couples only to the open chan-
nels and is transmitted through an opaque medium for
a full 100%.

Another interesting experiment will be to measure
the transmission matrix of samples with extreme dis-
order. As three-dimensional samples approach the An-
derson localization threshold, the transmission matrices
will give direct insight in the localized regime, where
the modes of the transmitted light should have intrigu-
ing properties [13, 16–19] . Similarly, it would be ex-
tremely interesting to study the transmission matrix of
a so-called Lévy glass [20], in which light propagates ac-
cording to a strongly modified diffusion law, or of pho-
tonic crystals, which have inevitable disorder [21] in ad-
dition to intricate band structure.

In relatively transparent materials, the transmission
matrix can be used to obtain a tomographic reconstruc-
tion of the sample [22], which can be used to track pro-
cesses inside living cells. It is not yet clear whether this
approach can be generalized to stronger scattering ma-
terials, but it is hoped that information can be obtained
from inside nontransparent biological tissue [23, 24]. Al-
gorithms to gain information on hidden targets from ul-
trasound measurements (see, e.g., Ref. [25]) could be
ported to optics.

The approach of Popoff and colleagues marks the be-
ginning of a highly exciting road towards a deeper un-
derstanding of light transport. Technological progress
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will enable the measurement of larger and larger matri-
ces that contain all available information about the sam-
ples. Ongoing developments in random matrix analy-
sis (see, e.g., Ref. [26]) will allow one to make sense of
these enormous quantities of information. When the in-
formation in the transmission matrix is fully known, any
disordered system becomes a high-quality optical ele-
ment (Fig. 1). From a technological point of view this
has great promise: quite possibly disordered scattering
materials will soon become the nano-optical elements of
choice.
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