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Viewpoint

Liberating anyons from two dimensions
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The combination of trivial and topological band insulators with a superconductor is bringing anyons—particles
that behave neither according to purely Bose nor Fermi statistics—into the three-dimensional world.
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The theory of quantum statistics begins with a simple
observation about the wave functions of identical parti-
cles: if two identical particles are interchanged twice, the
wave function must come back to its initial value. This
means that a single interchange can result in a phase of
either zero or π, and identical particles can be either
bosons or fermions. This fundamental distinction be-
tween Fermi statistics—which lead to Pauli’s exclusion
principle, the structure of the periodic table, and neu-
tron stars—and Bose statistics—which underlie super-
fluidity and lasing—explains much of the universe we
see around us.

A paper appearing in Physical Review Letters[1] from
Jeffrey Teo and Charles Kane at the University of Penn-
sylvania, US, is part of an ongoing attempt [2] to go
beyond the fermion-boson dichotomy and find other
types of quantum statistics. While this attempt has been
successful in systems of two spatial dimensions (2D),
mostly in the context of the quantum Hall effect [3, 4],
it is widely believed to be impossible to realize in three
dimensions (3D). Teo and Kane’s paper specifically ad-
dresses the 3D case. While their discussion is highly
theoretical, it is of interest to a wide range of fields of
physics, such as many-body condensed matter systems,
quantum computation, and the fundamentals of quan-
tum mechanics.

Let us first ground the notion of the interchange of
identical particles in something physical, rather than
mathematical. Imagine two “buckets,” each of which
contains one of two identical particles. If the ground
state of the system is separated from the excited states
by an energy gap, and the motion of the buckets is slow,
then the system will not be excited by interchanging the
position of the buckets. We can then look at effects that
are associated solely with the interchange of the parti-

cles, that is, effects that depend on the topology of the
trajectory along which the particles move, and are inde-
pendent of its geometry and time dependence.

We can formally analyze these effects by defining the
Hamiltonian of this system in such a way that a bucket
traps the object whose quantum statistics we want to
calculate. This object may be the elementary particle
that makes up the system, or it may be a collective ex-
citation, such as a quasiparticle or a vortex in a fluid.
We carry out the interchange of two particles by mov-
ing the buckets slowly along a trajectory that ends with
their initial positions interchanged. If the ground state
is nondegenerate, the only effect of this interchange is
a phase factor, and this phase may be calculated by the
usual formalism for an adiabatic evolution.

This discussion, however, calls for a distinction be-
tween 2D and 3D. Let us think about two consecutive
interchanges of the same two buckets, i.e., of trajectories
in which two buckets first interchange positions, and
then go back to their initial locations. In 3D, all such
trajectories are topologically equivalent, and are equiv-
alent to not even moving the buckets. The topological
phase associated with two interchanges must then be a
multiple of 2π, giving us the usual boson/fermion di-
chotomy. In 2D, however, after two buckets interchange
positions, they can come back to their original positions
by retracing their steps, or by completing one winding
around one another. These two trajectories are topolog-
ically distinct, and cannot be deformed into one another
without the buckets touching each other. Thus they may
be associated with two different topological phases. The
phases may in fact take any value, which is why these 2D
particles are called “anyons.”

If the ground state of the system is degenerate, a slow
interchange can do more than just multiply the ground
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state by a phase; it may take the system from one ground
state to another [4–8]. Expressed mathematically, such
an interchange multiplies the ground state by a unitary
matrix that operates within the subspace of degener-
ate ground states. Unitary matrices are noncommuta-
tive under multiplication, and hence the anyons become
non-Abelian: the final state they reach after a series of
interchanges depends on the order at which these in-
terchanges are carried out. Important as this difference
is, however, it does not seem to affect the distinction
between 2D and 3D. Anyons, be they Abelian or non-
Abelian, seem to exist only in 2D.

