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A machine consisting of nearly 100 quantum circuit elements can compute the solution to a classic
problem in mathematics, but is it a quantum computer?
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What is a quantum computer? We could say it’s a ma-
chine that calculates solutions to problems using quan-
tum components. But this definition is incomplete; after
all, an abacus is made of quantum elements (atoms) and
can do arithmetic. Rather, when physicists envision a
quantum computer that, for example, factors large num-
bers in the blink of an eye, they are imagining a machine
whose inner workings harness two purely quantum phe-
nomena: the ability to prepare an object in a superposi-
tion of states, such as an electron spin that points both
“up” and “down,” and entanglement, in which the quan-
tum states of two objects are intertwined, even at a dis-
tance. A report in Physical Review Letters from Zheng-
bing Bian of D-Wave Systems in Canada and colleagues
brings this question of what constitutes a quantum com-
puter front and center. They compute the solution to
a problem in graph theory on a machine consisting of
84 logical elements designed to function as quantum bits
(or qubits) [1]—a large number of qubits compared to
other prototype quantum computers. But the report is
certain to meet with skepticism: many more tests would
be needed to conclude that the logical elements are func-
tioning as qubits and that the device is a real quantum
computer.

There are two main approaches to building a quan-
tum computer. The circuit-based approach builds up
a computation from a sequence of simple logical oper-
ations on one or two quantum bits. Measuring the fi-
nal state of the qubits gives the answer to a problem.
This process is similar to how a classical digital com-
puter functions, but a quantum computer must support
superpositions of states, instead of the either-or state of
a classical bit. In the adiabatic approach, which is the
inspiration for Bian et al.’s work, a controllable quantum
system evolves, under externally controlled parameters,
from an initial (known) state to a final state that en-
codes the answer. For example, the initialized system

could be an array of noninteracting spins in its lowest
energy state, while the final state corresponds to spins
with interactions that specify the problem. As long as
the interactions are turned on slowly enough (i.e., adia-
batically), the system remains in its lowest energy state
throughout, and the final state reveals the desired an-
swer.
Researchers have tried to make quantum computers

based on both approaches. But from the start, they re-
alized that noise and imperfections were major problems
for any practical quantum computer. The reason is that
the dramatic speed up of a quantum computer rests on
the assumption that its qubits can form coherent super-
positions (meaning the wave properties of the qubits are
preserved over time) long enough for a computation to
take advantage of highly entangled states [2]. Yet even
tiny amounts of noise can cause a quantum state to lose
coherence, which is why our ordinary world appears clas-
sical [3]. Fortunately, there are theoretical tools for fight-
ing decoherence, though they only apply to the circuit
model and not to the adiabatic approach.
Experimentalists have been able to couple qubits co-

herently, but these devices consist of just a handful of
qubits. In their new work, Bian et al. describe a de-
vice that employs 84 coupled superconducting loops or
“SQUIDS,” each meant to encode a qubit with two states:
current circulating clockwise in the loop, or anticlock-
wise. The SQUID can also exist in a superposition of
these two states.
Using this machine, Bian et al. computed what are

called Ramsey numbers. The Ramsey problem is an op-
timization challenge often recast as the “party problem”:
What is the smallest number of guests one can invite to
a party such that either there is a group of m guests
that all know each other, or there is a group of n guests,
none of whom know each other? F. P. Ramsey proved in
1928 [4] that such a number, called the Ramsey number
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R(m, n), always exists.
Describing Ramsey numbers in words is simple; find-

ing them for even small values of m and n turns out to
be a devilishly difficult combinatorial challenge. In fact,
R(5, 5) is unknown, and R(m, n) for m or n greater than
5 may remain forever out of reach. If quantum comput-
ers could help evaluate these elusive beasts, it would be
tremendously interesting. Based on the adiabatic algo-
rithm described in [5], Bian et al. devised a method that
maps the Ramsey number to the lowest energy state of
an array of coupled SQUIDs. Using this approach, they
computed R(3, 3) = 6, and R(m, 2) = m for values of m
from 4 up to 8, with each computation taking roughly a
few milliseconds.

It would be truly incredible if Bian et al. had found
these particular Ramsey numbers with a quantum com-
puter, even though the solutions are already known [we
know R(m, 2) = m for all m]. But there is a caveat
to interpreting their results: though they did compute
the Ramsey numbers correctly, they did so with a ma-
chine that has a decoherence rate a hundred-thousand
times higher than that of carefully controlled systems of
qubits [6]. Such high decoherence rates strongly suggest
that the SQUID loops are behaving as classical objects,
which would seem to rule out any chance of the com-
putational speed up that quantum computers promise.
Though there is a possibility that this type of “noisy”
adiabatic computing, referred to as quantum annealing,
can still work better than conventional computers regard-
less, it has not been proven and remains controversial.

So, how can we tell if we’ve got a machine capable
of performing a meaningful quantum computation (Fig.
1)? One test of a machine’s quantumness would be to
demonstrate that it is significantly faster or better at
solving a problem compared to any possible classical ap-
proach. This relative speed up should also become more
pronounced as the problem gets harder (say as the ma-
chine tries to factor larger and larger numbers.) For ex-
ample, Bian et al. would have to show they can calculate
larger Ramsey numbers with their device to demonstrate
this sort of scaling. Another option is to scrutinize the
inner workings of the computer itself and prove that the
elements (such as the SQUIDs in the D-Wave machine)
can form entangled states, which have no classical coun-
terpart [7].

Several groups have submitted the D-Wave machine to
the first type of test. One research team showed that the
D-Wave machine’s success rate at finding the solution to
a physics problem (the lowest energy state of an Ising
spin glass) was different than that of standard hardware
running a classical algorithm called simulated annealing
[8]. But it’s not clear these two approaches can be com-
pared, since they are fundamentally different by design
[9]. Separately, computer scientists demonstrated that
an optimization algorithm run on the D-Wave machine
was several thousand times faster than one run on a clas-
sical computer [10]. However, the D-Wave machine was
tailored for the task and arrived at an approximate so-

FIG. 1: How can we tell if a machine is a quantum computer?
One way is to prove that the machine can solve problems
faster or better than any classical approach. Another test is
to look inside the machine and show that its elements (qubits)
can form highly entangled states and support quantum super-
positions. To claim their device is a quantum computer, Bian
et al.[1] would need to show it meets one or both of these
challenges. (APS/Joan Tycko)

lution to the problem, while a less-specialized personal
computer was used to solve the same problem exactly.
Later theoretical work [11] showed that if an approxi-
mate solution is sufficient, it can be found efficiently with
a classical computer. In this case, classical simulated an-
nealing [12] outperforms the D-Wave machine [8]. At
this point, there is no clear evidence that the D-Wave
machine offers a computational speed up compared to
classical systems, or that the machine’s components ex-
hibit large-scale quantum effects.
The need to characterize and develop careful tech-

niques to control quantum systems may seem exces-
sively conservative to those eager to reap the rewards of
the quantum age. While uncharacterized devices might
give useful computational speed ups, one would need to
show they can solve an interesting computational prob-
lem faster than any classical method. So far, no quantum
device of any sort has met this challenge.
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