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An electron traveling through an electric field experi-
ences, in its rest frame, a magnetic field that interacts
with the electron’s magnetic moment. This interaction
is the basis of spin-orbit coupling, which causes a split-
ting of the energies of electrons in atoms depending on
their spin state. In the case of electrons traveling along
an interface between two different semiconductors, the
transition from one conduction-band energy to another
manifests itself as a local electric field that gives rise to
a spin-orbit interaction. Here, the resulting momentum-
dependent spin splitting is known as the Rashba effect
[1]. Because the magnitude of the effect depends on the
junction parameters and can be controlled by an external
electric field, the Rashba interaction offers a promising
tool for “spin-orbitronics,” in which spins can be manip-
ulated through purely electrical mechanisms.

Electrons spins can also be manipulated by giving them
a geometric or Berry phase [2]. The Aharonov-Casher ef-
fect [3], in which magnetic dipoles travel around a tube
of electric charge, can be regarded as a special case of a
Berry phase. The Aharonov-Casher effect is dual to the
well-known Aharonov-Bohm effect [4], in which charged
particles making a closed circuit around a tube of mag-
netic flux acquire a nonzero phase (see 22 July 2011 Focus
story). Writing in Physical Review Letters, Fumiya Naga-
sawa and his colleagues at Tohoku University in Sendai,
Japan [5] now report experiments where both the Rashba
effect and Berry phases play essential roles. By measur-
ing interference patterns produced by electrons travel-
ing coherently in opposite directions around mesoscopic
(micron-sized) layered semiconductor rings that exhibit
strong Rashba spin-orbit coupling, they not only detect
an Aharonov-Casher phase difference but also distinguish
contributions coming from dynamical and topological in-
fluences on spin. Most notably, the experiment demon-
strates precise control and detection of spin geometric
phases, a capability that could lead the way to topologi-
cal electronics.
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An electron making a complete circuit of a ring con-
ductor immersed in a strong radial magnetic field ac-
quires a geometric phase —m, since the Berry phase for
a spin-1/2 particle is minus half of the solid angle, here
2w, traversed by the rotating spin as it follows the field.
The coherent mesoscopic ring conductors studied by Na-
gasawa et al.[5] therefore appear to be ideally suited for
observing this geometric phase, as long as a strong mag-
netic field with an azimuthal component is present. This
is where Rashba spin-orbit coupling in a two-dimensional
electron gas comes into play, as it can be viewed as the
coupling of electron spin’s magnetic moment to an effec-
tive magnetic field ESO, as described in the introduction.
According to Biot-Savart’s law, this field points perpen-
dicular to the electron momentum p and perpendicular
to the local (Rashba) electric field. Since the latter is ori-
ented perpendicular to the two-dimensional electron gas,
éso ~ ap X €,, where « is the gate-tunable spin-orbit
strength. For electrons moving in the ring, this spin-
orbit field is indeed radially oriented, as indicated in the
Fig.

An additional prerequisite for an electron to acquire a
geometric phase is that it must move adiabatically, mean-
ing, in this case, that it moves slowly enough that the
spin’s magnetic moment stays aligned (or anti-aligned)
with the local inhomogeneous magnetic field. This re-
quires a separation of time scales: The Larmor frequency
of spin precession, wg, = 2uBgso/ h ~ ap, must be large
compared to the frequency w = p/(mr) of revolution
around a ring of radius r [6]:

= tané. (1)

Adiabaticity is therefore favored by a strong spin-orbit
interaction and a large but phase-coherent ring.
Although Rashba coupling can be considerable, as, for
instance, in the InAlAs/InGaAs heterostructures used
by Nagasawa et al., true adiabaticity cannot be achieved.
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FIG. 1: Sketch of a mesoscopic ring conductor, based on a
two-dimensional electron gas in a layered semiconductor, and
coupled to two leads. Rashba spin-orbit interaction couples
the electron spin to an effective radial magnetic field (blue)
perpendicular to the electron momentum (red) and to the
electric field associated with the interface between the two
semiconductor structures. For finite spin-orbit coupling, the
electron spin cannot adiabatically maintain a fixed orientation
with respect to this radial field but precesses around a guiding
vector that itself tracks around a conical surface with opening
angle 6 [see Eq. (1)]. (True adiabaticity would correspond to
6 =90°.) (APS/Alan Stonebraker)

When the spin-orbit interaction is finite, the electron spin
cannot maintain strict alignment with the radial in-plane
magnetic field, but can be viewed as following a cone with
effective opening angle 6 (see Fig. |1)). The associated
solid angle leads to a phase —m(1 — cos@). This gener-
alization of the Berry phase in the nonadiabatic case is
often referred to as the Aharonov-Anandan phase [7]. Re-
calling that spin-orbit coupling originates from an electri-
cal field, this geometric phase can also be regarded as an
Aharonov-Casher phase for a (spin) magnetic momentum
moving in the presence of an electrical field. Together
with the phase of the Aharonov-Bohm effect, the dual to
the Aharonov-Casher effect, these three related phases
may be said to represent the ABC of Aharonov effects.

Interference between electron waves traveling clockwise
and counterclockwise around a phase-coherent semicon-
ductor ring leads to variation in the electrical conductiv-
ity of the ring with the strength of an applied perpendic-
ular magnetic field. Magnetoconductance measurements
should bear the fingerprint of all three effects, Aharonov-
Anandan, Aharonov-Bohm, and Aharonov-Casher [§],
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and Nagasawa et al. cite a number of experiments re-
vealing evidence for spin-orbit induced phase effects.

However, clear-cut detection of the purely geometric
part of the Aharonov-Casher phase, —7(1 — cos 6), is dif-
ficult because an electron wave traversing the ring also ac-
quires a dynamical phase of 7 tan 0 sin 6 [6], arising from
the additional spin precession driven by the local field.
Nagasawa et al. [5] succeeded in separating out the geo-
metric Aharonov-Casher phase from the other effects of
the spin-orbit interaction and determining quantitatively
the associated phase shift.

To do this, they used lithography and etching to create
arrays of typically 50 x 50 micron-sized rings from a lay-
ered InAlAs/InGaAs film. By measuring the resistance
of an array of rings, nongeneric features from individ-
ual rings are averaged out. Nagasawa et al. conducted
a series of experiments on arrays of rings whose diame-
ters varied from about 1/2 to 1 micron, with different
external field magnitudes, and with the spin-orbit cou-
pling strength varied through a top-gate voltage on the
arrays. They found remarkably clean oscillations in the
ring resistance, and by analyzing the way these oscilla-
tions changed in response to the experimental parame-
ters, they were able to distinguish and measure, for the
first time in ring experiments, the pure spin-geometrical
part of the phase.

Such geometrical phases are of wide significance in
charge and spin transport. For instance, the surface
states of a topological insulator are protected against
backscattering from disorder through a Berry phase [9].
While such Berry phases are often intrinsically fixed, the
ring experiments open up an interesting opportunity to
steer geometric phases in a controlled way through the
system geometry and various other tunable parameters.
Besides those used by Nagasawa et al., additional knobs
to control the phase could be other types of spin-orbit
coupling or an in-plane magnetic field. Experiments of
the type Nagasawa et al. describe represent promising
mesoscopic labs for devising and engineering spin topo-
logical phases.
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