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Viewpoint
Insect Swarms Go Critical
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The seemingly erratic motion of insects in a swarm exhibits the correlated behavior of particles near
the critical point of a phase transition.
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Scientists have found tantalizing evidence that diverse
biological systems, including the human brain, gene ex-
pression networks, bird flocks, and fish schools, behave
as though they are near the “critical point” of a phase
transition, like correlated spins in a magnet on the verge
of ordering. In flocks of starlings, for example, the veloc-
ity fluctuations of two distant birds mutually influence
each other. Such “scale-free” correlations, which occur
on all possible length scales in the flock, are a hallmark
of criticality. The idea that biological systems could be
described by the physics of phase transitions is exciting,
as it could point to a common organizing principle in the
evolution of seemingly different biological structures [1].
But direct evidence for this idea, which first emerged two
decades ago [2, 3], remains relatively scarce [4]. Now, a
statistical study of insect swarms by Alessandro Attanasi
and his colleagues at the University “La Sapienza” of
Rome in Italy provides new evidence in support of this
picture [5]. The researchers used video to track the tra-
jectories of hundreds of swarming midges (a type of small
fly commonly found in cities). By analyzing the statisti-
cal properties of trajectories in swarms of different sizes,
they show that midges exhibit the same scale-free corre-
lations as flocking starlings, and argue that the swarms
appear to always be poised at a critical point.

In statistical physics, the critical point on a phase dia-
gram often separates an ordered phase from a disordered
phase. For a biological system, being at such a point
could have certain advantages: If the system is too or-
dered, it cannot adapt or respond to change in its envi-
ronment; if it is too disordered, the response may not be
strong enough. At a critical point, a small action by one

FIG. 1: Scientists capture video of swarming midges. (Andrea
Cavagna/University “La Sapienza” of Rome)

or a few individuals in the group, such as responding to a
predator, can ripple to distant neighbors thanks to long-
range correlations. But before scientists can think about
how and why biological systems might have evolved to
be critical, more evidence that this actually happens is
needed.
In their new work, Attanasi and his colleagues set

out to the parks of Rome to record high-speed videos
of swarms of midges native to the area (Fig. 1). The
movies, taken from three different viewpoints against a
dark screen, were then processed to locate each midge
and reconstruct its trajectory (Fig. 2). The largest
dataset followed 600 midges flying for ten seconds.
Unlike graceful birds traveling in a flock, insects in a
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FIG. 2: Detailed trajectories of midges in a swarm. (Andrea
Cavagna/University “La Sapienza” of Rome)

swarm tend to just hover over a spot on the ground (such
as still water.) But the analysis of Attanasi et al. reveals
that the seemingly disorganized swarms have some so-
phisticated features. For each swarm, the authors calcu-
lated, from the midge trajectories, the correlation length
of velocity fluctuations, which they define as the charac-
teristic distance beyond which midge-midge correlations
decay below a given threshold. They define the average
distance between nearest-neighbor midges as the “con-
trol parameter”—akin to temperature or pressure in a
true phase transition, except that its value cannot be
changed for a given swarm. They also calculate a sus-
ceptibility that, in qualitative terms, measures the total
correlation between insects. Their analysis shows that
the correlation length and the magnitude of the suscep-
tibility grow with the number of insects in the swarm,
while the spacing between midges decreases.

Attanasi et al. interpret their data using the so-called
Vicsek model, which, in simple terms, attempts to model
collective motion by assuming that an individual in a
group essentially follows the trajectory of its neighbors,
with some deviations modeled as “noise.” In this model,
a phase transition from an ordered “flocking state” to a
disordered one occurs when the noise rises above a cer-
tain level. Now, in theory, true criticality only occurs in
infinite systems, a criterion effectively fulfilled by mag-
nets and other solids, since the number of elements they
contain are on the scale of Avogadro’s number. Biologi-
cal groups, on the other hand, are typically much smaller,
and their critical points are smeared out over an extended
transition region. Attanasi et al. show that the variation
with swarm size of the quantities they measure is, as ex-
pected in the Vicsek model for finite-size systems, sitting
near the maximally correlated point of their transition
region. In particular, midges seem to regulate their aver-
age distance—or, conversely, swarms regulate their pop-
ulation—so as to function at maximal possible criticality.

Attanasi et al.’s attractive message is that biological

groups, such as swarms, coordinate their behavior so as
to optimize the ability to react collectively (e.g., to avoid
predators or to attract sexual partners). Their obser-
vations, in fact, provide stronger evidence in support of
criticality in animal groups than the scale-free correla-
tions found in more ordered groups like starling flocks:
Because starlings “pick” a direction, they represent a sys-
tem in which rotational symmetry has been broken, and
in such systems, scale-free correlations occur even away
from the critical point.
One weakness of Attanasi et al.’s data, however, is that

they only allow comparisons of swarms that differ in num-
ber by an order of magnitude. This difference is too small
to ensure the reported size effects are evidence of critical-
ity. Larger groups will have to be analyzed in the future.
A more controlled environment might help too, although
recent laboratory experiments on swarms of fewer than
50 midges don’t indicate critical behavior [6], which may
signal that it arises only in “natural conditions”.
The criticality hypothesis has gained considerable pop-

ularity and empirical support in the field of neuroscience
[4, 7]. Researchers have discovered critical-like neuronal
avalanches and evidence that the background dynam-
ics of the brain has features of criticality [7]. Similarly,
empirical evidence suggests that genetic regulatory net-
works might also operate at criticality [8]. A “critical”
brain could have several functional advantages, such as
enhanced response to stimuli, the ability to exist in many
states, and optimal transmission and storage of informa-
tion [7]. Bolstering this idea, researchers have argued
that complex computations can only be performed by
“machines” operating at criticality [2, 9].
In these examples and the work by Attanasi et al, how-

ever, we are left with the challenge of understanding how
a biological system arrives and stays at criticality. While
magnets only exhibit critical behavior at a very precise
temperature, animal groups and neurons seem to operate
generically near critical points. So why is critical behav-
ior so ubiquitous in nature?
One popular proposal from the 1980s is “self-organized

criticality” (SOC), a collection of simple models and
mechanisms aimed at offering a common explanation for
why earthquakes, avalanches of flux lines in supercon-
ductors and solar flares are generically scale invariant
[10]. SOC models have been extended to biological sys-
tems, and not without reason: the critical avalanches ob-
served in neuronal activity, for example, are reminiscent
of earthquakes [10]. But the SOC picture isn’t entirely
satisfactory because it ignores functional aspects of bi-
ological systems. An alternative, and more biologically
centered, proposal [11] suggests living systems can, by
virtue of their need to have both an accurate and flex-
ible understanding of each other, adapt spontaneously
towards a critical state. Criticality that emerges in this
way may, at larger time scales, provide an optimal trade-
off between robustness and evolvability.
It would be nice to see all the pieces of evidence crys-

talizing into a robust theory of criticality in biological
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systems. Extracting quantities like the order parameter,
correlation lengths and susceptibilities from real systems
is essential to point scientists towards the right model.
As beautifully shown by Attanasi et al., unsuspecting
midges could help a lot!

This research is published inPhysical Review Letters
and PLoS Computational Biology.
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