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A new approach to finding the electronic potentials in density-functional theory—one of the most
important computational tools in condensed matter and quantum chemistry—is proposed.
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Imagine being able to calculate the exact quantum me-
chanics of electrons in an atom, molecule, or solid by com-
pletely removing the Coulomb repulsion between the elec-
trons and warping the attraction between the electrons
and the nuclei. Doesn’t this sound crazy? Yet this is
exactly the recipe for the remarkably successful, and rig-
orous, density-functional theory (DFT), which says that
one can extract the correct observables of an interact-
ing electronic system by instead treating the electrons
as independent particles that interact with a fictitious
potential.

Formulated in 1964, DFT has revolutionized electronic
structure calculations in materials science and quantum
chemistry [1, 2]. The younger, time-dependent extension
of DFT, TDDFT, is used to treat electrons that start in
nonstationary states or that are subject to external fields
[3, 4]. But what is the right way to “warp” the attractive
nuclear potential so as to choreograph the noninteracting
electrons, whose dance contains all the exact informa-
tion about the true time-dependent system? Except for
a handful of calculations limited to model systems with
two electrons, the answer to this question has largely gone
unexplored. In Physical Review Letters, James Ramsden
and Rex Godby of the University of York, UK, present
an algorithm for finding the choreographer—otherwise
known as the exact time-dependent Kohn-Sham poten-
tial—and apply it to a model semiconductor containing a
moving electron [5]. They find that the Kohn-Sham po-
tential for this case has several features that the approx-
imations in today’s TDDFT simulations neglect. Under-
standing these features leads the way to building better
TDDFT approximations for other systems.

TDDFT is an exact reformulation of the quantum dy-
namics of systems of many identical (nonrelativistic) par-
ticles. It states that all observables may be extracted
from two quantities: the initial wave function and the
time-dependent one-body density, n(r, t), which is the

probability of finding any one particle at point r in space
at time t. The time-dependent correlated many-body
wave function, which is exponentially expensive to cal-
culate as the number of particles grows, is not needed.
Instead, TDDFT maps a system of interacting electrons
into a system of fictitious noninteracting “Kohn-Sham”
fermions, which reproduces the true time-dependent one-
body density.

Since only single-particle orbitals need to be calcu-
lated, TDDFT makes it computationally possible to
study the excitations and dynamics of systems containing
many electrons. The challenge is to find the potential in
which noninteracting electrons evolve with the same den-
sity as that of the true interacting electronic system (see
Fig. 1, top, for a simple example.) The Kohn-Sham po-
tential is the sum of three terms: the external potential
applied to the true electrons (from the nuclei and any
external scalar fields), the Hartree potential [the clas-
sical electrostatic repulsion of an electron cloud of den-
sity n(r, t)], and the exchange-correlation potential. This
last term represents all the many-body effects beyond
the mean-field Hartree term and is unknown. Instead,
it must be approximated as a functional of the time-
dependent density, initial interacting wave function, and
initial Kohn-Sham wave function, meaning these ingredi-
ents uniquely specify the potential everywhere in space at
all times. Typically, one inserts the instantaneous density
into approximations of the ground-state problem (adia-
batic approximation). The exact time-dependent func-
tional, however, does depend on the history of the den-
sity, as well as on the initial wave functions. Further,
there are many ground-state approximations. The prob-
lem is that we don’t really have a good understanding of
the errors that result from making all of the approxima-
tions. If we could find the exact potential for at least a
few problems, we’d gain this understanding, and maybe
improve the approximations we use for general problems,
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and the predictive power of TDDFT.
This is what Ramsden and Godby do. They con-

sider an electron propagating through a semiconductor,
a problem that’s fundamental for understanding charge
transport, a topical application of TDDFT. An exact so-
lution of Schrödinger’s equation for this system is not
available. Instead, Ramsden and Godby treat an ap-
proximate solution of many-body interacting quantum
mechanics as the reference solution, and then ask what
Kohn-Sham potential achieves the same time-evolving
density as this reference by propagating noninteracting
electrons. In the initial state, a moving electron is placed
in a periodic lattice of one-electron atoms. The authors
iterate toward an exact Kohn-Sham potential using a
clever algorithm to systematically correct a guessed po-
tential: the current-density of the Kohn-Sham system at
time t, js(r, t), is, at each iteration, corrected towards
that of the true system, j(r, t), via the addition of a vec-
tor potential As(r, t) = (j(r, t) − js(r, t))/n(r, t). Only
a one-dimensional model is considered, so all vector po-
tentials can be transformed to a scalar potential.

