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Viewpoint

Geometric phase kicks x-rays down a new path
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A small crystal distortion can dramatically translate the path of an x-ray beam, an effect that could be useful in
the development of x-ray optics.

Subject Areas: Optics

A Viewpoint on:
Berry-Phase Translation of X Rays by a Deformed Crystal
Yoshiki Kohmura, Kei Sawada and Tetsuya Ishikawa
Phys. Rev. Lett. 104, 244801 (2010) – Published June 14, 2010

The first impression one gets walking into an optics
lab is of the endless maze of mirrors, lenses, etc., that
can bend and guide the light along practically any de-
sired path. Controlling x rays in the same manner, how-
ever, is much harder. In a paper appearing in Physi-
cal Review Letters[1],Yoshiki Kohmura, Kei Sawada, and
Tetsuya Ishikawa at the SPring-8 synchrotron in Hyogo,
Japan, show they can displace an x-ray beam propa-
gating inside a crystal by a drastic amount—of order
a millimeter—by deforming a single crystal less than
100 nanometers (Fig. 1). They argue that the displace-
ment arises from a geometric, or Berry, phase picked up
by the waves constituting the x ray, an effect predicted
several years ago [2]. Experimentally, much remains to
be done towards a full demonstration of the geometric-
phase effect on the beam propagation. This statement is
not meant to be derogatory—the experiments are chal-
lenging—but rather to stimulate further work in preci-
sion x-ray optics and, at the same time, investigate fur-
ther what could be a toy model for many other fields of
physics.

Berry phases appear in many contexts of physics, in-
cluding quantum systems, classical oscillators, and clas-
sical wave-propagating media. In the 1980s, Michael
Berry observed that a quantum system, which is de-
scribed by multiple parameters, picks up a phase be-
yond that of its dynamical evolution if the parameters
are changed slowly along a closed loop in the parameter
space (where each axis represents one parameter). This
additional phase depends only on the geometrical prop-
erties of the loop. In particular, the Berry phase does
not depend on the time it takes to traverse the loop, as
long as it is done sufficiently slowly (adiabatically). The
classic example is the polarization of a light beam as it is
transmitted through a twisted optical fiber.

Geometric phases are closely related to another ubiq-
uitous concept—that of avoided crossings (see Refs.
[3, 4] for examples). The term “avoided crossings” refers

to energy levels in spectroscopy that rise or fall under
the influence of an external field, but the concept applies
generally to interacting parameter-dependent oscilla-
tory modes, or wave modes in a parameter-dependent
medium. As parameters are varied, and two modes be-
come similar (say, they approach the same frequency),
oscillatory averaging of the interaction no longer ap-
plies. Because the modes are coupled, they can no
longer be degenerate and they repel each other by
splitting into two coupled-wave modes with oppositely
phased contributions from the original modes.

Avoided crossings occur for x rays and matter waves
in a perfect crystal, which is what underlies the ef-
fect seen by Kohmura et al. An x-ray wave A0(r) =
A0exp(ik · r) with an arbitrary wave vector k0 prop-
agating in a crystal will be scattered with little over-
all effect. But near the Bragg condition, that is when
|k0 + G| ≈ |k0| for one of the crystal’s reciprocal lat-
tice vectors G, the scattered waves add constructively
to a sizeable amplitude AG(r) = AGexp(i(k0 + G) · r).
The two waves A0(r) and AG(r) form a standing-wave
pattern that has the same periodicity as the lattice. In
a perfect crystal AG is coherent with A0 and scatters
back into it, and vice versa over a characteristic propa-
gation length called the pendellösung length that varies
inversely with the strength of the scattering coupling the
waves (pendellösung is German for “pendulum solu-
tion” because the problem is analogous to two coupled
pendulums). For this case, it is much simpler to con-
sider the propagation of the coupled-wave modes and
their dispersion, rather than treating each of them indi-
vidually.

