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Viewpoint

Quantum trajectories face a transition
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Quantum jumps such as those observed in photon emission from single molecules show a complex behavior that
may indicate a phase transition between different kinds of temporal dynamics.
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When we think about a phase transition, we typically
have in mind those that are driven by temperature—say
spins locking collectively into the same direction at the
Curie temperature of a ferromagnet or molecules form-
ing a rarefied, as opposed to dense, fluid at the boiling
point. These phase transitions are associated with crit-
ical phenomena that occur in configuration space, but
physical systems can also develop critical behaviors in
time, that is, in their trajectories through phase space,
that closely resemble their thermodynamic analog.

This analogy can reveal important properties of classi-
cal nonequilibrium, such as the appearance of a “space-
time” phase transition in glassy systems [1]. Writing
in Physical Review Letters[2], Juan P. Garrahan and Igor
Lesanovsky at the University of Nottingham in the UK
extend this analogy from classical systems to report new
dynamical behaviors in quantum systems. They ana-
lyze the statistics of events such as photon emissions
and uncover critical phenomena, namely, a scale invari-
ance of trajectories as well as a “dynamical phase tran-
sition.” These developments provide new insights into
the dynamical properties of quantum systems, paving
the way for further progress in scenarios ranging from
single-electron transistors to superfluid solid states.

Thermodynamic phases are characterized by their
free energies, which are governed by extensive ob-
servables (energy or magnetization) and their conju-
gate fields (temperature or magnetic field). A phase
transition occurs when the free energy accommodates
a nonanalytical behavior in some thermodynamic vari-
able. In the vicinity of a phase transition, other criti-
cal behaviors also emerge, such as diverging correlation
lengths. Equilibrium statistical mechanics provides an
interpretation of macroscopic phases in terms of ensem-
bles of microscopic configurations: the partition func-
tion, which measures the number of states accessible

to the system under given conditions, characterizes the
configuration space. In turn, knowledge of the partition
function gives access to the statistical properties (aver-
ages and fluctuations) of the thermodynamic variables.

Now, if we are interested in the dynamical aspects of
the system, how can we describe ensembles of trajecto-
ries? It turns out the statistical mechanics approach can
be naturally extended to the time domain by applying
a technique called the large deviation (LD) method, de-
veloped to describe rare fluctuations or extreme events
in random systems. Analogous to the partition function,
the large deviation function is a measure of the num-
ber of trajectories accessible to the system. Trajectories
are categorized by dynamical order parameters (such as
the number of configuration changes) or their conjugate
fields. Trajectories are given exponential weights similar
to Boltzmann factors, with the dynamical order param-
eters playing the role of energy or magnetization and
the conjugate fields the role of temperature or magnetic
field.

The LD approach has been very successful in a multi-
tude of problems. For example, Ruelle and Bowen con-
sidered large deviations in their analysis of the dynam-
ical properties of chaotic systems [3]. This formalism
was further developed to relate the dynamical proper-
ties of these systems to their transport properties [4].
More recently, nonequilibrium fluctuations of thermo-
dynamic quantities have been shown to obey universal
relationships known as fluctuation theorems (see Ref.
[5] for a review). Large deviation relations thus play
a fundamental and unifying role in characterizing the
dynamical and statistical properties of equilibrium and
nonequilibrium systems [6, 7].

All these results belong to the domain of classical
physics. In their paper, Garrahan and Lesanovsky ex-
tend these ideas to the quantum realm. As a warm-up
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problem, they first consider a two-level system driven
by an external laser. The random timing of when
this two-level system emits photons defines a particular
quantum trajectory. Here they find their first surprising
result: at some specific driving frequency, trajectories
display a scale invariance property. That is, all trajecto-
ries would look statistically the same if rescaled by their
average emission rate. A spin system analogy would
be the following: all spin configurations, scaled by the
average magnetization, would look identical for all val-
ues of the magnetic field. This strong scale invariance
is unanticipated and occurs while all correlation times
remain finite.

