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The properties that characterize topological insulators, such as symmetry protected surface states,
also appear in materials with quasiperiodic order.
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The 2011 Nobel Prize in Chemistry recognized Dan
Shechtman’s pioneering work on quasicrystals—materials
that are characterized by a long-range ordered tiling of
atoms but aren’t periodic like conventional crystals. The
award brought a rather unique field of research back
into the focus of the science community. Since it be-
gan in 1984 [1], quasicrystals research has been a source
of shared interest for crystallographers, materials scien-
tists, chemists, physicists, and mathematicians, for whom
working together was the rule, rather than the exception.

In Physical Review Letters, Yaacov Kraus and col-
leagues at the Weizmann Institute of Science in Israel de-
scribe experiments that open the umbrella of quasicrys-
tals research even wider [2]. They demonstrate an un-
expected mathematical connection between quasicrystals
and topological insulators [3], a class of unconventional
insulators with conducting surface states. Furthermore
they show a practical example of this connection in an
optical waveguide device that creates a quasiperiodic po-
tential for light: because this device has “topological”
properties, they are able to pump light across different
optical channels into localized edge states. Kraus et al.’s
finding of a connection between two seemingly different
kinds of materials may deeply influence the way theorists
design models to explore the physics of quasicrystals.

A topological insulator [3], like a conventional insula-
tor, is a material with an electronic band gap, but its
fundamental materials properties are insensitive to small
changes in its materials parameters. Topological order is
a generalization of the traditional classification schemes
of solid phases, which are based on spontaneously bro-
ken symmetries (like the breaking of rotational symme-
try that occurs when the spins in a material line up.) In
contrast, a topological insulator may undergo a quantum
phase transition that closes its band gap and changes its
fundamental materials parameters, but no symmetry is
spontaneously broken. In this sense, a topological insula-

tor falls outside the traditional classification schemes for
solid matter.
Topological insulators are classified by the mathemati-

cal properties of the Hamiltonians that describe them.
Small changes in the materials parameters of a topo-
logical insulator are captured by a minor modification
of its Hamiltonians, and the Hamiltonians describing all
the topological insulators in a given “class” share char-
acteristic properties of their spectra (band gaps, gapless
surface states). But the same Hamiltonians cannot be
simply deformed into the Hamiltonians of another topo-
logical class without changing the characteristic proper-
ties of their spectra, which is why topological insulators
are insensitive to small changes in their materials prop-
erties. (This is similar to the way that a donut cannot
be simply distorted into a sphere.)
This may sound like a mathematical distinction, but

it has a measureable effect: The only way a topolog-
ical insulator in one class can transition into another
class—which is what must, for example, happen at the
surface separating a three-dimensional topological insula-
tor from vacuum—is over an intermediate metallic (zero-
band-gap) state. As a result, two- and three-dimensional
topological insulators have conducting edge and surface
states, respectively. Perhaps the most famous example
of these surface states is the integer quantum Hall effect
(IQHE), where a two-dimensional sheet of electrons in a
strong magnetic field has gapless edge states that carry
the current [4].
So far, topological phases have mainly been studied

theoretically or in a handful of materials and electronic
devices. Kraus et al. have now extended the concept
to quasicrystalline phases, and designed a photonics de-
vice that allows them to visualize the effects of such a
connection [2]. They show that a tight-binding Hamil-
tonian for particles moving in a one-dimensional lattice
that modulates their on-site or hopping interactions with
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a quasiperiodic potential (the Harper model) maps to
a tight-binding Hamiltonian that can describe the two-
dimensional IQHE. In this mapping, the bulk and edge
states in the two-dimensional IQHE Hamiltonian have
their respective counterparts in the bulk and edge states
of the one-dimensional quasiperiodic Harper model.

Kraus et al. made an experimental version of such
a one-dimensional quasiperiodic Harper model, which al-
lowed them to study its band structure and optical states.
To do this, they fabricated roughly 20 parallel semicon-
ductor waveguides of varying widths on a semiconductor
substrate. The waveguides were spaced closely enough
together that when the authors introduced light into one
waveguide, the evanescent part of the light field could
tunnel into an adjacent waveguide. And, because the
width of each waveguide determines its effective index
of refraction, the whole array of waveguides acts as a
quasiperiodic potential for the light.