The paper by Teo and Kane questions this well ac-
cepted constraint, and aims to liberate anyons, specifi-
cally non-Abelian anyons [4–8], from the confinements
of 2D. The source of inspiration is the interface between
a trivial insulator and what is called a topological insu-
lator [9–11]. Of the various properties of these insula-
tors, we only need to note that the two insulators are
characterized by an energy gap separating their respec-
tive ground states from the rest of their spectra, while
the interface between them is a 2D metal. Teo and Kane
consider a scenario where there is an attractive pairing
interaction between the electrons, so that this metal be-
comes a superconductor with an energy gap in its quasi-
particle spectrum. Applying a magnetic field will then
introduce vortices into this superconductor. It turns out
that these vortices are non-Abelian anyons, as we now
explain.

In general, superconductivity vanishes at the cores
of vortices, leading to localized excitations at energies
lower than the energy gap at the bulk of the supercon-
ductor. For some superconductors, including the one
we described above, each vortex carries one excitation
mode exactly at zero energy. As for all excitations of a
superconductor, the operator that creates this mode is
a superposition of creating and annihilating a fermion.
Uniquely for the zero energy mode, the creation part is
the Hermitian conjugate of the annihilation part, mak-
ing the mode a “Majorana fermion” [7, 8, 12, 13]. The
presence of these modes makes the ground state degen-
erate. Importantly for us, the fermionic operator that de-
scribes each of these Majorana fermions depends on the
phase configuration of the superconducting order pa-
rameter around the vortex in which it is localized. As
one vortex is taken to wind around another, the phase
of the order parameter around each of the two vortices
winds by 2π. For the Cooper pairs that make up the su-
perconductor this is an unobservable winding, but the
Majorana fermion operators are multiplied by an ob-
servable factor of −1. Thus the winding operation ap-
plies a unitary transformation on the ground state of the
superconductor; the vortices are non-Abelian anyons.
(An interchange of two vortices is associated with a sim-
ilar, but slightly more complicated unitary transforma-
tion.)

Imagine now that we fill a three-dimensional space
with a trivial insulator, and that we have a “control

panel” that allows us to switch the trivial insulator into
a topological one at any position we wish. In practice,
this switch might be a change in the lattice structure
that we can induce, for example, by applying pressure.
Moreover, imagine that the electrons have an attractive
pairing interaction everywhere, so that a superconduc-
tor is formed wherever we create an interface between a
topological and a trivial insulator. As a result, by choos-
ing the regions in which we switch the insulator to its
topological state, we can form blocks of topological in-
sulator, each wrapped by a two-dimensional supercon-
ducting shell. In addition, by applying a magnetic field
we can make vortices pierce the superconductors. Al-
together, the 3D space will consist of some arrangement
of 2D superconducting bubbles and 1D vortex lines (see
Video 1). The vortex lines are the lines around which
the phase of the order parameter that characterizes the
pairing interaction winds.

Vortex lines that pierce a superconducting bubble cre-
ate an equal number of 2D vortices and antivortices, and
each of these carry a single Majorana fermion. The Ma-
jorana fermions make the ground state degenerate. If
we interchange two vortices on the same bubble we get
the 2D non-Abelian statistics that we discussed earlier.
It turns out that for 2N Majorana fermions on a bubble,
the number of ground states is 2N−1. Thus for the non-
Abelian statistics to be manifested on a single bubble,
at least four vortices, each carrying a single Majorana
fermion (such as either of the two bubbles at the bottom
of Video 1), should be present.

Interchanging vortices on the same bubble is really a
2D operation—what makes the story “3D” is that we
can interchange vortices on different bubbles. All we
need is a little help from our control panel. To make
such an interchange we deform the two bubbles until
they touch one another—making, in effect, a Josephson
junction—and then merge them into one (as in Video 1,
where the two bubbles on the right are just touching).
Now that we have the two vortices on the same 2D man-
ifold, they can interchange. After they interchange we
bring the system back to its original form: we cut and
paste the vortex lines within the bubble such that they
get back to their original configuration, we break the
bubble back into two, and we deform the two bubbles
into their original shapes. The configuration of bubbles
and vortex lines is now back to where we started from,
but two Majorana fermions have interchanged. In this
scheme we can interchange any two Majorana fermions
within the 3D space, and have the system transform
from one ground state to another, just as we did with
non-Abelian anyons in 2D.

