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Calculating the properties of three trapped atoms suffices to explain the behavior of an entire fermionic gas.
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Often the few-body and the many-body worlds are,
figuratively speaking, worlds apart. For example, the
binding energies of the helium-4 dimer and the helium-4
trimer are about 0.001 K and 0.1 K, respectively [1]. The
binding energy per particle Eb in the large particle limit,
i.e., the binding energy per particle of the homogeneous
or bulk system, in contrast, is much larger: Eb ≈ 7 K[2].
This suggests that the binding energy of the bulk system
cannot be predicted on the basis of just the two-particle
and the three-particle energies. Indeed, it is found that
a quantitatively correct prediction of the binding energy
of the bulk requires knowledge of the energies of clus-
ters with up to hundreds of atoms [2].

In an elegant sequence of papers, the first published
in 2009 in Physical Review Letters[3] with follow-ups
now appearing in Physical Review A[4] and Physical Re-
view B[5], Xia-Ji Liu, Hui Hu, and Peter Drummond of
the Swinburne University of Technology in Melbourne,
Australia, have predicted the thermodynamic prop-
erties of two- and three-dimensional two-component
Fermi gases down to unexpectedly low temperatures,
purely on the basis of the solutions of just the two-
body and the three-body problem. A detailed theoret-
ical analysis, together with an analysis of a set of im-
pressive experimental data for three-dimensional gases
[6, 7], provides strong evidence that the approach pur-
sued by Liu and co-workers correctly describes the key
physics in a quantitative way. Given the above helium
example, though, it seems counterintuitive that knowl-
edge of the two-body and three-body energy spectra is
all that is needed. Viewed from this perspective, the
work by Liu and co-workers is a beautiful contribution
that bridges the few-body and the many-body worlds.

Furthermore, it makes an important leap toward deter-
mining the equation of state of two-component Fermi
gases at any temperature, any interaction strength, and
any dimensionality.

The basic constituents of two-component gases are
fermionic atoms, such as lithium-6 or potassium-40, in
two different hyperfine states. The mixture of atoms
can be thought of as a pseudo-spin-1/2 system, where
atoms in one hyperfine state are considered “spin up”
and those in the other hyperfine state are “spin down.”
Liu and co-workers [3, 4] assume a 50-50 mixture of
spin-up and spin-down atoms, with equal masses, in
three spatial dimensions. An intriguing feature of ultra-
cold atomic gases is their large de Broglie wavelength
λ = h/p, where h denotes Planck’s constant and p
the momentum. In practice, the de Broglie wavelength
is increased by decreasing the sample’s temperature T
(λ ∝ 1/

√
T). As is well known from textbook statis-

tical mechanics [8], a Bose gas undergoes a transition
to a unique state of matter, a Bose-Einstein condensate,
when the de Broglie wavelength becomes of the order
of the interparticle spacing. In fermionic systems, how-
ever, the situation is different. Because of the Pauli ex-
clusion principle, the atomic Fermi gas cannot undergo
condensation like a Bose gas but instead becomes Fermi
degenerate when the de Broglie wavelength becomes
sufficiently large. Below the degeneracy temperature
TF, nearly all available energy levels are filled [as indi-
cated in the cartoon in Fig. 1(a)].

Currently, a major quest in the field of cold
atom physics is the accurate determination of finite-
temperature thermodynamic quantities such as the en-
ergy, entropy, and chemical potential. Possibly the most
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FIG. 1: (a),(b) Schematic illustrations of one of many possi-
ble configurations of the three-body cluster at low and high
temperature, respectively. At low T, only a few configurations
with small energy contribute to a given virial coefficient bn. At
high temperature, many configurations with small and large
energy contribute. (c) Shows the cluster expansion parameter,
or fugacity, z = exp[µ/(kBT)], where µ denotes the chemical
potential and kB the Boltzmann constant, as a function of T/TF
for the example of infinitely strong interactions. The thermo-
dynamic potential Ω, which determines the energy and en-
tropy, can be written as Ω ∝ Σnbnzn, where bn is determined
by the energy spectrum of the nth cluster. The contribution
of the nth cluster is suppressed by a factor of z compared to
that of the (n − 1)th cluster. The suppression is very effec-
tive for T/TF > 1 (i.e., only terms with n = 1, 2, and 3 are
needed), but higher-order clusters are needed for T/TF ≤ 0.75.
(Credit: Alan Stonebraker; Data shown in (c) are courtesy of K.
M. Daily, Washington State University)

straightforward approach to obtain these observables is
to simulate the N-body problem. Of course, any such
treatment requires integrating over 3N degrees of free-
dom, a task that can, in general, only be performed
through Monte Carlo sampling. For fermions, however,
Monte Carlo approaches are, except for a few fortuitous
exceptions, plagued by the so-called sign problem [9],
posing severe limitations on the applicability of this ap-
proach. Alternatively, one might think of employing an
approach that expands around a small parameter, as did
Liu and co-workers: They pursued a cluster, or virial,
expansion approach [8], which treats the N-body prob-
lem in terms of one-body, two-body, three-body and so
on clusters or subsystems. In particular, the thermody-

