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Complex systems—like sandpiles prone to avalanches—may become uncontrollable if too much effort

is put into controlling them.
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While driving along a desert highway, we can easily
predict the consequences of turning the wheel and chang-
ing lanes. However, in heavy traffic this is not the case.
Traffic dynamics is complex and the response to any in-
dividual change depends on how the other drivers ac-
commodate it [I]. This type of cooperative dynamics in
complex systems makes controlling them a scientific and
technological challenge [2]. Now, writing in Physical Re-
view Letters, Pierre-André Noél and colleagues from the
University of California, Davis, show that the control of
complexity requires special care, as unexpected outputs
can result from external intervention [3]. In particular,
they show that attempts to avoid catastrophe can, in
fact, push the system towards it.

In many real-world situations, one would want to de-
vise simple schemes that can drive a system towards a
desired state by applying a small perturbation [4]. For
example, Youn and co-workers have shown that closing
a few key roads in Boston, London, and New York can
paradoxically improve the overall traffic in those cities
[5]. A framework to describe many complex dynamical
systems is offered by the theory of self-organized critical-
ity (SOC). Since it was first introduced by Bak, Tang,
and Weisenfeld [0], this framework has been applied to
study diverse systems such as earthquakes [7], neural dy-
namics [8], electric grids [9], water reservoirs [I0], and
snow avalanches [I1].

As a prototype for SOC, Bak et al. studied a model of a
sandpile to which grains are constantly being added (Fig.
. The model consists of a lattice in which each site rep-
resents a pile of grains, and at some threshold number of
grains, this pile becomes unstable and topples. Itera-
tively, one pile is randomly chosen and one grain added
to its top. When the pile topples, its total load is evenly
distributed among neighbors, increasing their load. This
load shedding might trigger an avalanche as neighboring
piles also topple, eventually cascading further, until all
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FIG. 1: Schematic representation of the sandpile model used
by Noél et al. When one grain falls on top of a pile with
three grains (a), the pile becomes unstable and topples. While
toppling, all grains in the pile are evenly distributed among
the four neighbors (b). The toppling cascades further as one
neighboring pile becomes unstable (four grains) and also top-
ples (c). (APS/Alan Stonebraker)

piles are below the threshold.

Bak et al. calculated the avalanche size defined as the
number of toppling piles in each cascade. They found
that sandpiles self-organize into critical states, with many
tiny avalanches and a handful of large avalanches span-
ning the entire system, thereby yielding a power-law
avalanche-size distribution. These systems are called
critical because they are reminiscent of the critical points
in a second-order phase transition (e.g., a ferromagnetic
transition), also characterized by power-law distributions
of certain parameters. But there is an important differ-
ence. In a phase transition, a control parameter (e.g.,
temperature) typically drives the system from one phase
to another across the critical point. By contrast, in SOC
there is no control parameter and the dynamics naturally
evolves towards criticality, which is why this sort of crit-
icality is called “self-organized.” This well-studied sand-
pile model can only be critical in the limit of vanishing
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dissipation. However, dissipation is expected for certain
real situations, as in water reservoirs because of evapora-
tion, for example. In the sandpile model with dissipation,
at each toppling, a fraction of grains participating in the
avalanche is removed, which usually prevents the larger
avalanches. The stronger the dissipation is, the larger
the departure from criticality.

Noél and co-workers followed the dissipative model to
address the question of how a complex network can be
controlled. They imagined a system in which one could
control the probability p that the next pile to be selected
is one grain away from toppling. Cascades are avoided
when g is lower than the natural value of the probability,
i.e., the one where the sandpile is left alone; when u
is raised, cascades occur more frequently. Surprisingly,
the authors found that avoiding toppling (i.e., choosing
too-small values of p) can cause very large avalanches to
occur more often, driving the system towards criticality.
The lower the value of p, the closer the system gets to
the critical state. For example, in the limit of vanishing
1, criticality is observed even when half of the grains
involved in the avalanche are dissipated. By contrast,
when toppling is favored, small avalanches occur and the
larger ones are suppressed.

In real situations, triggering cascades (large u) would
correspond to, for example, starting small forest fires
to control burning or dropping snow on unstable spots
in avalanche danger zones—allowing smaller avalanches
prevents large-scale avalanches from emerging. Accord-
ingly, avoiding cascades entirely (small ) would corre-
spond to extinguishing all forest fires or stopping snow
avalanches using physical barriers. As the work of Noél
et al. shows, being too zealous in controlling every small
fire or avalanche may actually set the stage for larger
catastrophes to occur.

The model also allowed the authors to address cost-
related questions. Controlling a system imposes a cost
for both the detailed interventions and for coping with
the aftermath of avalanches. Is it economically prefer-
able to have several small controlled cascades (large p)
or to handle a few large ones (small u)? The authors
defined cost functions of dealing with cascades that grow
nonlinearly with the avalanche size (large catastrophes
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are much more expensive than small ones) and analyzed
the dependence of the total cost on . They found an op-
timal intermediate value of p that minimizes long-term
costs of cascades, which will depend on the specificities
of the system.

With this simple approach, Noél et al. draw attention
to nontrivial outputs resulting from human management.
They show that, ideally, to avoid large scale uncontrolled
events, it is important to balance the natural evolution
of the system and the costs of human intervention. Di-
rect applications of their findings will imply more realistic
models tailored for each particular case.
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