The authors next consider a three-level system, now
driven by two coherent lasers. Remarkably, this seem-
ingly simple generalization completely reshapes the dy-
namical landscape. Under certain conditions, typical
photon emission was observed to be “blinking,” that
is, displaying alternating bright and dark periods [8].
Viewed through the lens of the LD formalism, the Not-
tingham group provides a new explanation of this phe-
nomenon. The trajectories exist in two “flavors”: highly
active and irregular on the one hand, or relatively in-
active and regular on the other. The system lives pre-
cisely at the intersection between these two sets of tra-
jectories (or phases) that are related by a rapid crossover
as the conjugate field is varied. The intermittency in the
photon emission can thus be understood as reflecting a
smoothed phase transition between these two distinct
dynamical phases, providing a new context in which to
interpret the experimental observations.

Can we actually realize a genuine dynamical phase
transition in a quantum setting? Garrahan and
Lesanovsky answer this question in the affirmative by
considering a microscopic maser, or micromaser. A mi-
cromaser consists of excited two-level atoms that pump
photons into an optical resonator at a constant rate [9].
Here the statistics of atoms having emitted a photon in
the resonant cavity also alternates between an active and
an inactive set of trajectories. The transition between the
two phases is, however, nonanalytic, with a discontinu-
ity in the first-derivative of the LD function (see Fig.
1). Recalling the parallel with the partition function,
this discontinuity is the analog of a first-order thermo-
dynamic phase transition.

For most of the parameters this transition is only visi-
ble for nonzero values of the conjugate field (or, equiva-
lently, for rare trajectories), but when the pump parame-
ter (in this case, the rate at which atoms are sent into the
resonator) reaches the onset of the micromaser bistabil-
ity, the phase transition occurs in the physical space and
the system lives at the phase coexistence between these
two dynamical phases.

The question remains, why did they find these new
properties, especially in systems that have already been
extensively studied? This fact highlights the power of
the LD approach. Looking at the physical space only
reveals one facet of the underlying dynamics, whereas

FIG. 1: Dynamical phase coexistence in a micromaser. A beam
of excited two-level atoms (green arrow) pumps a resonant
cavity. The resulting random sequence of photon emissions
defines a quantum trajectory. The gray line depicts the first-
derivative of the large deviation function, which corresponds
to the mean number of atoms having emitted a photon, as a
function of the conjugate field s (which in this case classifies
the trajectories according to their activity). At the onset of the
micromaser bistability, the discontinuity or first-order transi-
tion occurs in the physical space (at s = 0) and separates a
high-activity phase (red) from a low-activity phase (blue). The
micromaser then operates at the phase coexistence between
these two dynamical phases.

LD theory describes the trajectory space from multiple
angles through the effect of the conjugate fields. For this
reason, and as demonstrated in the present work, the
LD approach is likely to be instrumental in studying the
statistics of quantum systems.

Garrahan and Lesanovsky’s findings can, in prin-
ciple, be directly tested experimentally. In two- and
three-level systems, photons can be detected with near
perfect efficiency, while in the micromaser, the state
of emerging atoms is determined by selective ioniza-
tion in inhomogeneous electric fields. Garrahan and
Lesanovsky’s analysis is, however, limited to quantum
systems weakly interacting with their environment and
it is unclear how these results translate for more entan-
gled systems. Further work is thus necessary to investi-
gate the generality of such critical behaviors.

Perhaps the most surprising finding in their work is
the relative simplicity of systems that exhibit rich dy-
namics. This suggests that similar effects could poten-
tially occur in various scenarios, from Josephson junc-
tions to femtochemistry. Also, the large deviation ap-
proach would certainly provide valuable insights into
the transport properties of nanoscopic devices. In par-
ticular, bidirectional single-electron counting statistics
have recently been measured experimentally in struc-
tures such as quantum dots [10]. Another important di-
rection of research pertains to the study of many-body
quantum systems, which display intricate spacetime dy-
namics. Dynamical properties of exotic quantum phases
could indeed be understood as displaying a critical be-
havior in the dynamical sense. In any case, the present
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findings remind us that many more surprising and com-
plex dynamical regimes are waiting to be discovered,
even in seemingly simple systems.
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