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Majorana’s geometrical representation of quantum spin as points on a sphere offers an intuitive
approach to understanding quantum systems with multiple components.
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The Ttalian physicist Ettore Majorana, who disap-
peared in 1938, is now widely recognized for inventing
the notion of a fermionic particle, the Majorana fermion,
which has the strange property of being its own antipar-
ticle [I]. What is perhaps less well known is that he also
developed a natural and exact representation of a quan-
tum spin [2], which inspired Julian Schwinger to create
the bosonic representation often used today in the theo-
retical study of quantum spin systems [3].

In Majorana’s representation, a general spin state cor-
responds to a configuration of points on a sphere, a pic-
ture that makes a high dimensional Hilbert space eas-
ier to comprehend. In Physical Review Letters, Patrick
Bruno of the European Synchrotron Radiation Facility
in Grenoble, France, has revived this representation by
developing an intuitive and systematic method for calcu-
lating the physical properties of the spin state, such as
its energy, and following the spin’s evolution in time [4].
Bruno’s intuitive approach has the potential to guide our
understanding of quantum systems with multiple compo-
nents, which are vast and complex, yet increasingly, the
focus of quantum engineering and quantum information.

For the elementary case of a spin 1/2, or any quan-
tum two-level system, Felix Bloch established [5] that
an arbitrary pure state can be represented by a point
on a unit sphere. In this picture (Fig. left), a spin-
up state corresponds to the north pole and a spin-down
state corresponds to the south pole. A superposition of
these two states corresponds to a point on the sphere,
defined by the unit vector n. The reason is geometrical:
in addition to a nonessential normalization factor and an
overall phase, a superposition state is specified by the
relative amplitude and phase of its two components, and
these two parameters can be mapped to the spherical co-
ordinates 6 and ¢, which specify the direction of n. The
point at n could equally well be viewed as an eigenstate
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FIG. 1: (Left) In a spin-1/2 or other two-level system, any
state can be built from a superposition of a spin-up and spin-
down state (blue arrows). This superposition corresponds to
a point on a unit sphere, defined by the vector n. (Right)
Planar projection of the north hemisphere of a spherical rep-
resentation of Majorana stars for a spin J = 25. The cloudy
regions represent the probability distribution for the spin wave
function. In Bruno’s picture, this probability distribution is
analogous to the density of a classical gas that is repelled
from the Majorana stars. ((Left) APS/Carin Cain; (Right)
Courtesy P. Bruno/ESRF)

with eigenvalue +1/2 for a spin oriented along n. For
this simple spin-1/2 case, the Majorana star is defined
as the lone point on the sphere in the opposite direction
to n.

However, a spin-J state with J > 1/2, does not, in
general, correspond to an eigenstate of the spin vector in
any direction. In addition to an overall phase, it takes 2.J
complex numbers to specify a state, and these numbers
can’t be represented by a single point on a sphere. Eigen-
states with eigenvalue 4J for the spin component in each
direction, which are called spin coherent states, consti-
tute only a tiny subset of all possible quantum states.
Nevertheless, one can represent a general quantum state
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as a linear superposition of the spin-coherent states. The
superposition coefficient, given by the scalar product of
the general state with a coherent state, is then a complex
wave function of n. Loosely speaking, this complex wave
function represents the probability amplitude of finding
the spin in that direction.

Majorana’s insight was that this wave function has 2.J
points—or “vortices”—on the Bloch sphere where the
wave function vanishes. Apart from an overall phase
and normalization factor, the wave function is completely
specified by the positions of these vortices. Specifically,
the spin state has zero overlap with the spin coherent
state along the directions of the vortices. In his new
work, Bruno calls these vortices the Majorana stars. In
this picture, the eigenstate of the spin angular momen-
tum m along direction n corresponds to m stars coincid-
ing at —n with the remaining 2J — m stars coinciding at
n. Configurations other than these special “antipodal”
distributions give all the other spin quantum states in
the vast Hilbert space.

Bruno has found a systematic method of using dia-
grammatic rules to calculate the physical quantities, such
as the energy, in terms of the Majorana star positions.
The trick is to make a connection between the probabil-
ity distribution of the spin wave function on the Bloch
sphere and the density of a classical gas of independent
particles (Fig. [} right). Using this analogy, calculating
the spin wave function is equivalent to calculating the dis-
tribution of the “gas” at thermal equilibrium, assuming
it is repelled from the Majorana stars by a potential that
varies logarithmically with distance. Moreover, Bruno
has found that there is also an artificial magnetic field
in the radial direction that has an intensity given by the
gas density, as if each gas particle carries a quantum unit
of magnetic flux. Together with the spin energy, this ar-
tificial magnetic field endows the Majorana stars with a
classical dynamics that mirrors exactly the evolution of
the quantum spin as governed by the Schrodinger equa-
tion.

As Bruno shows, Majorana stars are similar to vortices
in other systems, such as a two-dimensional superfluid or
an electron gas in a quantum Hall state. These vortices
all have a life of their own, and feel an artificial magnetic
field proportional to the particle density. There is a sim-
ple explanation of this common phenomenon. When a
particle moves around a vortex once, the quantum wave
function accumulates a phase of 27. In other words, the
particle feels an Aharonov-Bohm-like flux at the vortex
position. Since “moving around” is relative, one could
look at this from the vortex’s perspective and say it feels
the same flux at the particle. This is indeed confirmed in
the present case by a direct calculation of the geometric
phase for cyclic motion of the vortices [6].

The dynamics of the Majorana stars differs from, but
is closely related to, the canonical form of the Hamilto-
nian dynamics that are taught in classical mechanics. A
classical phase space is spanned by a set of generalized
coordinates and their conjugate momenta, with velocities
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and forces simply given by the gradients of the Hamilto-
nian function. In the case of the quantum spin, the phase
space is defined by the coordinates of the 2J Majorana
stars on the Bloch sphere, but the dynamics is in general
noncanonical.

Had one chosen an orthogonal basis, such as the 2.J + 1
eigenstates of the spin component along a fixed axis, the
Schrédinger equation would imply a canonical dynam-
ics, with the probabilities and phases playing the roles of
canonical momenta and coordinates [7]. The canonical
structure remains true even for the relative probabili-
ties and phases after separating out the total probability
(which is always normalized anyway) and a nonessen-
tial overall phase [§]. These canonical variables can be
straightforwardly related to the Majorana stars, but the
relation does not necessarily form a canonical transforma-
tion, rendering the dynamics of the latter noncanonical.

The Majorana representation and Bruno’s new devel-
opment may turn out to be very useful in systems such
as molecular magnets [9] or multilevel qubits [10]. Much
of our intuition in the past was derived from a semiclassi-
cal picture, with the stars clustered together and moving
according to the Landau-Lifshitz equation. Now we can
visualize the quantum space in full detail and with ease
by letting the stars spread out and wander on the Bloch
sphere.
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