Close to the Bragg condition there is an avoided cross-
ing in momentum space that splits the coupled-wave
modes into two bands separated by a gap [5]: of these,
modes on the so-called α branch have antinodes be-
tween the lattice planes, and thus experience less-than-
average scattering. The opposite is true for the other
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FIG. 1: (Top) A small deformation of the lattice planes in a per-
fect crystal has a wave-guiding effect on an x-ray wave packet,
effectively translating it by several mm through the crystal (G
is a reciprocal lattice vector). (Bottom) A more detailed picture
of how the curved lattice planes translate the x-ray “α mode”
that propagates through the crystal. The purple lines indicate
the lattice planes (u denotes the displacement as a function of
space) and the blue lines denote the phase of the propagating α
mode. As the α mode curves, the amplitudes of its constituent
A0 and AG waves changes [6], with the amplitude of A0 in-
creasing with respect to AG. Since the Poynting vector is par-

allel to |A0|2 k0 +
∣∣AG

∣∣2 (k0 + G), the exiting wave is mainly
along k0. (Illustration: Carin Cain)

branch, containing the β modes. Because, differently
from light in glass, etc., x rays in matter experience a
refractive index of slightly less than 1, an α mode has a
higher-than-average refractive index (while the β mode
is lower than average). Which of these two modes (both,
only one, or none) are excited by a wave incident on
the crystal depends on the boundary conditions with
the usual provision that wave vectors must be coupled
along the surface normal vector. If no propagating mode
is excited, total reflection occurs, also known as Bragg-
case reflection. As the angle of incidence is changed
from Bragg-case reflection towards smaller incidence
angles, the α mode is excited. More precisely, an actual
x-ray beam will excite many closely spaced modes on
the α branch.

These concepts pertain to a perfect crystal. A de-
tailed explanation of how the x-ray modes evolve in
a deformed crystal involves some equation-gazing (see

Ref. [6] for detail), but the gist of it is this: Due to its
anomalously high refractive index, an α mode is stable
to perturbations, similarly to light guided by the high-
index core of a glass fiber. By the same reasoning, a β
mode is unstable, and quickly leaves the scene. Pro-
vided it is not too large, the crystal deformation will
guide the standing-wave pattern of the α modes consti-
tuting a beam along the curved lattice planes. This has,
however, the effect of strongly changing the amplitude
ratio of the constituent coupled waves (Fig. 1, bottom).
Since the beam direction is given by the Poynting vector,
which is parallel to |A0|2 k0 +

∣∣AG
∣∣2 (k0 + G), the am-

plitude change leads to a change in beam direction, that
is, beam bending that is much stronger than the curva-
ture of the lattice planes.

In their experiment, Kohmura et al. oxidized a 100-
micron-thick silicon crystal on a wax backing to induce
a deformation of 80 nanometers or more. When the inci-
dent x-ray beam direction was detuned from the Bragg
condition by ∆Θ = −2 arcsec, they observed a trans-
mitted beam that was parallel to the original beam, but
displaced by about 1.5 mm from its original trajectory.
This can be explained by a curved ray inside the crystal
that splits into the constituent waves k0, k0 + G upon
exiting (Kohmura et al. report only the k0 wave).

One may now ask where in the experiment the Berry
phase has become evident. The answer is that it only
does so indirectly. The observation is a beam displace-
ment, which is evidence of beam bending inside the
crystal. This, in turn, suggests a Berry curvature, which,
according to the theory of Ref. [2], is related to the Berry
phase as a gauge field [7–9].) To actually measure a
phase, one would have to insert a sample crystal into
an interferometer, similarly to, but much more complex
than, experiments on forward diffraction in unstrained
crystals [10, 11]. To demonstrate the geometric-phase
nature, one would also have to demonstrate that differ-
ent strain-field profiles leading to the same crystal dis-
placement will yield the same beam displacement. This
is, of course, easier said than done.

Synchrotron-radiation optics and brilliant sources,
such as x-ray free-electron lasers have already come a
long way, and will go much further in the next few
years. Therefore, the demonstration of Kohmura et al.
of an x-ray-bending effect similar to that in visible-light
optics is possibly of both fundamental and practical im-
portance.
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