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Dynamical heterogeneity, spatiotemporal fluctuations in local dynamical behavior, may explain the
statistical mechanics of amorphous solids that are mechanically rigid but have a disordered structure
similar to that of a dense liquid.
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From the point of view of statistical physics, glasses
are mysterious materials. Glassy materials possess a me-
chanical rigidity, which is similar to that of a crystalline
material. In a crystal, rigidity is a direct consequence of
long-range periodic order: It is not possible to move a
single particle in a perfect crystal (while preserving the
crystalline order) without also moving an extensive set of
neighbors [Fig. 1(a)]. While mechanically rigid—glasses
do not seem to be characterized by any type of long-
range order, see Fig. 1(b)—they resemble ordinary dense
liquids. The comparison between crystals and glasses
suggests that perhaps a more subtle symmetry breaking
takes place during the formation of a glass, one that is
not obvious to the naked eye. This conundrum has been
a long-standing issue in condensed-matter physics [1, 2].

Experimentally, one faces the difficulty that liquids ap-
proaching the glass transition (with decreasing tempera-
ture, for example) become too viscous to flow on exper-
imental timescales, and fall out of thermal equilibrium
without any reproducible thermodynamic phase transi-
tion. It is tempting to interpret this dramatic dynamic
slowing down as originating from an underlying phase
transition or critical point. Near an ordinary critical
point, large-scale spatial fluctuations develop, such as the
density fluctuations in the example shown in Fig. 1(c),

FIG. 1: (a) A periodic crystalline structure does not flow
because preserving the crystalline order requires moving an
extensive set of particles. (b) A mechanically rigid glassy
structure exhibits neither the long-range order of a crystal nor
the large-scale density fluctuations observed at an ordinary
critical point. (c) Large-scale critical density fluctuations near
the critical point.

and the dynamics slows down [3]. However, no such fluc-
tuations are detected near the glass transition [Fig. 1(b)].
Therefore, finding evidence of a phase transition under-
lying the physics of amorphous materials would represent
important progress.
In the last decade, these questions have also come

up in the field of soft condensed matter, in which dis-
ordered structures known as “jammed” materials [4]
(foams, emulsions, colloidal gels, sandpiles) stop flow-
ing when their density becomes large, without possessing
long-range crystalline order, just like molecular glasses.
J. D. Bernal [5] in the 1960s was one of the first physi-
cists to suggest that disordered atomic fluids and gran-
ular packings could be investigated using similar tools
and perhaps understood using similar theoretical con-
cepts—an idea that has since remained highly popular
[6].
Two decades of research on dynamic heterogeneity (de-

scribed in the next section) in amorphous materials have
established that the formation of rigid amorphous struc-
tures is indeed accompanied by nontrivial spatiotempo-
ral fluctuations, which become stronger nearer the glassy
phase and are characterized by growing dynamic cor-
relation length scales [7]. In this article we revisit the
mounting evidence—using mostly the example of super-
cooled liquids, where dynamic heterogeneity has been
most widely analyzed—that the formation of amorphous
materials is a complex collective phenomenon, which
shares more similarities with ordinary critical points than
the featureless structure shown in Fig. 1(b) would sug-
gest.

What is dynamic heterogeneity?

The concept of dynamic heterogeneity as a key fea-
ture that characterizes disordered materials has slowly
emerged from experimental studies of highly viscous
molecular liquids approaching the glass transition. In
these systems, relaxation spectra measured through me-
chanical or dielectric probes span a very broad range of
relaxation times and are strongly nonexponential. This
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FIG. 2: Time-resolved squared displacements of individual
particles in a simple model of a glass-forming liquid. The
average behavior is shown as the smooth full line. Individual
trajectories are composed of long periods of time during which
particles vibrate around well-defined positions, separated by
rapid jumps that are widely distributed in time and occur at
different times and frequencies for different particles.

suggests the existence of wide distributions of relaxation
rates.

