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Thermodynamic arguments and a one-dimensional model help explain why the grain boundaries in
an annealed polycrystalline material have an unexpectedly simple statistical distribution.
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Watching the bubbles in the head of a freshly poured
beer, one sees the smaller ones disappear, and the av-
erage bubble size increase over time. Similar coarsening
processes occur in many areas—the coalescence of stars
into galaxies is another example. A typical feature of
coarsening is that the system “forgets” its initial state,
developing a statistical steady state at large times.

For most coarsening systems, we do not understand
how or why the evolution produces a statistical steady
state. In a paper appearing in Physical Review B,
Katayun Barmak at Carnegie Mellon University and
colleagues present theoretical arguments to explain the
statistics of grain boundaries in a polycrystalline mate-
rial after the occurrence of coarsening due to annealing
[1]. Recent experimental [2] and numerical [3] work in-
volving some of the same authors has shown that coars-
ening drives the statistics of grain boundaries to a Boltz-
mann distribution. The work of Barmak et al. offers
an explanation for this behavior based on the presence of
occasional irreversible changes to the grain boundary net-
work. Their argument seems rather general and should
also be relevant to other systems. From a technologi-
cal standpoint, understanding coarsening in materials is
important, since the physical properties of a material de-
pend on its microstructure.

Herring and Mullins studied the local dynamics of
grain boundaries (the boundaries between differently ori-
ented crystallites of a polycrystal) over 50 years ago.
Their model, sometimes known as “curvature driven
growth,” amounts to steepest descent for the total sur-
face energy, in much the same sense that a particle with
velocity ẋ = −∇V (x) moves by steepest descent for the
potential V . To fully specify this model, one must choose
the form of the surface energy. A convenient simplifica-
tion, believed to be adequate for many polycrystals, is
that the surface energy density of a grain boundary de-
pends only on the degree of misorientation compared to

FIG. 1: The cellular network produced by annealing of a
two-dimensional polycrystal. The grain boundaries consist of
curves meeting at triple points. Occasionally two triple points
merge, eliminating the curve between them (this has just hap-
pened at location A, where four curves meet at a point). If
three or more triple points merge simultaneously, an entire
grain can disappear. This event might happen soon at lo-
cation B, where a grain is very small. Such singular events
change the network irreversibly. (Credit: Adapted from [1])

its neighbor, vanishing in the limit of zero misorienta-
tion (when there is no grain boundary). Figure 1 shows
a two-dimensional picture of the cellular network formed
from such grain boundaries.

There is a large literature concerning the statistics of
the polycrystals produced by the coarsening process. A
recent, very attractive suggestion is that one should focus
on the grain boundary character distribution (GBCD),
defined as the probability that a grain boundary element
has a given misorientation [2]. If this probability has
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density ρ, then the total surface energy at time t is

E[ρ] =

∫
ψ(α)ρ(α, t) dα, (1)

where ψ is the surface energy density as a function of mis-
orientation, measured by angle α. Experiments suggest
[2], and two-dimensional simulations confirm [3], that the
GBCD produced by curvature driven growth follows a
Boltzmann distribution:

lim
t→∞

ρ(α, t) = 1
Zλ

e−
ψ(α)
λ . (2)

Here λ is a parameter, playing the role of Boltzmann’s
constant times temperature, and Zλ =

∫
e−ψ(α)/λdα

is a normalization constant. Thus, when viewed from
the perspective of the GBCD, the statistics of the grain
boundaries has a steady-state character in the asymp-
totic limit.

In their new work, Barmak et al. address the mecha-
nism behind this striking observation [1]. In their view,
there are two essential features of the coarsening process.
First, the system evolves by steepest descent of the sur-
face energy. Second, there are singular times at which the
network of grain boundaries changes irreversibly. Elabo-
rating on the latter in the two-dimensional setting of Fig.
1: at most times the evolution is smooth, but once in a
while a pair of neighboring triple points collides and the
grain boundary that joins them disappears forever.

Barmak et al. suggest, by analogy with thermodynam-
ics, that the system should evolve to minimize the free
energy Fλ, obtained by adding a multiple of “entropy” to
the free energy:

Fλ[ρ] = E[ρ] + λ

∫
ρ(α)log ρ(α) dα, (3)

where λ > 0 is a parameter analogous to temperature.
Minimization of Eq. (3) subject to

∫
ρ(α) dα = 1 does in-

deed give the Boltzmann distribution. The entropy term
is intended to capture the essential consequence of irre-
versibility.

The idea is attractive, but is it right? Barmak et al.
address this by examining a much simpler model that
still has the two essential features outlined above. In the
simpler model “triple points” are represented by points
on the real line, and “grain boundaries” by the intervals
between the points. Each grain boundary is assigned
an initial misorientation. The points move by steepest

descent for the total surface energy (a system of ordi-
nary differential equations). When two points collide,
the segment between them disappears irreversibly. The
associated GBCD ρ(α, t) gives the fraction of the sys-
tem with misorientation α. The simplicity of the model
makes simulation easy, and the numerical GBCD (ob-
served when about 80% of the intervals have disappeared,
so that coarsening is mature but finite-size effects are
negligible) is again a Boltzmann distribution.
Barmak et al. also offer an evolution equation for the

probability density, ρ. Noting that ρ approaches the min-
imum of the free energy Fλ among probability measures,
they suggest that it should evolve by steepest descent for
Fλ. There is a well-developed theory for what this means
[4]. When the dust clears, the suggested evolution of the
density obeys an equation with a simple physical inter-
pretation involving a random walk in orientation space.
Of course, this evolution has the Boltzmann distribution
as its steady state.
Where does this leave us? The proposal of Barmak et

al.—that the GBCD evolves by steepest descent for Fλ,
eventually becoming a Boltzmann distribution because it
minimizes Fλ—amounts to a sort of Landau theory, with
the GBCD as its order parameter. The proposal’s suc-
cess is impressive, both in the context of two-dimensional
network simulations and in the context of the simpler
one-dimensional model. It remains to be tested for three-
dimensional polycrystals, or for grain boundary energies
with anisotropy. But the key questions are more funda-
mental: for which coarsening systems can this method
be used, and can it be given a first-principles justifica-
tion? These questions are important new challenges to
statistical physics.
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