What the authors find is that the exact Kohn-Sham
potential is lower in the entire region in front of the elec-
tron wave packet relative to the region behind the wave
packet (Fig. 1, bottom). The size of this potential “step”
is time-dependent and persists far away from the wave
packet where the density is the unperturbed ground-state
one, indicating that the potential depends on density in-
finitely far away. The ultranonlocal density dependence
appears in the exchange-correlation potential—the term
that must be approximated. However, most approxima-
tions miss this nonlocal property completely.

Step features have appeared before in DFT, such as
in the exact ground-state potential of dissociating het-
eroatomic molecules [6, 7], and in ionization [8] and
Coulomb-blockade phenomena [9]. In the system Rams-
den and Godby study, there is no external field, the step
is between two regions of the same electron number, and
its size oscillates in time, unlike in the previous cases.
The authors’ result therefore opens up the question of
whether nonlocal potentials are a more general feature
of TDDFT.

Time nonlocal density dependence is also an important
feature of the exact potential: an exchange-correlation
functional that only depends on the instantaneous den-
sity won’t work, since an electron with the same density
could be launched in the opposite direction, but the po-
tential would have a step of the opposite sign.

One approach to incorporate spatially ultranonlocal
and time-nonlocal density dependence is time-dependent
current-density-functional theory (TDCDFT), where one
deals with vector potential functionals of the current den-
sity [10]. (Actually, Ramsden and Godby’s procedure ap-
plied in three dimensions generally would fall into TD-
CDFT, not TDDFT, as TDDFT uses only scalar poten-
tials). How well the approximate functional of Ref. [10]
performs for Ramsden and Godby’s example is an inter-
esting question for the future. Future studies will also

need to understand how the Kohn-Sham potential de-
pends on the choice of the initial Kohn-Sham wave func-
tion [11] [it only needs to reproduce the exact interacting
n(r, 0) and the longitudinal part of j(r, t), and there may
be a choice where the usual approximations fare best].
It’s also possible that the observed features in the po-
tential will change with more accurate solutions to the
approximate many-body problem used as reference.
TDDFT has become a method of choice to compute

excitation spectra in molecules, solids, clusters, and
biomolecules. Applications to transport, the real-time
dynamics of electrons evolving under strong laser fields,
or the coupled electron-nuclear dynamics that follow pho-
toexcitation (e.g., in modeling solar cell processes) are
particularly enticing for TDDFT as there are very few
alternative methods for studying these systems that are
both computationally feasible and adequately capture
electron correlation. So far, TDDFT’s progress in tack-
ling these sorts of problems has been slow, partly be-
cause there aren’t many accurate calculations to check
the TDDFT predictions. If the exact (or accurate) so-
lution is known for a given problem, finding the exact
time-dependent exchange-correlation potential via the
scheme presented by Ramsden and Godby will be ex-
tremely useful, enabling us to see shortcomings of the
usual exchange-correlation approximations and what we
need to do to improve them.
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FIG. 1: Kohn-Sham potentials give the right electron den-
sity in an interacting system, even though the electrons are
treated as independent particles. (Top) An example from the
simplest system of interacting electrons: the helium atom.
The top curve is the ground-state electron density. The lower
curves show (orange) the nuclear potential, −2/r (in atomic
units), that the electron lives in, and the (blue) Kohn-Sham
potential, which is the potential in which noninteracting elec-
trons yield the same density. (Bottom) Schematic of the time-
dependent part of the Kohn-Sham potential (blue) of an elec-
tron wave packet (grey) propagating in a model semiconduc-
tor. The time-dependent part of the potential has a highly
nonlocal dependence on the density: the potential to the left
and right of the electron differ by a step, persisting far on
either side. The size of the step oscillates in time. (For sim-
plicity, modulations due to the lattice periodicity are omitted
in the figure.) (APS/Alan Stonebraker)
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