What is the microscopic origin of these broad distri-
butions? Looking again at the disordered structure in
Fig. 1(b), it is natural to imagine that the presence of
structural disorder implies that atoms in different envi-
ronments move differently. The physical picture is that,
at any given time, different regions in a liquid might relax
in a different manner and at a different rate, thus pro-
ducing broad distributions of relaxation times. However,
when the system is close to the glass transition but not
yet a glass, particles constantly move and rearrange, and
so the distinction between different spatial environments
can only hold over a finite duration.

Dynamic heterogeneity refers to the existence of tran-
sient spatial fluctuations in the local dynamical behavior.
Dynamic heterogeneity is observed in virtually all disor-
dered systems with glassy dynamics [7].

Direct confirmation of the heterogeneous character of
the dynamics stems, for instance, from computer simu-
lations of simple models of supercooled liquids (Fig. 2).
Whereas the average displacement of a particle in a given
time window of width t is a smooth increasing function of
t, the time signals for individual particles shown in Fig.
2 have two important characteristics.

(i) They are highly intermittent, composed of a suc-
cession of long periods of time where particles vibrate
around well-defined locations that are separated by rapid
“jumps.” The waiting times separating successive jumps
are statistically broadly distributed.

(ii) The trajectories differ widely from one particle to
another in the same system at the same time. Some
particles undergo many jumps and move large distances
while others are nearly immobile over the entire time
window.

As with all other features related to dynamic het-
erogeneity, such observations cannot be made from
ensemble-averaged measurements. Indeed, the charac-

terization of dynamic heterogeneity requires the develop-
ment of experimental techniques that are not only sensi-
tive to average or typical behavior, but can also resolve
the fluctuations [7, 8]. For theorists, the existence of dy-
namic heterogeneity implies that fluctuations need to be
taken into account in the description of transport proper-
ties. Therefore, materials close to a glass transition differ
qualitatively from ordinary fluids, where fluctuations can
typically be neglected.
The intermittency of single-particle trajectories, while

clearly indicating spatiotemporal fluctuations, does not
tell us how these fluctuations are correlated in space.
This point was first addressed in pioneering works with
four-dimensional NMR [9] and direct probing of fluctu-
ations at the nanoscopic scale using atomic force mi-
croscopy techniques in polymeric glasses [10]. Direct
visualizations of molecular trajectories are not yet pos-
sible, but recent, very elegant experimental approaches
using single-molecule spectroscopy are getting close to it
[11, 12]. Direct visualization is possible for different types
of glasses, such as colloidal [13] and granular [14, 15] as-
semblies. All these spatially resolved measurements in-
dicate that extended regions of space transiently behave
as fast and slow regions.

Need for high-order dynamic cor-
relation functions

We have described dynamic heterogeneity as spatial
variations in the local relaxation rate. Though hard to
detect in an experiment, these fluctuations are observed
in a computer simulation, where the position of each par-
ticle is known at each time step. In Fig. 3, we show an
example of the visualization of spatially heterogeneous
dynamics in a simple model of a supercooled liquid in
two spatial dimensions. This visualization shows the ex-
istence of spatially extended “domains” where the am-
plitudes of single-particle displacements are correlated.
These domains have no obvious counterpart in the den-
sity fluctuations [Fig. 1(b)] and only appear when dy-
namics is considered. However, the spatial fluctuations in
Fig. 3 are reminiscent of the critical fluctuations in Fig.
1(c), with one major difference: while a thermodynamic
quantity (the density) becomes critical in ordinary crit-
ical phenomena, fluctuations are only detected through
dynamical quantities in highly viscous liquids.
To characterize the spatial fluctuations in Fig. 3 in

a statistical manner, one must resolve the dynamics
in both space and time and quantify deviations from
the average behavior. To this end, one defines a “mo-
bility,” ci(t, 0), which quantifies how much particle i
moves between times t = 0 and t (for instance ci(t) =
exp[−|ri(t)− ri(0)|2/d2], with d of the order of the par-
ticle size). Given two particles at separation r, one can
measure the degree to which their mobilities are corre-
lated. It is convenient to define a “mobility field” for a
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FIG. 3: Spatial map of single particle displacements in the
simulation of a Lennard-Jones model of a supercooled liquid in
two spartial dimensions. Arrows represent the displacement of
each individual particle in a trajectory of duration comparable
to the typical structural relaxation time. This map reveals
that particles with different mobilities are spatially correlated.

