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Viewpoint

The tetrahedral dice are cast . . . and pack densely
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Magnetic resonance images of tetrahedral dice show a density of random close packing, in agreement with recent
calculations.
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Tetrahedra are special among the platonic solids.
They are the simplest polyhedra and the ones most
unlike spheres. Surprisingly, much of our knowledge
about the packing properties of tetrahedra is very re-
cent: the past year has witnessed a sudden proliferation
of novel, and often surprising, findings. Using Monte
Carlo simulations, Haji-Akbari et al.[1] found that, upon
compression, systems of hard tetrahedra spontaneously
form a very dense quasicrystalline structure. Now, in
a paper in Physical Review Letters, Alexander Jaoshvili,
Massimo Porrati, and Paul Chaikin of New York Uni-
versity and Andria Esakia at Virginia Polytechnic In-
stitute, both in the US, report their experiments on (al-
most) tetrahedral dice, which shed new light on the dis-
ordered structures that result when tetrahedra particles
are poured into a (large) container [2].

Before discussing tetrahedral packing, it is useful to
consider first the venerable (yet still not fully solved)
problem of sphere packing. In 1611 Kepler proposed
that the densest packing of spheres could be achieved
by stacking close-packed planes of spheres. In such a
packing, the spheres occupy π/

√
18 ≈ 74.05% of space.

The Kepler conjecture was (almost certainly) proven in
1998 by Thomas Hales. However, that does not mean
that we know all there is to know about sphere pack-
ings: in addition to regular packing, spheres (and, in
fact, most hard particles) also exhibit a much less under-
stood packing, namely, random close packing (RCP).

The quantitative study of random close packing
started with J. D. Bernal’s experiments on the packing
of ball bearings [3]. His experiments (and those of many
others) suggested that it is impossible to compress disor-
dered sphere packings beyond a volume fraction of ap-
proximately 64%. However, this observation does not
necessarily imply that there exists a well-defined den-
sity of random close packing. It could just as well be that
the rate at which the disordered hard-sphere packings
can be compacted becomes very small around a volume

fraction 64%—small, but not zero. If that were the case,
RCP would not have a clear mechanical definition (that
is, pouring and shaking may not lead to a well-defined
RCP state). Indeed, in 2000, Torquato, Truskett, and
Debenedetti [4] argued on the basis of computer simu-
lations that states with a density above 64% can always
be obtained by increasing the local order in a “random”
sphere packing. This observation implies that the “me-
chanical” route to random close packing may be ill de-
fined.

A different, “nonmechanical” way to view random
close packing was proposed a few years ago by O’Hern
et al.[5, 6]. The basic idea of their approach is the follow-
ing: start with a random configuration of N particles in
a volume V, interacting through a soft repulsion with
a finite range σ (σ is equal to the diameter of the hard
spheres that I consider later). For every random config-
uration, we can now determine the nearest minimum or
zero of the potential energy. At low densities, the states
with zero potential energy will occupy a finite fraction of
configuration space. However, as we decrease the vol-
ume of the system, the nearest local energy minima (the
“inherent structures,” to use the language of Stillinger
and Weber [7]) will one-by-one take on a finite value of
the potential energy. For every set of (scaled) coordi-
nates, there is a unique density where this first happens.
If we consider the limit that the soft particles become
hard spheres, then this density is the point where this
specific inherent structure is no longer allowed.

The key observation by O’Hern et al.[5] is that the
simulations show that the rate at which allowed inher-
ent structures disappear with increasing density, has a
sharp maximum at a particular density. Moreover, this
peak becomes sharper as the system size becomes larger.
In the thermodynamic limit, the number of allowed in-
herent structures therefore appears to decrease discon-
tinuously at a hard-sphere volume fraction that happens
to be very close to existing estimates of the density of
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random close packing. The fact that a sharp transition
appears to exist implies that the evaluation of the den-
sity of RCP is now a mathematical problem—RCP is a
property of three-dimensional space. But, and this is
quite unusual, unlike regular close packing that can be
exhibited by periodically repeating a Wigner-Seitz cell
containing only a single particle, RCP is “emergent,” it
is NOT a property of a small system and becomes only
meaningful in the thermodynamic limit.

