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Folds on the surface of soft materials are shown to be a consequence of a nonlinear instability.
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Even as we probe physics on ever-smaller scales, ma-
terials that can be held and manipulated with our hands
often still resist our understanding. Elastic materials,
in particular, still confound because of the nonlinear re-
lationship between strain and the displacement of the
material needed to maintain the rotational invariance
of the elastic energy. The effects of these nonlineari-
ties are often more pronounced at free surfaces, where
strain can be alleviated by a large rotation of the sur-
face. When a slab of an elastic material such as rubber
is compressed, it develops a sulcus—a sharp furrow in
its surface that plunges into the material. First reported
for photographic gelatin films over one hundred years
ago, they are not just a laboratory curiosity. Sulci cre-
ate large strains that can lead to material failure. They
are also a common motif in the morphogenesis of many
organs, most famously in the characteristic folds on the
surface of the human brain or, say, the arm of an infant
[see Fig. 1(a) and (b)]. Though a mechanism for the for-
mation of a sulcus was proposed almost fifty years ago
[1], a complete understanding has remained elusive [2–
6]. Now, in a paper appearing in Physical Review Letters,
Evan Hohlfeld from Harvard University and Lawrence
Berkeley National Laboratory and L. Mahadevan from
Harvard University have proposed that the formation of
a sulcus is controlled by a new type of instability dom-
inated by nonlinearities in the elastic energy [7]. Their
case is bolstered both by detailed numerics and by ex-
periments. Moreover, they suggest that similar nonlin-
ear instabilities may be lurking behind the formation of
many other singular structures found in materials.

In the calculation of Biot, a free surface of a com-
pressed elastic material becomes unstable at a critical
strain of 45.6% [1]. Indeed, experiments show that a
compressed slab forms sharp furrows above some crit-
ical strain. Rather than develop as an instability, how-
ever, the sulci in experiments nucleate and grow later-
ally as fully formed furrows. Moreover, this often oc-
curs at a lower strain of 35% [2–4], noticeably smaller

FIG. 1: Localized folds, called sulci, induced on soft materials
due to compressive stresses are ubiquitous in nature: (a) the
arm of an infant, (b) a primate brain. (c) Schematic illustra-
tion of a bifurcation diagram showing the scaled height h of a
sulcus plotted against the applied strain. A sulcus nucleates
at a critical strain εc due to a spontaneous breaking of scale
symmetry. (Credit: (a),(b) E. Hohlfield and L. Mahadevan [7])

than the location of the Biot instability. The observed
behavior suggests that an energy barrier exists between
a material with a smooth surface and one with a sharp
furrow, leading to a first-order transition to a sulcus of
finite depth.

Hohlfeld and Mahadevan have performed both nu-
merical simulations and experiments to better under-
stand how sulci develop [7, 8]. In their simulations, they
consider an incompressible elastic material with a free
surface. Since the formation of a sulcus involves length
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scales shorter than the scale of the elastic elements in
their simulation, they introduce a cutoff length scale by
using a thin crust on the surface that penalizes curva-
ture. They then use a numerical limiting process to de-
crease the stiffness of the crust to zero. As the crust van-
ishes, they find a new critical point occurring at a lower
critical strain, 35.4%, very close to what is observed in
experiments [see Fig. 1(c)]. A sulcus then unfolds con-
tinuously upon unloading. It is this unusual behavior of
the nonlinear critical point that distinguishes the forma-
tion of a sulcus from a first-order transition.

Why does Biot’s calculation fail? At its most basic
level, the failure is in the approximation of linear elas-
ticity. This occurs because the elastic energy, in the ab-
sence of a crust, is scale-free and, as the numerical so-
lutions demonstrate, sulci of different depths are self-
similar. Consequently, the stress balance in the material
remains unaltered, no matter the sulcus height. Non-
linearities, important for large deformations, must also
be important even for the most shallow sulci. The in-
troduction of a crust or some other surface energy, by
introducing a length scale, results in the energy barrier
between smooth surfaces and sulci often seen in experi-
ments [6].

The calculation of Hohlfeld and Mahadevan also ex-
plains the inconsistent experimental results. At the non-
linear critical point, where sulci of any depth are de-
generate, the formation of a sulcus requires the spon-
taneous breaking of scale symmetry. Subsequently, the
ultimate scale of a sulcus is very sensitive to either the
finite depth of a slab or the scale-setting imperfections
of any real material. Hohlfeld and Mahadevan also per-
formed experiments to bolster their calculations, finding
good agreement between their numerical calculations
with essentially no fitting parameters. A later numerical
calculation of creasing in an inextensible gel also finds a
critical point for forming a sulcus at a strain of 35% [9].
Rather than imposing a length scale through a crust, the

symmetry is explicitly broken in the numerics by choos-
ing boundary conditions that force a sulcus to form. The
nonlinear instability occurs when the energy of forming
a sulcus becomes degenerate with that of a smooth sur-
face.

This result can be viewed in the context of another
nonlinear instability. An elastic film floating on a fluid
also exhibits a linear wrinkling instability with a charac-
teristic wavelength upon compression. Above a critical
strain, however, the wrinkled state gives way to a large
fold [10]. Diamant and Witten have argued that, here
too, nonlinear corrections can preempt the linear wrin-
kling instability in infinite systems [11].

The analysis of the formation of a sulcus suggests that
similar nonlinear instabilities may occur in any scale-
free system with free boundaries that form singular-
itylike structures. The formation of cavities, bubbles,
and cracks not only share these features, but their nu-
cleation is notoriously sensitive to experimental details.
The work of Hohlfeld and Mahadevan may provide a
framework to organize and perhaps, ultimately, control
the formation of singular structures in materials.
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