system composed of N particles via

c(r; t, 0) =
N∑
i=1

ci(t, 0)δ[r− ri(0)], (1)

where ri(t) is the position of particle i at time t. The
spatial correlations of the mobility are finally captured
by the correlation function

G4(r; t) = 〈c(r; t, 0)c(0; t, 0)〉 − 〈c(r; t, 0)〉2, (2)

which depends only on the time t and the distance r = |r|
as long as the ensemble average, denoted with brackets, is
taken at equilibrium in a translationally invariant system;
G4(r; t) is known as a “four-point” dynamic correlation
function as it measures correlations of motion between 0
and t arising at two points, 0 and r.
The analogy with fluctuations in critical systems be-

comes clear in Eq. (2) if one considers the mobility field
c(r; t, 0) as playing the role of the order parameter for the
transition, characterized by nontrivial fluctuations and
correlations near the glass transition. This analogy is
now exploited in modern theoretical treatments [2].

The above definition of a real-space correlation func-
tion of the mobility represents a vital advance in the char-
acterization of dynamical heterogeneity. For instance,
it allows the language of field theory and critical phe-
nomena to be used in studying dynamical fluctuations
in glassy systems [16, 17]. Like in critical phenomena,
if one assumes the existence of a single dominant length
scale ξ4, then one expects that for large distances the
correlation function G4(r; t) decays as

G4(r; t) ≈ A(t)[exp(−r/ξ4(t))]/rp, (3)

where p is a critical exponent. It is also natural to define
the susceptibility associated with the correlation function

χ4(t) =

∫
ddrG4(r; t). (4)

If the prefactor A(t) in Eq. (3) is known, the suscepti-
bility χ4(t) can be used to infer the typical number of
particles involved in the correlated motion shown in Fig.
3. That is, χ4(t) may be interpreted as the “volume” of
the correlated clusters.
Further, χ4(t) can also be obtained from the fluc-

tuations of the total mobility C(t, 0) =
∫
ddrc(r; t, 0),

through

χ4(t) = N [〈C(t, 0)2〉 − 〈C(t, 0)〉2]. (5)

In practice, this formula permits an efficient measure of
the degree of dynamical heterogeneity, at least in com-
puter simulations and in those experiments where the
dynamics can be spatially and temporally resolved. As
long as c(r; t, 0) appropriately quantifies atomic motion,
χ4(t) can be measured in a variety of systems, serving
as a basis for comparing the extent of dynamical hetero-
geneity, and has become a central tool in characterizing
dynamic heterogeneity in amorphous materials [7].

Four-point susceptibilities in
molecular, colloidal, and granular
glasses

The dynamical function χ4(t) has now been measured
in computer simulations of many different glass-forming
liquids, by molecular dynamics, Brownian, and Monte
Carlo simulations [18–23]. An example is shown in Fig.
4 for a Lennard-Jones numerical model, but the quali-
tative behavior is similar in all cases [24–26]: as a func-
tion of time, χ4(t) increases at first, it has a peak on
a timescale of the order of the typical relaxation time
of the fluid, and then it decreases at large times. This
time dependence simply reflects the transient nature of
the dynamical heterogeneity.
The peak value of χ4(t) approximately measures the

volume over which structural relaxation processes are
correlated. Therefore the most important result obtained
from data such as those presented in Fig. 4 is the tem-
perature evolution of the peak height, which is found to
increase when the temperature decreases and the global
dynamics slows down. Such data provide evidence that
the approach to the glass transition is accompanied by
increasingly long-ranged spatial correlations of the dy-
namics.
In experiments, direct measurements of χ4(t) have

been made in colloidal [27] and granular materials [14, 15]
close to the colloidal and granular glass transitions, and
also in foams [28] and gels [29], because dynamics is more
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FIG. 4: Time dependence of the susceptibility χ4(t) that
quantifies spontaneous fluctuations of the relaxation function
in a molecular dynamics simulation of a supercooled liquid.
For each temperature, χ4(t) has a maximum, which shifts to
larger times and has a larger value when T is decreased, re-
vealing the increasing length scale of dynamic heterogeneity
in supercooled liquids that approach the glass transition.

easily spatially and temporally resolved in those cases.
The results obtained in all these cases are again broadly
similar to those shown in Fig. 4, both for the time de-
pendence of χ4(t) and its evolution with a change of the
relevant variable controlling the dynamics.