In a series of experiments, the team introduced light
into one waveguide and used a CCD camera to measure
the distribution of light along the length of the device.
They found that if they introduced light into one of the
center waveguides, which corresponds to the bulk states
of the corresponding quasiperiodic Hamiltonian, it would
spread out. But if they introduced light into the leftmost
or rightmost waveguide, which would correspond to the
edge states of the quasiperiodic Hamiltonian crossing the
gaps between the bulk states, it stayed on that side, thus
demonstrating the peculiar nature of those optical edge
states.

The authors found an interesting connection with the
IQHE when they built a similar device in which the
waveguides were not parallel but had a slowly varying
separation between them along the length of the device
(Fig. 1, left). This variation acted as a slowly varying
phase in the quasiperiodic model that moves edge states
from one edge to another; in their device, light intro-
duced on the right side of the device gradually migrated
to the left side.

This migration is a well-known effect called “adiabatic
pumping,” which the Nobel laureate Bob Laughlin [5]
suggested to explain the IQHE [4]. In his picture, a slow
variation in the magnetic flux piercing a two-dimensional
ribbon (Fig. 1, right) pumps electrons in gapless edge
states from one edge of the ribbon to the other. The
fact that Kraus et al. see the same pumping effect in
their optical device, which wouldn’t be possible if it were
made of periodic waveguides, establishes the connection
between quasiperiodicity in one dimension and the IQHE
in two dimensions.

Kraus et al.’s work is relevant to a long-standing and
fundamental problem of quasicrystals research. In the
early days of studying quasicrystals, theorists tried to
explain the geometrical properties of real quasicrystals
with higher dimensional models—in some cases, with as
many as 12 dimensions. But they viewed these higher di-
mensional models as merely handy mathematical tools,
while the “real” physics of quasicrystals was described

FIG. 1: Adiabatic pumping in (left) the waveguide device
studied by Kraus et al. and (right) in the classical geometry
Laughlin used to describe the integer quantum Hall effect. In
the waveguide, light (red) entering at one end of the device
is pumped to the other end. In Laughlin’s picture, a mag-
netic field (H0) pumps charges in a current along the ribbon
from one edge of the ribbon to the other, generating a volt-
age perpendicular to the current. ((Left) Y. E. Kraus et al.[2];
(Right) APS/Carin Cain)

by Hamiltonians living in three spatial dimensions. But
Kraus et al. have shown that higher-dimensional “ances-
tor” Hamiltonians have a measurable effect on the physics
of lower-dimensional quasiperiodic systems.
The authors’ work also represents a new trend in

quasicrystals research [6]. As opposed to studying the
propagation of electrons in a quasicrystalline lattice, re-
searchers are now looking at the propagation (or non-
propagation) of light or sound through complex mate-
rials that consist of basic components, such as metallic
or semiconductor spheres, cones, or cylinders, arranged
in a quasiperiodic fashion. In the long term, such com-
posite systems will free quasicrystals research from the
need to tile and decorate materials according to the laws
of chemistry rather than the laws of higher-dimensional
geometry. Instead, the ability to design new composite
systems like photonic or phononic quasicrystals is only
limited by the fabrication techniques, which are needed
to put the components of these materials in the right
place [7].
Lastly, we can ask if Kraus et al.’s results can be gen-

eralized to cover two- and three-dimensional quasiperi-
odic structures. In principle, their results should hold
for any dimension and any topological index, which is
the number that distinguishes one topological class from
another. The quasiperiodicity in the Harper model is in-
troduced by quasiperiodic modulation terms, and these
terms have the effect of adding extra dimensions to
the system. With respect to their topological proper-
ties, one may map these quasiperiodic model Hamilto-
nians to suitable higher-dimensional Hamiltonians, sim-
ilar to the one-dimensional—two-dimensional correspon-
dence that Kraus et al. found. Furthermore, the au-
thors state that the Harper model may also be extended
to one-dimensional quasiperiodic sequences like the Fi-
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bonacci sequence [2], which is very interesting, as the one-
dimensional quasiperiodic sequences themselves may eas-
ily be extended to ways of decorating a lattice in higher
dimensions [8]. In the long term, research along those
lines and with focus on higher-dimensional Hamiltonians
might even draw other fields, such as string theory, into
the realm of quasicrystals research.
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