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Hidden one-dimensional physics in 2D critical metals
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New theoretical work shows that in two-dimensional condensed matter systems, one-dimensional processes such
as forward or backward scattering have a dramatic effect on the physical behavior of fermions near a quantum
critical point and derail attempts to get an accurate description of a non-Fermi-liquid.
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The Landau Fermi-liquid theory [1] has been the
workhorse of the physics of interacting electrons for
over 50 years. Its main postulate is that low-energy
fermions in the vicinity of the Fermi surface are long
lived and can be treated as sharp quasiparticles: their
energy scales linearly with k − kF, while the inverse
lifetime scales as a higher power of k − kF [e.g., as
(k − kF)2 in three dimensions], and remains parametri-
cally smaller near kF , regardless of the strength of the
actual screened Coulomb interaction. Perturbation theo-
ries of electron-electron interaction in dimensions larger
than 1 reproduce the Fermi liquid, so something special
has to be done to a system to destroy it.

The search for a non-Fermi-liquid in dimensions D >
1 was originally stimulated by the discovery of non-
Fermi-liquid behavior in the nonsuperconducting phase
of high-Tc cuprates. This quest has now grown into a
much broader area of correlated electron physics and
in recent years has led to many exciting new develop-
ments. An important new finding in this field has been
reported in two high-quality Physical Review B articles
by Maxim Metlitski and Subir Sachdev from Harvard
University [2, 3].

One of the ideas floating around from the early days
of high-Tc superconductivity is that a non-Fermi-liquid
in D > 1 emerges when fermions are interacting with
a band of gapless, overdamped bosons [4, 5]. Such a
situation emerges when a Fermi liquid reaches a crit-
ical point towards a density-wave instability (e.g., an
instability towards an itinerant ferromagnetism [6], or
towards a quadrupolar, nematic-type order [7]), and in
theories of fermions interacting with a gauge field (for
instance, a field that connects spin and charge prop-

erties) [4, 5, 8–10]. In all these cases, the problem re-
duces to fermions interacting, via a constant coupling
g, with a bosonic field whose susceptibility as a func-
tion of momentum q and frequency Ω has the form
χ−1(q, Ω) = q2 − iγΩ/q (in this case, the dynamical
exponent z = 3; the dynamical exponent z occurs in
the power-law relation between typical q and typical
Ω ∼ qz). This interaction can be judged by how it affects
fermionic and bosonic excitations via the correspond-
ing self-energies and vertex corrections. The perturba-
tion theory to second order in g shows an interesting
behavior—bosonic excitations and static fermionic exci-
tations remain essentially unaffected, but the dynamical
fermionic self-energy Σ(kF, ω), which accounts for the
fermionic lifetime, is singular in dimensions of 3 or less,
and in the most studied 2D case behaves, as a function
of frequency ω, as (1 + i

√
3)ω2/3[4–7].

Taken at face value, this result implies that the
fermionic damping and the fermionic energy remain
of the same order (k − kF)3/2, no matter how close k
is to the Fermi surface—that is, fermionic excitations
never become sharp. This contradicts the key postu-
late of the Fermi liquid. The intriguing question then
is whether ω2/3 is the exact form of the self-energy. For
a long time it was thought that this was the exact form.
The two-loop Feynman diagram for the self-energy also
gives ω2/3, and power-counting arguments indicate that
ω2/3 is reproduced to all orders in perturbation theory.
By itself, this is not the proof that ω2/3 survives, as
the perturbation series does not necessarily converge.
But several authors argued [5, 9] that loop expansion
can be put under control by extending the theory to a
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large number of fermionic flavors N and by taking the
limit N >> 1, like high-energy physicists often do. In
the large-N limit, the prefactor for the two-loop ω2/3

term becomes (logN/N)2 << 1, and by power count-
ing, higher-order contributions should be progressively
smaller in 1/N. The theory then becomes controllable
and in many respects similar to the Eliashberg theory
for electron-phonon interaction [11], which is the canon-
ical tool that physicists use to analyze phenomena such
as superconductivity. Indeed, extending from N = 1 to
large N is only a theoretical trick. But there is also phys-
ical reasoning involved—after rescaling, N appears as
the overall factor in the curvature of the 2D Fermi sur-
face, and the curvature in turn appears in the denomi-
nators of multiloop diagrams. The smallness of higher-
order ω2/3 terms is then a consequence of the fact that
curvature-dependent 2D processes with scattering be-
tween different parts of the Fermi surface play the major
role.