In the case of tetrahedra, the density of regular close
packing is not known, nor is the density of random
close packing. In fact, until two years ago, it was not
even known if tetrahedra could pack more densely than
spheres [8]. Earlier, Ulam had made the conjecture that,
of all hard convex bodies, spheres occupy the small-
est volume fraction at regular close packing (however,
Ulam apparently never wrote down his conjecture—it is
quoted in a book by Martin Gardner [9]). But until the
work of Chen [8], there existed no example of a pack-
ing of tetrahedra denser than that of spheres. During
the past year, it has become clear that not only do tetra-
hedra pack more densely than spheres, but also much
more densely. In particular, Haji-Akbari et al.[1] used
numerical simulations to study the high-density pack-
ing of hard tetrahedra and observed a packing fraction
of more than 85%—and since then, even higher packing
densities have been reported by several authors [10].

But, and this is really unexpected, some of the high-
est density packings found by Haji-Akbari et al.[1] are
not crystalline, but quasicrystalline (a dodecagonal qua-
sicrystal). It is still possible that the densest packing of
tetrahedra is crystalline (but then the crystal structure
is nontrivial), yet the fact that hard tetrahedra sponta-
neously form a quasicrystal upon compression was to-
tally unexpected.

Haji-Akbari et al. also found that the density of ran-
dom close packing of tetrahedra is very high (above
78%, which is also above the Kepler limit). For parti-
cles that are not space-filling, this result is also surpris-
ing. As in the case of spheres, one can argue about the
precise meaning of random close packing.

The experimental ”Bernal” approach to random close
packing of tetrahedra was followed in this new set of
experiments by Jaoshvili et al.[2] who poured tetrahe-
dral dice into various containers and used volumetric
measurements to determine the density of RCP and MRI
to analyze the local structure of the resulting packing.
These experiments suggest a density of random close
packing around 76± 2%, roughly in agreement with the
findings of Haji-Akbari et al.[1]. Interestingly, Jaoshvili
et al. find that positional and orientational correlations
of randomly packed tetrahedra are very short ranged,

suggesting that there is no precursor of the quasicrys-
talline state in the dense fluid.

The experiments on packing of tetrahedra raise an
interesting question about the “technology” of random
close packing. There are many practical examples where
man-made objects are designed such that they will effi-
ciently fill the volume into which they are poured. Ex-
amples are many pills (both oblate and prolate), can-
dies (such as the M&Ms studied in 2003 by Donev et
al.[11]) or, on a larger scale, egg-shaped coal briquettes.
In particular in the latter case, there is a clear incen-
tive to design the shape of the object such that the den-
sity of random close packing is maximal, because bri-
quettes are used as fuel and the higher their RCP den-
sity, the smaller the storage requirements. Interestingly,
”egg cokes” have the shape of a biaxial ellipsoid with
an aspect ratio that corresponds closely to the shape
that Donev et al. found to have the highest density of
random close packing of any ellipsoid (approximately
73.5%, see Fig.1). This suggests that the coal engineers
of the 19th century had a good understanding of the ef-
fect of shape on random close packing—except that they
did not make tetrahedral briquettes! Yet such objects
would pack more densely than biaxial ellipsoids. Al-
most certainly, the nonexistence of the tetrahedral bri-
quette is not due to an oversight of the coal engineers:
most likely tetrahedral objects would chip and fracture
much more easily than ellipsoids.
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FIG. 1: Tetrahedral objects have been found to pack with high
density, even denser than other non-spherical objects that have
been designed to pack densely. “Egg cokes” produced from
compressed coal powder (top) have a roughly biaxial, ellip-
soidal shape. The aspect ratio of these coal briquettes coincides
remarkably closely with that of biaxial ellipsoids that, accord-
ing to the study of Donev et al.[11] have the highest density of
RCP of all possible biaxial ellipsoids (red line in bottom panel).
(Illustration: (Top) Reprinted from [12]; (Bottom) Alan Stone-
braker, adapted from [11])
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