Obtaining information on the behavior of χ4(t) and
G4(r; t) from experiments on molecular systems is diffi-
cult, because it is hard to disentangle the spontaneous
fluctuations embodied in χ4(t) in Eq. (5) from the
experimental noise. Such measurements are, however,
crucial because numerical simulations and experiments
on colloidal and granular systems can typically only be
performed for relaxation times spanning at most 5–6
decades. On the other hand, in molecular liquids, up to
14 decades are, in principle, relevant, and extrapolation
of simulation data all the way to the experimental glass
transition is fraught with difficulty. Indirect estimates of
χ4(t) from experiments are discussed below.

Real-space measurements and dy-
namic structure factors

We mentioned above that a growing peak in χ4(t) “di-
rectly” reveals the growth of a dynamic correlation length
scale as the glass transition is approached. This can only
be true if the assumptions made in Eq. (3) for the scal-
ing form of G4(r; t) are correct. Dynamic length scales
should, in principle, be obtained by direct measurements
of a spatial correlation function.

However, in contrast to χ4(t), detailed measurements
of G4(r; t) are technically more challenging as dynamic
correlations must be resolved in space over a large range
of distances with a very high precision, and so there is
much less data to draw on. From the point of view of nu-
merical simulations where many measurements of χ4(t)

were reported, the main limitation to properly measur-
ing ξ4 is the system size. This might seem surprising, as
typical numbers extracted for the correlation length scale
ξ4 are rather modest, but a precise determination of ξ4
requires an accurate study of the tail of G4(r; t) at large
r, which entails considerable numerical effort [30, 31].
Such studies are important as they allow the dynami-

cal length scale ξ4(t) to be measured directly. Moreover,
such studies help infer the behavior of ξ4(t) from mea-
surements of χ4(t). Published work is consistent with
χ4(t)/G4(0, t) representing the number of particles in-
volved in heterogeneous relaxation. Therefore, truly “di-
rect” measurements indeed confirm that the increase of
the peak of χ4(t) corresponds, as expected, to a growing
dynamic length scale ξ4(t)[21, 23, 26, 30, 31].
Instead of direct inspection of G4(r; t), it is often con-

venient to analyze its Fourier transform,

S4(q; t) =
∫
ddr exp(i q · r)G4(r; t), (6)

which is known as the four-point structure factor of dy-
namic heterogeneity. In Fourier space, the large domains
observed in Fig. 3 affect the low wave vector behavior of
S4(q; t) in the form of a peak that grows when the glass
transition is approached. This peak is often fitted with
the Ornstein-Zernike functional form that is frequently
used in conventional critical phenomena [3].

Experimental estimates of multi-
point susceptibilities

Although readily accessible in numerical simulations,
the fluctuations that give access to χ4(t) are, in general,
very small and impossible to measure directly in experi-
ments, except when the range of the dynamic correlation
is macroscopic, as in granular materials [14] or in soft
glassy materials where it can reach the micrometer and
even millimeter range [28, 29, 32]. To access χ4(t) in
molecular liquids, one should perform time-resolved dy-
namic measurements that probe very small volumes, with
a linear size of the order of a few nanometers.
Fortunately, simpler alternative procedures exist. The

central idea underpinning these solutions is the realiza-
tion that if it is generally hard to detect noise in an ex-
periment, it is usually simpler to measure the response
of a system to an external perturbation. In the linear
response regime, both types of measurements can often
be related to one another by fluctuation-dissipation theo-
rems [3]. The physical motivation is that while four-point
correlations offer a direct probe of the dynamic hetero-
geneities, other multipoint correlation functions might
also give useful information about the microscopic mech-
anisms leading to these heterogeneities.
For example, one might expect that a local fluctuation

of the enthalpy δhx(t = 0) at position x and time t = 0
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triggers or eases the dynamics in its surroundings, lead-
ing to a systematic correlation between δhx(t = 0) and
c(x+ r; t, 0). A similar effect is expected for a local fluc-
tuation of the density. These physical intuitions suggest
the definition of a family of three-point correlation func-
tions that relate thermodynamic fluctuations at one point
to dynamical ones at another. Crucially, some of these
three-point correlations are both experimentally accessi-
ble and give bounds or approximations to the four-point
dynamic correlations [33].