For about 15 years it was thought that the problem
had been solved, i.e., for a large class of physical prob-
lems ω2/3 is the exact form of the fermionic self-energy
in a non-Fermi-liquid, just like ω + iω2 is the exact form
of the self-energy in a conventional 3D Fermi liquid.
If so, then system properties in the non-Fermi-liquid
phase are known exactly—a theorist’s dream. How-
ever, in 2009 Sung-Sik Lee from McMaster University,
Canada, looked at the problem from a field theory per-
spective and found [12] that the victory lap was pre-
mature—there is an infinite subset of ω2/3 diagrams,
beginning from the third order, in which the curva-
ture is canceled out; as a result, there is no smallness
of 1/N in the prefactor. An example of such a dia-
gram is presented in Fig. 1. In field theory terminol-
ogy, these special diagrams form the subset of planar
diagrams. From a physical perspective, they represent
processes that are strictly one-dimensional (either for-
ward or backward scattering), despite the system itself
being two-dimensional. In other words, the result by S.-
S. Lee implies that there is “hidden one-dimensionality”
in 2D systems—while most of the processes contribut-
ing to fermionic self-energy are two-dimensional (and
small in 1/N), some are strictly one-dimensional (and
not small in 1/N). By itself, hidden dimensionality
is not specific to non-Fermi-liquid behavior—the same
hidden one-dimensionality actually also affects Fermi-
liquid behavior [13], and was shown a few years ago
to be responsible for nonanalytic temperature and mag-
netic field dependences of the specific heat and the spin
susceptibility in a Fermi liquid [14].

The discovery by S.-S. Lee brought the theory into
unexplored territory. On one hand, the fermionic self-
energy Σ(kF, ω) is still ω2/3, even with planar diagrams.
On the other, there is no small parameter to put the the-
ory under control. It was still possible, though, that the
ω2/3 form of the self-energy survives. In their first pa-
per, Metlitski and Sachdev show [2] that this is not the

FIG. 1: Examples of one-loop (first-order), two-loop (second-
order), and three-loop (third-order) Feynman diagrams used
to calculate the fermionic self-energy Σ(k, ω) (and thus the
fermion lifetime) for a model of fermions interacting with a
massless bosonic field. Solid lines represent fermions, dashed
lines are bosons (p and l are fermionic and bosonic momenta,
respectively). The loop expansion is expressed in powers of
1/N, where N is the number of fermionic flavors, artificially
extended from N = 1 to N >> 1. By a naive power counting,
the three-loop self-energy at zero temperature should scale as
1/N3. In reality, some of three-loop diagrams (including the
one shown) do not contain 1/N in the prefactor. Moreover,
for this diagram dΣ(k, ω)/dk diverges logarithmically when ω
and k − kF vanish. These diagrams contain only backscatter-
ing and forward scattering and represent hidden 1D processes
which, as it turned out, play a crucial role in the behavior of
2D systems. (Figure adapted from [2].)

case, and hidden 1D processes change the physics qual-
itatively, not just quantitatively. They explicitly com-
pute self-energy at third order and demonstrate that,
although Σ(kF, ω) ∝ ω2/3, the self-energy at ω = 0
is Σ(kF, 0) ∝ (k − kF)log|k − kF|, again without 1/N
in the prefactor, and that the three-loop vertex correc-
tion is also logarithmically singular. They argue that,
at four-loop order, Σ(kF, ω) also acquires an extra log-
arithm and becomes ω2/3log ω. The presence of loga-
rithms is the qualitatively new effect—it shows that the
ω2/3 form of the self-energy is not reproduced at higher
orders, contrary to the belief in the community over so
many years.

