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Although theoretical approaches to modeling “strange metals,” such as the cuprate superconductors, originate
from apparently different sources, research now suggests they flow toward a single universal model.
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The metals that we understand are governed by Lan-
dau’s Fermi-liquid theory. This theory is built on the
remarkably successful guess that the low-energy de-
grees of freedom of a metal are like electrons, in that
they are long-lived fermionic particles carrying electric
charge, but they are “dressed” to account for the in-
teractions between them. This guess successfully de-
scribes fermionic helium (He-3), and most metals stud-
ied before the 1980s. However, Fermi-liquid theory fails
rather spectacularly for many materials, which are so
poorly understood that they are called “non-Fermi liq-
uids” (NFL) or “strange metals,” for lack of a better
name. (The most notorious examples of strange metals
arise from the high-temperature cuprate superconduc-
tors.)

The feature that can make metals interest-
ing—numerous low-energy degrees of freedom and
hence the possibility of novel dynamics near the ground
state—is exactly what makes them difficult to under-
stand. Unlike insulators, which have no zero-energy
modes, or a semimetal like graphene that only has
gapless modes at points in momentum space, a metal
has a whole surface (the Fermi surface) in momentum
space of low-energy excitations. Complicating matters
still more, the straightforward application of numerical
methods is thwarted by the “fermion sign problem,”
the fact that simulating a system of fermions requires
keeping track of the delicate cancellation of many
positive and negative contributions.

In a paper appearing in Physical Review Letters, Subir
Sachdev [1] of Harvard University in the US draws to-
gether two diverse approaches to a theoretical descrip-
tion of strange metals that, while still imperfect, capture
the essential behavior of these states of matter. In both
approaches, the system under study is different micro-
scopically from real materials that exhibit non-Fermi-
liquid behavior: One is based on a model that is familiar

in condensed matter physics, while the other uses what
is called the AdS/CFT correspondence, which is a by
now well-established duality between a theory of grav-
ity and a gauge theory. The value of Sachdev’s work is
therefore to identify effective descriptions of non-Fermi-
liquid states. In another sense, his paper also represents
an ongoing effort to adapt the tools of string theory (the
AdS/CFT correspondence) to the study of many-body
systems in condensed matter.

There are two key properties of a strange metal. First,
the single-particle lifetime is short. This quantity can
be measured by angle-resolved photoemission spec-
troscopy (ARPES). When photoemission data is avail-
able, it shows a sharp Fermi surface (in momentum
space), but the degrees of freedom there are not long-
lived quasiparticles. Second, compared to a Fermi liq-
uid, a strange metal has a large electrical resistivity ρ
at low temperatures T. For example, whereas a clean
Fermi liquid has a resistivity that scales as T2, the re-
sistivity of the strange metal phase of the cuprates is lin-
ear in temperature. Many other materials exhibit similar
scaling, ρ ∼ Tα with α >∼ 1[2]. Although electron in-
teractions with lattice vibrations can explain the linear-
T scaling at high temperature, this explanation doesn’t
hold at low temperatures.

There are theoretical models of Fermi surfaces with-
out long-lived quasiparticles. One possibility that has
received some attention is to assume the existence of a
critical bosonic mode whose fluctuations literally kill the
quasiparticles (for a recent discussion, see, for example,
Ref. [3]). However, the resulting states in this model
are not strange metals in the sense of transport, since
the process by which the quasiparticle decays does not
change the electric current very much. The interaction
with the boson is not efficient at dissipating the momen-
tum of the charge carriers [4] and as a result, the elec-
trical resistivity predicted by this model continues to be
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FIG. 1: Three distinct microscopic models flow toward a sin-
gle, universal model that could describe the properties of
strange metals. (Credit: Alan Stonebraker)

weaker at low temperatures than in a strange metal and
goes like Tα with some α > 1.

The purpose of Sachdev’s work is to draw parallels
between two apparently different models of non-Fermi
liquids that do give such efficient current dissipation
(Fig. 1). One is a “lattice Anderson model” and builds
on work by Sachdev with Jinwu Ye (now at Pennsyl-
vania State University) [5]. This model assumes that
conduction electrons interact with another band of elec-
trons, regarded as atomic d orbitals, that have a ran-
dom probability of being able to hop to a neighboring
site. In a certain limit (of large electron spin and large
number of dimensions), a self-consistent low-energy ef-
fective description of the d-orbital spin degrees of free-
dom gives a model of non-Fermi-liquid behavior that
captures the above properties.