Based on this insight, one may obtain a lower bound on
χ4(t) by using a fluctuation-dissipation relation, which is
valid at equilibrium when the energy is conserved by the
dynamics [33]:

χ4(t) ≥ [kBT
2/cP ]|χT (t)|2, (7)

where χT (t) quantifies the response of the average mobil-
ity to an infinitesimal change in the temperature T , and
cP is the specific heat per particle. The response χT (t)
can be experimentally accessed by measuring the average
of a dynamical correlator, 〈C(t, 0)〉T , at nearby temper-
atures, T and T + δT , in the linear regime δT � T :

χT (t) ≈ [〈C(t, 0)〉T+δT − 〈C(t, 0)〉T ]/δT . (8)

The main experimental advantage of Eq. (8) is that spa-
tiotemporal resolution is not needed, contrary to Eq. (5).

Detailed numerical simulations and theoretical argu-
ments [26] strongly suggest that the right-hand side of
Eq. (7) actually provides a good estimate of χ4(t) in
supercooled liquids, and not just a lower bound. Similar
estimates exist considering density instead of the tem-
perature in Eq. (8). These are useful when considering
colloidal or granular materials where the glass transition
is mostly controlled by the packing fraction. The quality
of the corresponding lower bound was tested experimen-
tally on granular packings close to the jamming transition
[34], and numerically for colloidal hard spheres [30, 35].

We show in Fig. 5 a compilation of data [36] for the
evolution of the peak height of χ4, in a representation
inspired by the theory of dynamic critical phenomena
[3]. These data represent an experimental confirmation
that dynamic fluctuations and correlation length scales
grow appreciably when molecular liquids approach the
glass transition. However, we also learn that typical
length scales do not become very large (remaining in the
nanometer scale for molecular glass formers) before liq-
uids vitrify in a nonergodic state, and that an “ideal”
glass critical point is not readily accessible to experi-
ments.

Theoretical developments

The above results are also relevant as many theories
of the glass transition have assumed or predicted that
the dynamics slows down because there are increasingly

FIG. 5: “Dynamic scaling” relation between the number of
dynamically correlated particles, evaluated by the peak height
of χ4, and relaxation timescale, τα, for a number of glass-
formers [36], determined using the bound provided by Eq. (7).
For all systems, dynamic correlations increase when the glass
transition is approached. The full line through the data [36]
suggests a crossover from algebraic, χ4 ∼ τzα, to logarithmic,
χ4 ∼ exp(τψα ), growth of dynamic correlations with increasing
τα.

large regions over which particles have to relax in a cor-
related manner [1]. However, in the absence of experi-
mental signs of growing length scales, these theoretical
constructions have remained speculative.
The measurements of the spatial extent of dynamic

heterogeneity, in particular χ4(t) and G4(r; t), seem to
provide the long-sought evidence that the glass transition
must be considered as a form of critical or collective phe-
nomenon involving growing timescales and length scales.
This is important for the field of glass transition, even
though a conclusive understanding of the relationship be-
tween dynamical length scales and relaxation timescales
remains the focus of intense research [2].
From a theoretical perspective, we are familiar with the

idea, borrowed from equilibrium critical phenomena [3],
that when correlation length scales get large, microscopic
features of the system become unimportant and “univer-
sal” behaviors emerge. Whether realistic glassy systems
have length scales that are large enough for such a univer-
sal description remains unclear. Although most theoret-
ical approaches are in this spirit, one should perform an
equally careful treatment of pre-asymptotic effects, which
obviously matter for experiments that are performed far
away from (putative) criticality. Therefore, theories of
the glass transition are still crude descriptions of reality,
despite large research efforts.
Distinct microscopic mechanisms have been proposed