Metlitski and Sachdev [2] have gone further in their
analysis and used scaling arguments to argue that the
logarithms give rise to a singular renormalization of the
quasiparticle residue (the strength of the quasiparticle
pole), such that the full fermionic Green’s function near
the Fermi surface has the form

G−1(k, ω) = [(1 + i
√

3)ω2/3 − a(k− kF)]1−η (1)

where a is a constant, and η = O(1) is the anoma-
lous dimension. This analysis was further extended by
Mross et al.[15], who found an elegant way to put the
calculation of η under control.

In the same paper [2], Metlitski and Sachdev also an-
alyze the form of bosonic self-energy, specifically the
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renormalization of the q2 term in the static bosonic prop-
agator. The question they asked is whether the critical
point is by itself stable. It has been known before that
the corrections to the q2 term are singular near a fer-
romagnetic instability in an SU(2) spin-invariant Fermi
liquid, such that the system necessarily experiences a
preemptive transition [16]. But for the cases of the in-
stability in the charge channel (e.g., towards a charge
nematic), or Ising-like ferromagnetic instability, which
Metlitski and Sachdev considered, singular corrections
all cancel out, and only regular q2 corrections remain. It
was widely believed that these q2 corrections were in-
nocent, but Metlitski and Sachdev showed that hidden
one-dimensionality again makes a difference: the q2 cor-
rections from three-loop planar diagrams are negative
and contain an extra factor of N1/2, i.e., they are large.
Whether these large corrections destroy the critical be-
havior and lead to a preemptive instability, as in the fer-
romagnetic case, still remains to be seen, but the result of
Metlitski and Sachdev and the complimentary analysis
by Mross et al.[15] clearly show that there is a potential
problem here that needs to be resolved.

In their second paper [3], Metlitski and Sachdev ex-
tended the analysis to an antiferromagnetic Q = (π, π)
instability in a 2D Fermi liquid. This problem was in-
tensively studied in the context of optimally doped and
overdoped cuprates, both for the normal state and mag-
netically mediated pairing. The underlying model is
similar, but not identical, to the one discussed above—it
now describes the interaction between fermions located
near particular points at the Fermi surface (the hot spots,
for which kF and kF + Q are on the Fermi surface) and
their collective spin excitations with χ−1(q, Ω) = (q−
Q)2 − iγΩ (the dynamical exponent z = 2). This spin-
fermion model has been analyzed previously within
the 1/N expansion by Abanov et al.[17]. Metlitski and
Sachdev partly confirmed but partly corrected that anal-
ysis—they demonstrated that the dynamical exponent
gets renormalized and flows away from z = 2.

The key element of the Metlitski-Sachdev study of the
antiferromagnetic model is their analysis of the valid-
ity of the Eliashberg theory. Earlier works assumed that
multiloop corrections form a series in 1/N and only ex-
tra powers of logarithms appear. Metlitski and Sachdev
argued that the same “hidden” 1D physics that affected
the behavior of the critical models with soft bosonic fluc-
tuations at q = 0 also affects the behavior of an antifer-
romagnetic spin-fermion model. To demonstrate this,

they constructed a q = 0 fluctuation out of two q = Q
fluctuations and reexpressed higher-order processes in
terms of small-q scattering.

Do these corrections completely destroy the earlier
Eliashberg-type analysis, or is there still an intermedi-
ate regime in which Eliashberg theory is valid to a good
numerical accuracy? We don’t know yet, but one thing
is clear—quantum-critical behavior in itinerant electron
systems turns out to be much more involved than it was
thought before the work of Metlitski and Sachdev. How
to deal with 1D processes embedded into 2D systems
is an open issue, but given current high interest in this
problem, there is a good chance that the model of 2D
fermions interacting with gapless collective excitations
will be finally solved.

Note added by author (21 September 2010): References to
two influential early works on 2D fermions coupled to
a gauge field were missing in the original text and have
now been inserted.
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