In fact, we can apply a unitary transformation that
takes the system from one ground state to another with-
out even moving the Majorana fermions. The Majorana
fermions occur at the intersection of the 2D supercon-
ducting bubbles with the 1D vortex lines. Imagine a
bubble pierced by a vortex line that closes outside of the
bubble to form a vortex loop (see the upper right bub-

DOI: 10.1103/Physics.3.7
URL: http://link.aps.org/doi/10.1103/Physics.3.7

c© 2010 American Physical Society



Physics 3, 7 (2010)

VIDEO 1: A cartoon that demonstrates how the concept of Ma-
jorana fermions—2D objects—can be realized in a 3D space.
The 2D bubbles are defined by superconducting surfaces that
separate trivial and topological insulators. The red vortex
lines are the lines around which the phase of the electron
pairing order parameter winds. Majorana fermions are local-
ized at the points where vortex lines pierce a superconduct-
ing surface. The upper right bubble and animation exemplify
how the state of the system may change without a Majorana
fermion being moved: The bubble connects to its neighbor
via a narrow (Josephson) junction. If the vortex line is ro-
tated around the bubble, it goes through the Josephson junc-
tion, and a unitary transformation is applied on the state of
the system, but the Majorana fermions are still in their original
positions. (Animation: Alan Stonebraker) Video available at:
http://physics.aps.org/articles/v3/7#video.

ble in Video 1). The vortex loop is split into two parts,
one inside the sphere and one outside of it. If we take
the external part of the loop and move it around the su-
perconducting bubble (see animation Video 1), we wind
the relative phase of the bubble’s order parameter by
2π, relative to the phase of all the other bubbles. If we

make the phases of the order parameters on the various
bubbles all locked to one another by interconnecting the
bubbles by Josephson junctions, the −1 factor that this
winding applies to the Majorana fermions of the bubble
will apply a unitary transformation on the state of the
system, even though none of the Majorana fermions has
moved.

As this last setup clarifies, a description of the system
in terms of point particles (e.g., Majorana fermions) liv-
ing in a 3D world should be formulated with great care,
since the time evolution of the system cannot be fully de-
fined in terms of the trajectories of these particles alone.
What is the most general and concise way to describe
systems of these types is one of several questions raised
by Teo and Kane’s paper. These questions are likely to
be at the center of future works, motivated both by their
relevance to fundamental aspects of quantum mechan-
ics and by their possible relevance to condensed matter
systems [14, 15].

References

[1] J. C. Y. Teo and C. L. Kane, Phys. Rev. Lett. 104, 046401 (2010).
[2] F. Wilczek, Fractional statistics and anyon superconductivity (World

Scientific, Singapore, 1990).
[3] A. Stern, Ann. Phys. 323, 204 (2008).
[4] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman,

and Sankar Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[5] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[6] C. Nayak and F. Wilczek, Nucl. Phys. B 479, 529 (1996).
[7] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[8] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[9] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

[10] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
[11] X. L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424

(2008).
[12] Frank Wilczek, Nature Phys. 5, 614 (2009).
[13] Liang Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[14] Liang Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009).
[15] J. Nilsson, A. R. Akhmerov, and C. W. Beenakker, Phys. Rev. Lett.

101, 120403 (2008).

DOI: 10.1103/Physics.3.7
URL: http://link.aps.org/doi/10.1103/Physics.3.7

c© 2010 American Physical Society



Physics 3, 7 (2010)

About the Authors

Ady Stern

Ady Stern is a professor of physics at the Weizmann Institute of Science, in Rehovot, Israel.
He received his Ph.D. from Tel-Aviv University, and was a Junior Fellow at Harvard. His
research focuses on the quantum Hall effect, non-Abelian states of matter, and mesoscopic
physics. He is also interested in the popularization of science.

Michael Levin

Michael Levin received his Ph.D. from MIT in 2006. He is currently a Junior Fellow at the
Harvard Society of Fellows. He is particularly interested in topological aspects of quantum
condensed matter physics.

DOI: 10.1103/Physics.3.7
URL: http://link.aps.org/doi/10.1103/Physics.3.7

c© 2010 American Physical Society