that all give rise to growing dynamic correlations similar
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to the ones revealed by four-point functions. This rela-
tive abundance of approaches can be interpreted in two
ways. A first view is to consider dynamic heterogene-
ity as a unifying physical phenomenon that accompanies
the formation of glasses, and is central to its theoretical
understanding. The second, more pessimistic interpre-
tation is that if any reasonable theory predicts increas-
ingly spatially heterogeneous dynamics, then studying
dynamic heterogeneity might not help make substantial
theoretical progress. This argument is balanced by the
fact that the mere observation of dynamic heterogene-
ity has forced theorists to work hard on many fronts to
understand what sort of microscopic mechanism is able
(or not) to provide, for instance, new insights or quanti-
tative predictions for the behavior of multipoint correla-
tion functions, susceptibilities, and dynamic correlation
length scales [7].

Several theoretical schemes, such as mode-coupling
theory [37], random first-order transition theory [38], dy-
namic facilitation approach [39], and frustration-limited
domain scaling picture [40], have now been developed
to the point that they provide useful guides to under-
stand and analyze various aspects of dynamic hetero-
geneity (see Ref. [2] for a general theoretical review).
One hopes that these approaches contain useful seeds for
the construction of a “unified” theory of the glassy state.
In all of these approaches, dynamic heterogeneity and
spatiotemporal fluctuations feature as central concepts.

Perspectives

Although we mostly discussed supercooled liquids near
the molecular glass transition, other materials too have
played an important role in the development of the con-
cepts and tools described above. Several soft condensed
materials, such as colloidal assemblies, have been instru-
mental in our understanding of the phenomenon of dy-
namic heterogeneity because they are similar to molecu-
lar liquids but with constituents that are so much larger
than atoms (in the 50 nm–1 µm range) that they can be
more easily visualized [13, 27]. Driven granular media
(sheared or agitated systems) also undergo a “granular”
glass transition that is empirically similar to the molecu-
lar transition. In that case, grains can be directly tracked
using a standard camera [14, 15].

In the introduction we alluded to the rigidity transition
occurring in athermal disordered granular packings. This
“jamming” transition arises in an assembly of rigid par-
ticles when the system cannot be compressed anymore,
and is thus mainly a geometric transition where thermal
fluctuations play no role. For spherical particles of equal
sizes, this transition occurs near “random close packing”
ϕrcp ≈ 0.64 [5]. The jamming transition is relevant also
for athermal assemblies of soft particles, such as foams
and emulsions, which are additional examples of disor-
dered rigid materials [4]. Connections with the physics

of glasses are still rather speculative but are currently the
focus of an important research effort. Detailed studies of
dynamic heterogeneity in packings of soft and hard par-
ticles near random close packing started to appear only
recently [41–44], and could help elucidate similarities and
differences between glasses and granular materials.
One of the most frequently asked questions in studies

of dynamical heterogeneity is whether the observed dy-
namic fluctuations and correlations might have a struc-
tural origin: Is there, after all, a “hidden” thermody-
namic order parameter that would exhibit spatial fluc-
tuations comparable to the ones revealed by dynamic
heterogeneity studies? This question has attracted sus-
tained interest. For example, in very early numerical
work on dynamic heterogeneity, immobile regions were
discussed in connection with compositional fluctuations
in fluid mixtures [45]. However, dynamic heterogeneity
would not have emerged as an important concept if a
simple, direct connection between structural order and
relaxation dynamics had been satisfactorily established
in amorphous materials. In that case, research would be
dedicated to understanding the development of structural
correlations at low temperatures in supercooled liquids,
and to developing tools to measure, quantify, and analyze
such static features.
Having said that, recent research on isoconfigurational

ensembles [46], amorphous order [47], and point-to-set
correlations [48] suggests that the structure of disordered
materials might be the next topic where new discoveries
and concepts emerge. While two-point static correlations
are poorly correlated to the evolution of the glassy dy-
namics, there is plenty of room to invent more compli-
cated correlation functions that would more accurately
characterize the local structure of complex disordered
media and explain their fascinating physical properties.
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