namic potential Ω, Ω ∝ Σnbnzn (here, n labels the clus-
ter), is expanded in terms of the fugacity z, which is a
small parameter at large T but increases with decreas-
ing T [see Fig. 1(c)]. The expansion in terms of z is
equivalent to an expansion in terms of the “diluteness
parameter” ρλ3[8], where ρ is the density and λ the de
Broglie wavelength, which increases with decreasing T.
The nth virial coefficient bn is determined by the energy
spectrum of the nth cluster; naturally, the determination
of the virial coefficients becomes significantly more in-
volved as n increases. At low T (large z), where only the
lowest energy levels are filled [Fig. 1(a)], one needs the
lowest portion of the energy spectrum of many clusters.
At high T (small z), where more of the higher energy
levels are occupied [Fig. 1(b)], one needs a large por-
tion of the energy spectrum of just the smallest clusters.
A natural question is thus how many clusters, and how
much of their energy spectrum, are needed to describe
the particularly interesting regime in the vicinity of the
temperature where the Fermi gas becomes degenerate.

Liu and co-workers found that it is sufficient to treat
the two-body and the three-body problem [3, 4], that
is, the second and third terms in the virial expansion.
To elucidate how to calculate the energy spectra of the
two-body and three-body systems, let us return to the
de Broglie wavelength. The de Broglie wavelength not
only determines the degeneracy temperature of Bose
and Fermi gases, but also sets a “resolution limit” when
two atoms collide. Much like in a light microscope, two
colliding atoms can only probe those features of the un-
derlying interaction potential that are of the order of, or
larger than, the de Broglie wavelength. This is a key
ingredient to Liu and co-workers’ successful treatment.
In the temperature regime of interest, “head-on” s-wave
collisions between spin-up and spin-down atoms domi-
nate and higher partial wave contributions are strongly
suppressed [10]. Motivated by the microscope resolu-
tion analogy, these s-wave collisions can be treated by
replacing the true atom-atom interaction potential by
a simple short-range boundary condition on the wave
function, which encapsulates the “net effect” of the true
atom-atom potential. This replacement is designed to
leave the low-energy atom-atom phase shift, which de-
termines many observables of trapped cold atom gases,
unchanged. However, it eliminates all the unwanted
high-energy physics, thereby tremendously simplifying
the theoretical treatment of the problem. Interestingly,
these ideas go back to Fermi’s groundbreaking 1934 pa-
per on the scattering between slow neutrons and bound
hydrogen atoms [11].

Replacing the true atom-atom interactions by prop-
erly chosen boundary conditions, the quantum mechan-
ical two-particle and three-particle systems become sol-
uble. As has been shown in Busch et al.’s seminal
work [12], the determination of the two-particle en-
ergy spectrum reduces to finding the roots of a sim-
ple transcendental equation. The determination of the
three-body energy spectrum is more involved and sev-
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eral approaches exist. Among these, the approach put
forward by Kestner and Duan [13], and subsequently
refined by Liu and co-workers [3, 4], is particularly
appealing since it allows for an efficient and accu-
rate determination of essentially the entire energy spec-
trum for any interaction strength. Equipped with the
two-body and the three-body energy levels, Liu and
co-workers calculated the virial coefficients b2 and b3,
and determined—using the thermodynamic potential
Ω—observables such as the entropy for large samples
of trapped two-component Fermi gases as a function of
the temperature.

Building upon the results by Liu and co-workers, Sa-
lomon’s group extracted the fourth-order virial coeffi-
cient from experimental data [7]. This analysis con-
firmed that much of the thermodynamics is determined
by the second and third virial coefficients, at least down
to temperatures around the degeneracy temperature.

The work by Liu and co-workers beautifully demon-
strates how accurate solutions of the few-body problem
also provide a great deal of insight into the many-body
problem. The work has already had a profound im-
pact on determining the equation of state of s-wave in-
teracting Fermi gases in three dimensions. Moreover,
the framework has been extended to predict thermo-
dynamic properties of strictly two-dimensional Fermi
gases [5], which can be realized experimentally with
present-day technology. It would be interesting to ex-
tend the treatment of Liu and co-workers to systems that
live in mixed dimensions [15], where, say, the spin-up
atoms move in three spatial dimensions and the spin-
down atoms move in two spatial dimensions. In such a
system, the spin-up atoms move freely in the third spa-
tial dimension and interact with the spin-down atoms
only when they pass through the plane in which the

spin-down atoms live. Finally, another open challenge
is the finite-temperature treatment of two-component
Fermi gases with unequal masses. For these problems,
as well as others, Liu et al.’s calculations should provide
a solid jumping off point.
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