The other approach, based on the AdS/CFT corre-
spondence, has a much less obvious connection with
any real material. Some relativistic gauge theories with
a gauge group of large rank N can be solved in terms
of a classical theory of gravity living in one extra di-
mension [6]. (This difference in dimensions is the ori-
gin of the word “holographic” that describes the duality
between these two theories.) The description in terms
of gravity is valid when the gauge theory in question
is strongly coupled and therefore hard to study other-
wise. Including only the minimal ingredients needed to
ask about the spectrum of a fermionic operator (as mea-
sured in a photoemission experiment), one can use the
gravity description to show that the gauge theories have
non-Fermi-liquid fixed points [7–11], with the resistivity
determined by the single-particle lifetime [12], as in phe-
nomenological models of the cuprates.

Both of these approaches to non-Fermi-liquid physics
share a key ingredient: they contain degrees of freedom
with the right energy spectrum to kill the quasiparticles
and make a contribution to the electrical resistivity that
is large at low temperature. Specifically, these degrees
of freedom live not just at zero momentum, but are also
easily excited at nonzero momentum. In fact, in the lan-

guage of renormalization group theory, both descrip-
tions “flow” toward an infrared (IR) fixed point quan-
tum field theory with scaling symmetry in time but not
in space: t → λt, x → λ1/zx with dynamical exponent
z → ∞. (Specifically, at the IR fixed-point, the single-
fermion spectrum and the resistivity are controlled by
the dimension of a certain operator.) Sachdev argues
that the d-orbital electrons in the lattice model are de-
scribed at low energies by the IR fixed point he studied
previously with Ye, where “local criticality” arises out of
making the large-dimension approximation. Such scal-
ing is ubiquitous in the condensed matter theory litera-
ture; it is an ingredient of the popular “dynamical mean
field theory” (DMFT) technique. The approach from ex-
tra dimensions can also be described as a Fermi surface
interacting with locally critical degrees of freedom [10–
12]. The infinite-z behavior of this IR fixed point is an
output of the holographic duality under certain assump-
tions, which we discuss next.

One consequence of the infinite dynamical exponent
in both approaches is a macroscopic ground-state de-
generacy—a violation of the third law of thermodynam-
ics. In practice, the third law is enforced because any
small perturbation will lift the ground-state degener-
acy. As a result, both approaches should be considered
models of physics at energy scales intermediate between
the lattice scale and the temperature below which one
reaches the true ground state. The Fermi-liquid the-
ory itself is such a theory (though the Fermi-liquid the-
ory is remarkable in that BCS superconductivity sets in
only at temperatures exponentially small compared to
the Fermi energy). Of course, we know one example of
a strange metal phase that develops an instability as the
system is cooled: high-temperature superconductors. It
is possible to describe superconductivity from the holo-
graphic point of view (for a review, see Ref. [13]) and the
resulting spectrum of fermions has been studied, start-
ing with [14–16]. The analogous study is likely being
done for the Sachdev-Ye phase as I write this article.

One of the most interesting outcomes of the unifica-
tion advocated by Sachdev is that in both approaches,
one finds a “landscape” of values of the critical exponent
that controls the single-particle lifetime. In the Sachdev
and Ye approach, one value of the exponent is selected
by the simplest self-consistency condition, but other val-
ues are possible [17]; in the holographic approach, there
is no such indication of a preferred value. This usage
of the word “landscape,” a term that comes from the
study of glasses, is now something of a bugbear in string
theory. It is emblematic of the oft-lamented difficulties
in using string theory to make predictions for particle
physics because of the huge multiplicity of string vacua.
There is a consolation though. Many of these ground
states are holographically dual to quantum field theo-
ries that can describe a class of many-body systems at
low energy—the landscape of string vacua mirrors the
landscape of possible many-body phenomena.

At present, we are far from having a precise match
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between a specific model that describes the behavior of
strange metals and a real material. Rather, this is a broad
opportunity to make contact between string theory and
experiment. But for the study of strange metals, the ex-
isting models of the intermediate-scale fixed point sug-
gest that many values of the fermion critical exponent
should be possible. Revisiting the data in various non-
Fermi-liquid materials with this in mind may be reward-
ing.

Sachdev’s paper describes a dramatic manifestation
of universality—the same class of fixed points is reached
from completely different microscopic models, each of
which differs from the materials that are observed to
exhibit the physics of interest (Fig. 1). This is en-
couraging for those of us hoping to apply string theory
to condensed matter physics—this new perspective on
the thus-far mysterious results from holographic dual-
ity brings them closer to models of electrons in solids.
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Correction (14 October 2010): Paragraph 8, sentence 5,
“large-d approximation” changed to “large-dimension
approximation” to avoid potential confusion with the d
that refers to the type of orbitals in the lattice model.
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