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A conceptual framework that describes the fluidlike flow of dry granular materials also works for
particles suspended in a liquid.
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Adding suspended particles to a fluid increases its vis-
cosity. When the particles are widely separated, this
increased viscosity reflects their hydrodynamic interac-
tions. At higher volume fractions, however, contacts be-
tween particles become important, and eventually jam-
ming occurs and the viscosity diverges. While this phe-
nomenology is known, there is no general theory that
predicts how the viscosity depends on volume fraction,
particularly when both hydrodynamics and collisions are
significant [1]. In a paper in Physical Review Letters[2],
François Boyer and colleagues from Aix-Marseille Uni-
versity in France study suspensions using a framework
previously used to describe the flow of dry granular mate-
rials, in which particles interact solely through contacts.
In addition to unifying our understanding of the flow be-
havior (rheology) of two quite different systems, the work
of Boyer et al. provides important new perspectives on
both the jamming transition [3] and the rheology of sus-
pensions such as mud, paints, and medicines.

Fluid flow is described by the continuum Navier-Stokes
equations, supplemented by boundary conditions and a
constitutive relation between the shear stress τ in the
fluid and the strain rate γ̇. In the simplest, Newtonian,
case, τ is proportional to γ̇; the constant of proportion-
ality is the viscosity η. Few real fluids are Newtonian,
however, and it is difficult to derive constitutive rela-
tions for more complex fluids. For suspensions, Einstein
calculated the increase in viscosity over that of the back-
ground fluid to first order in the volume fraction, ϕ[4],
and hydrodynamic interactions between particles lead to
an additional, second-order contribution proportional to
ϕ2[5]. The resulting expression for η(ϕ) works well at
low-to-medium volume fractions, but fails when ϕ is high
enough that contact interactions become important [1].

Boyer et al.[2] approach the problem from a different
direction, starting from the flow of dry granular materi-
als [6, 7]. Granular flows are similar to flowing liquids

in many ways, for example, they can exhibit similar flow
instabilities [8]. They differ in other respects, though.
Flows in granular media are governed by dissipative in-
terparticle collisions and friction between contacting par-
ticles rather than by viscosity. Granular systems cannot
always be treated as continua on the scale of the flow,
and thermal fluctuations are negligible because the par-
ticle size is macroscopic.
There is no general equation of motion that describes

granular flows, and until recently there were few in-
dications of any sort of universality among different
systems. In 2004, however, a paper authored by the
French research collective GDR MiDi—the Groupement
de Recherche sur les Milieux Divisés—compared flows in
several granular systems [9], and identified common be-
havior in some of them. They also used dimensional anal-
ysis to develop a model for granular rheology: For rigid
spheres in a system large enough that boundaries have no
influence, the parameters that describe the flow are the
shear rate γ̇, the pressure P , the size of the grains d, and
their density ρ. The only dimensionless combination of
these parameters is the inertial number I = γ̇d/

√
P/ρ.

This can be interpreted as the ratio of d/
√
P/ρ, the time

scale for particles to rearrange due to the pressure P , to
the time scale γ̇−1 for deformation by the flow. It follows
that both the dimensionless stress τ/P and the volume
fraction ϕ must be functions of I alone. That is,

τ/P = µ(I), (1)

where µ is an effective friction coefficient, while

ϕ = ϕ(I) (2)

is considered to vary in response to the flow conditions.
These equations are the constitutive laws. GDR MiDi
found that this approach was indeed applicable to some
systems, notably dense granular flows down an incline,
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FIG. 1: The response to shear of a suspension of particles
depends on both direct contacts between the particles and
the motion they induce in the surrounding liquid. (APS/Alan
Stonebraker)

because both µ and ϕ collapsed onto universal curves
when plotted as functions of I.
Cassar et al.[10] studied dense granular flows down an

underwater incline. In this case, the viscous interaction
between the interstitial water and the grains changes the
time scale for particle rearrangements, so they replaced
I by the ratio of this modified rearrangement time to
the reciprocal shear rate. Even though the grains moved
much slower in water than in air, Cassar et al. found that
the friction coefficient µ, determined from experiments
using different grain sizes in both air and water, collapsed
onto a single curve, as long as the corresponding ratio of
time scales was used.

In the new paper [2], Boyer et al. apply the same
ideas to suspensions with a range of volume fractions. If
viscous forces dominate, then the time scale for particle
rearrangements is ηf/P , where ηf is the viscosity of the
background fluid. The ratio of this viscous time to the
time scale of the flow is Iν = ηf γ̇/P , referred to as the
viscous number.

In clever experiments, the researchers confine a suspen-
sion between a fixed lower surface and a porous, planar
top plate in an annular shear cell. A controlled torque
is applied to the top plate, shearing the suspension at
a measured rate γ̇ (see Fig. 1).They also control the
pressure P through the vertical force applied to the top
plate, whose height can adjust in response to dilation or
compaction of the sheared suspension. This allows them
to determine both the effective friction coefficient µ and
the volume fraction ϕ of the suspension as functions of
Iν . From experiments on suspensions with different back-
ground fluid viscosities and different sizes of suspended
particles, they find that µ(Iν) and ϕ(Iν) once again col-
lapse onto universal curves. ϕ has a maximum at Iν = 0,
corresponding to the jamming transition at which the

suspension viscosity becomes infinite and flow ceases.
Boyer et al. go on to show that their formulation in

terms of the friction coefficient µ is equivalent to the more
conventional treatment using an effective shear viscosity
ηs. They calculate ηs from their data and show that when
plotted as a function of ϕ, it diverges as a power law,
(ϕm − ϕ)−2, near the critical value ϕm for the jamming
transition.
Finally, Boyer et al. propose expressions for the con-

stitutive laws µ(Iν) and ϕ(Iν) based on their results.
Their expression for µ includes two terms: one due to
viscosity, and one due to collisions. The viscous term is
constructed to reduce to Einstein’s expression for the sus-
pension viscosity at low volume fraction, while the form
of the collision term shows the observed power-law diver-
gence at the jamming transition. These semiempirical
expressions describe their data very well over the range
of volume fractions studied.
The results of Boyer et al. are significant for a num-

ber of reasons. First, they show that describing flow in
terms of an effective friction coefficient works for both
granular flows and suspensions, even though the inter-
actions between the particles are quite different in the
two cases. Second, this new way of looking at suspension
rheology could prove useful in the difficult range of ϕ,
where both hydrodynamics and collisions are important.
Finally, their results for the scaling of the effective shear
viscosity near the jamming transition suggest that their
method will be useful for studying jamming in other sys-
tems as well. There remain open issues, however. In par-
ticular, not all granular flows are completely described
by the inertial number I, so the generality of this ap-
proach remains uncertain, and it remains a challenge to
calculate the parameters of this model theoretically.
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