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How nodes connect to each other may explain why we don’t see certain classes of networks.
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At the end of the 20th century, the study of net-
works—systems of nodes connected by links—took off
as scientists realized how ubiquitous they were. Com-
plex networks describe interactions among proteins in a
cell, coordinate communication among the neurons in our
brain, and govern how individuals in a society connect.
The list goes on. Many fundamental questions about net-
works remain unanswered, however, including several on
scale-free networks, which are characterized by a power-
law distribution in the number of connections (degree)
each node has.

Now, in a paper in Physical Review Letters, Charo Del
Genio at the Max Planck Institute for the Physics of
Complex Systems, Germany, and coauthors tell us that
the only kind of scale-free network that is possible is one
with an average degree that remains finite as its size be-
comes arbitrarily large [1]. The connection density C of
a network can be interpreted as the ratio of the aver-
age degree to the network size (the number of nodes, N),
and so this result implies that all realizable scale-free net-
works are sparse (C → 0 as N →∞). The paper should
stimulate fresh activity in this area, as it appears to con-
tradict earlier mathematical results [2] which suggested
that growth by node and link duplication would give rise
to dense scale-free networks.

Scale-free networks [3] have become prominent re-
cently, but power-law degree distributions have been
known for some time. In the 1960s, the polymath Derek
de Solla Price proposed [4] a preferential attachment
scheme—now colloquially referred to as the “rich get
richer” effect, first studied by George Yule—that gen-
erates power-law distributions seen in many contexts, in-
cluding several in economics, such as the Pareto law for
income distribution [5]. For networks, preferential at-
tachment works as follows [6]: Start with a existing net-
work and at subsequent time steps add new nodes that
connect to existing ones preferentially, according to their
degree. If the probability that a new node will connect
to a node of degree k is proportional to k, then it can

be shown that in the steady state the network exhibits a
power-law degree distribution P (k) ∼ k−γ , where the
exponent γ = 3. As many networks (the internet is
one example) that evolve by accumulating nodes show
scale-free degree distribution, one expects the evolution-
ary algorithm above to describe their growth. However,
scale-free networks that are prevalent, whose exponents
can span a variety of values, appear to mostly cluster
around γ = 2, not 3.
Why does the value of the exponent matter? For one

thing, it governs the statistics of the various moments of
the distribution of the degree (including the average de-
gree and its standard deviation). This has repercussions
for the dynamical processes on the networks. An exam-
ple is how a contagion spreads in a population where the
contact network among individuals is scale-free. The epi-
demic can only spread if the rate of infection exceeds a
threshold, which is the ratio of the first and second mo-
ments of the degree distribution. If the distribution is a
power law with an exponent between 2 and 3, the sec-
ond moment diverges so that this ratio is zero and the
threshold disappears. In other words, even an infection
with an arbitrarily small rate of spread can result in an
epidemic that spans the entire population [7]. This may
appear to have ominous consequences, but there is a sil-
ver lining. A sparse scale-free network is characterized
by the existence of hubs—nodes with a very high degree
compared to the average (Fig. 1)—that dominate the
spreading process. Therefore, identifying and selectively
immunizing the few “super-spreaders” would be a work-
able control strategy.
However, when the exponent is smaller than 2, the first

moment diverges with system size. This means that the
number of hubs is no longer small but rather of the or-
der of the size of the network. Selective control of such
a large number of hubs is no longer an efficient strat-
egy. Fortunately, with a few key exceptions, most social
networks do not appear to be scale-free: diseases that
spread through casual social interaction may have a fi-
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FIG. 1: Social network of the characters appearing in the
movie Love Actually (2003), with node size proportional to
the total dialogue (a measure of screen time) assigned to a
particular character. Links connect pairs of characters present
in the same scene. The node at the top left corresponding to
the character of David (the prime minister, played by Hugh
Grant), which is one of the hubs of the network, has a much
larger number of connections than the average degree for the
network. The work of Del Genio et al. suggests that it is not
possible for the number of such hubs to become comparable
to the total number of nodes as a scale-free network grows to
arbitrarily large sizes. (APS/Sitabhra Sinha)

