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Researchers develop models that could exhibit a fractional quantum Hall effect in the absence of an
external magnetic field.
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The quantum Hall effect (QHE) is the remarkable ob-
servation of quantized transport in two dimensional elec-
tron gases placed in a transverse magnetic field: the lon-
gitudinal resistance vanishes while the Hall resistance is
quantized to a rational multiple of h/e2. The theory
of the QHE is built largely around the special proper-
ties of single-particle free-electron states in a magnetic
field—the celebrated Landau levels. This is particularly
true of the F(ractional)QHE, where the construction of
model wave functions with built-in analyticity forced by
a restriction to the lowest Landau level has played an
extremely important role in the theoretical development.
Now, in three papers published back-to-back in Physical
Review Letters[1–3], three research groups develop lattice
models lacking this Landau level structure whose realiza-
tions could, in principle, exhibit a FQHE in the absence
of an external magnetic field.

While the simplicity of the setting in which the QHE
was first discovered was extremely helpful in unraveling
its explanation, condensed matter physicists have period-
ically returned to the challenge of generalizing the reach
of the phenomenon itself. There are two specific ques-
tions that have focused their attention. First, in the stan-
dard electron gases exhibiting the QHE, the surrounding
solid has a fairly modest effect on their properties, which
can be captured by a change in the (effective) mass of

the electrons away from its value in free space. Does
the QHE survive when the solid affects electronic motion
more seriously and one needs to take the formation of
energy bands into account? Second, a uniform magnetic
field does two things: it breaks time reversal symmetry,
but it also affects electron dynamics at long wavelengths
in a specific fashion, as captured in the formation of Lan-
dau levels. Are both essential for the QHE?

The answer to both questions is known for the
I(nteger)QHE, which is mostly a single-particle phe-
nomenon. In a landmark paper in 1982, Thouless,
Kohmoto, Nightingale, and den Nijs [4] analyzed the
uniform-field Hall effect in a strong periodic potential
that was known to lead to an intricate spectrum, the
so-called Hofstadter butterfly (see Fig. 1); they showed
that it gives rise to an integer QHE under certain con-
ditions, i.e., whenever the chemical potential lies in a
gap. Indeed, the Hall conductance was shown to map to
a topological invariant associated with filled bands—the
(first) Chern number. Six years later, in another striking
development, Haldane [5] answered the second question,
showing by an explicit construction of a tight-binding
model on a honeycomb lattice that a quantized Hall con-
ductance can arise from a fully filled band even in the ab-
sence of a net magnetic field. In his model, time-reversal
symmetry is broken by a spatially inhomogeneous mag-
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FIG. 1: A colored Hofstadter butterfly: This figure represents
the phase diagram of Bloch electrons in a uniform magnetic
field. The horizontal axis indicates the chemical potential
and the vertical axis the flux through the system. Each color
corresponds to a distinct topological phase with a particular
quantized value of the Hall conductance. (Credit: Yosi Avron)

netic field with zero average, and the Hall conductance
again equals the Chern number of the band.

The three recent papers [1–3] take up this development
and address the next logical question: Can the FQHE,
canonically a property of interacting electrons in a frac-
tionally filled Landau level, also be separated from the
weak lattice and uniform magnetic field limit? More pre-
cisely, they ask the following: If it is true for independent
electrons that a filled Chern band is equivalent to a filled
Landau level, then is it also true for interacting electrons
that a fractionally filled Chern band is equivalent to a
fractionally filled Landau level?

A Landau level involves a set of exactly degenerate
single-particle states and thus, at a fractional filling,
the kinetic energy alone does not select a ground state,
but instead, it falls to the interactions to force the is-
sue. By contrast, a Chern band typically will have a
significant dispersion that will select a unique kinetic-
energy-dominated ground state at reasonable interaction
strengths, as it does in all metals. Recognizing this, all
three papers devote considerable effort to constructing
lattice models with nearly flat (degenerate) Chern bands.
Neupert et al.[2] construct a flattened version of Hal-
dane’s model on a square lattice. They note that while
a fully flattened model requires the inclusion of electron
hopping over arbitrarily large distances, the hopping am-
plitudes decrease exponentially, which allows a relatively
flat band to be constructed by keeping a small set of hop-
ping amplitudes. The relevant flatness parameter, which

should be large for the effects of interactions to be impor-
tant, is the ratio of the band gap (which sets a bound on
the strength of the interactions one can safely include)
to the bandwidth and they show how to get this num-
ber up to seven with just second-neighbor interactions.
Similarly, Tang et al.[1], and Sun et al.[3] construct mod-
els on the kagome and checker-board lattices, which also
exhibit large values of the flatness parameter.
With a flat Chern band in hand, Neupert et al. in-

troduce interactions and study the system at a fractional
filling of 1/3 through numerical computation on a mod-
estly sized system. They find two of the classic signa-
tures of the 1/3 FQHE state: a fractional quantum Hall
conductance that was close to the filling fraction, and a
nontrivial ground-state degeneracy with periodic bound-
ary conditions. As a test, they vary the band structure
continuously to a topologically trivial band and find that
these features go away. In a related piece of unpublished
work, another group finds similar results at fillings of 1/3
and 1/5[6]. Altogether, this work offers strong evidence
that fractionally filled Chern bands do indeed exhibit the
FQHE.
This is perhaps a good place to note that on a lat-

tice the distinction between having a net magnetic field
and not having it at all is not as sharp as it may seem.
Essentially, it is always possible to stick a full flux quan-
tum through some subset of loops on the lattice to shift
the average magnetic field without affecting the actual
physics. From this perspective, the physics in these flat-
band models has a family resemblance to earlier studies
of lattice versions of the FQHE [7, 8] with uniform mag-
netic fields. In this earlier work, the authors studied a
fixed filling factor while varying the flux per plaquette
from small values and large unit cells, where the stan-
dard Landau level description holds, to somewhat larger
flux values and smaller unit cells, where that description
broke down. As they were able to change this parame-
ter without any evidence of encountering a phase tran-
sition, the latter limit constituted an observation of the
FQHE in the presence of strong lattice effects. Need-
less to say, a more analytic approach can be expected
to clarify this possible equivalence between this earlier
“Hofstadter” and the current “Haldane” versions of the
FQHE.
The present work also leaves open several other inter-

esting questions: Can analytic expressions for the wave
functions for the ground states and elementary excita-
tions of the FQHE in the lattice models be found, and
can they be related to those for the continuum FQHE?
Can these FQHE states be realized in materials via this
route at high temperatures, as speculated by Tang et
al.[1]? Further afield, while an experimental example of
a Chern insulator (an insulator with filled bands with a
nonzero net Chern number, such as the Haldane model)
has yet to be found, at least one example of the related
two-dimensional topological insulators with time-reversal
symmetry has been found. The band structures in such
topological insulators also have nontrivial topology and
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can even be understood in terms of Chern numbers in
certain cases. This raises the possibility that a time-
reversal-symmetric version of the FQHE may arise in
such models when interactions are added, and may be
more readily observable. More ambitiously, it invites
the conjecture that three-dimensional “strong” topologi-
cal insulators, whose band topology is now qualitatively
different from that denoted by the Chern numbers that
are the focus of attention in this current work, might also
give rise to fractional analogs by the same mechanism of
including interactions in flattened bands with nontrivial
topology.
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