nite threshold.
So, can there be scale-free networks that exhibit power-

law nature at arbitrarily high degrees and still have
γ < 2? The few empirical reports of such systems have
not decisively settled the issue. They were mostly based
on small data sets, with possibly unreliable statistics [8].
However, a mathematical result on scale-free networks
that are grown by adding nodes that duplicate the links
of a randomly selected existing node with a selection
probability p suggests that degree distribution exponents
between 1 and 2 can be obtained for p > 0.5[2]. And
there the matter seemed to rest. In their paper, how-
ever, Del Genio et al. claim that such networks can be
ruled out purely on theoretical grounds. Although their
proof does not depend on the exact procedure used to
construct a network from its degree sequence, i.e., the
complete list of the number of connections that each of
its nodes has, it is instructive to consider one. For exam-
ple, the Havel-Hakimi algorithm [9] begins with a graph
with no links and then gradually constructs links con-
sistent with a given degree sequence, arranged in a non-
increasing order. The first node is connected to the next
vertices in this list, and then removed from the list. The

list is rearranged and the process is repeated until all the
degrees are properly assigned and (a) either the network
is constructed successfully, or (b) the conditions cannot
be fulfilled at some stage, so that the corresponding net-
work cannot be constructed. Using analytical reasoning
as well as numerical calculations, the authors show that
no degree sequences corresponding to scale-free networks
having exponents between 0 and 2 can be realized.
An important question the work raises is what it im-

plies for earlier mathematical results on dense scale-free
networks obtained by duplication processes. Could it be
that realizable instances of such networks may exist in
principle but are so rare that they will never be encoun-
tered in practice? Further research will hopefully clarify
this issue. It is important to note that the new result
does not imply that all networks have to be sparse. In-
deed, dense networks where each node is connected to
all others are easy to realize. Similarly, as the authors
point out, degree distribution exponents smaller than 0
correspond to dense networks. However, such networks
are not the familiar scale-free networks. Thus, for real
scale-free networks, the number of hubs will always be
much smaller relative to the size of the network. This is
not necessarily good news. While the sparse nature of
the network will make it possible to formulate efficient
immunization strategies based on identification of hubs,
it also suggests that targeted attacks on a few vulnera-
ble nodes in large complex technological systems, such as
the internet, can bring them down. Recent results also
show that sparse inhomogeneous networks are the most
difficult systems to control by driving a small fraction of
their nodes with input signals [10].

References
[1] C. I. Del Genio, T. Gross, and K. E. Bassler, Phys. Rev. Lett.

107, 178701 (2011).
[2] F. Chung and L. Lu, Complex Graphs and Networks (Ameri-

can Mathematical Society, Providence, 2006).
[3] G. Caldarelli, Scale-Free Networks (Oxford University Press,

Oxford, 2007).
[4] D. J. de Solla Price, Science 149, 510 (1965).
[5] S. Sinha, A. Chatterjee, A. Chakraborti, and B. K.

Chakrabarti, Econophysics: An Introduction (Wiley-VCH,
Weinheim, 2011).

[6] R. Albert and A.-L. Barabasi, Science 286, 509 (1999).
[7] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,

3200 (2001).
[8] A. Clauset, C. R. Shalizi, and M. E. J. Newman, SIAM Review

51, 661 (2009).
[9] S. L. Hakimi, SIAM J. Appl. Math. 10, 496 (1962).

[10] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, Nature 473, 167
(2011).

DOI: 10.1103/Physics.4.81
URL: http://link.aps.org/doi/10.1103/Physics.4.81

c© 2011 American Physical Society

http://link.aps.org/doi/10.1103/Physics.4.81


Physics 4, 81 (2011)

About the Author

Sitabhra Sinha

Sitabhra Sinha is Professor of Theoretical Physics at the Institute of Mathematical Sci-
ences (IMSc) at Chennai, India, and an adjunct faculty member of the National Institute
of Advanced Studies, Bangalore. He received his Ph.D. from the Indian Statistical Insti-
tute, Calcutta, in 1998 and his subsequent research has focused on understanding complex
systems using techniques from statistical physics and nonlinear dynamics. His current re-
search interests include the mesoscopic organization of complex networks, computational
neuroscience of the nematode C. elegans, modeling cardiac arrhythmia, and the application
of statistical physics for understanding the emergence of universal distributions in socioeco-
nomic phenomena, such as in the evolution of popularity.

DOI: 10.1103/Physics.4.81
URL: http://link.aps.org/doi/10.1103/Physics.4.81

c© 2011 American Physical Society

http://link.aps.org/doi/10.1103/Physics.4.81

	References
	About the Author

