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Putting Bounds on Biochemical Noise
Biochemical networks are often poorly characterized, but researchers can still derive limits
on the level of the random variations or noise in different network components.

by Pieter Rein ten Wolde∗

A ll processes inside a living cell are controlled by
networks of biomolecules that chemically interact
with each other. These interactions are fundamen-
tally probabilistic in nature, and indeed, it is now

widely recognized that biochemical networks can be highly
stochastic. In addition to being noisy, these systems are often
sparsely characterized and highly nonlinear. This makes it
difficult, if not impossible, to make any general strong state-
ment on their behavior. Andreas Hilfinger, from Harvard
University, and his colleagues now show that it is possible
to put firm bounds on the noise characteristics of biochemi-
cal networks, even when only parts of the system are known
[1].

Biochemical networks are the information processing de-
vices of life. They determine whether cells should differenti-
ate or proliferate, stay put or move, or even continue to live
or die. The components that form these networks—proteins,
DNA—typically find each other by diffusion, a stochas-
tic process. And even when they do find each other, the
outcome of their interaction is also inherently probabilis-
tic. These stochastic interactions make the system noisy (see
Fig. 1) especially when the concentrations are low, as is of-
ten the case inside the cell [2]. Gene regulatory proteins,
for instance, are often present in nanomolar concentrations,
which, for a micrometer-sized bacterium like E. coli, cor-
respond to just a few copies per cell. While some organ-
isms exploit noise, for example, in hedging their response
on the prospects of a changing environment, in many cases
the question is how reliably cells can operate in the face of
biochemical noise.

Understanding the noise characteristics of cellular sys-
tems is currently one of the key questions in biology, yet
progress in answering this question has, so far, been lim-
ited. One reason is that cellular systems are incredibly com-
plex, containing many different components that interact in
a multitude of ways. High-throughput techniques in the
past decade have made it possible to identify these compo-
nents on an unprecedented scale, but their abundances and
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Figure 1: A biochemical network consists of many different
molecules interacting in complex ways. Because of the stochastic
nature of chemical interactions, the abundances of particular
components (highlighted in blue and red) can be highly noisy, as
depicted in the lower graph. Researchers have shown that bounds
can be placed on this noise, even when much of the network
remains poorly characterized. (APS/Alan Stonebraker)

the rates of the interactions between them often remain un-
known.

Even if we had a more complete picture of the component
abundances and their reaction rates, we would still often be
unable to describe how the abundances change over time be-
cause of our lack of expertise in describing the dynamics of
biochemical networks. Most theoretical approaches rely on a
linearization of the rate equations and assume that the com-
ponents are well stirred and obey Gaussian statistics. How-
ever, in living cells, it is well known that the components are
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often distributed nonuniformly in space and that the inter-
actions between them can be highly nonlinear. Such systems
are notoriously difficult to treat analytically.

So, can we make firm general statements about the noise
characteristics of components embedded in systems that are
only sparsely determined? Hilfinger et al. now show that
we can. By combining ideas and concepts from statisti-
cal physics and queuing theory (the mathematical theory
of waiting lines), they derive general relationships between
the average abundances, lifetimes, changes in the number
of copies due to the reactions, as well as the variances and
covariances, which describe how pairs of components fluc-
tuate relative to each other. The resulting expressions make
it possible to derive fundamental bounds on these quanti-
ties for certain components, even when the dynamics of the
other components are unknown or unspecified.

Hilfinger et al. apply their general framework to two inter-
esting and important problems. The first deals with protein
complexes, which are well-defined assemblies of many dif-
ferent cellular proteins. Unbalanced production rates result
in an excess of some species and a shortage of others. Cellu-
lar systems can minimize this imbalance by tuning gene ex-
pression (i.e., protein production) rates, but they can never
fully eliminate it because of fluctuations in gene expression.
Applying their framework to this problem, Hilfinger et al.
showed that high assembly efficiency, i.e., a high average
fraction of proteins that end up in the complex rather than
being “wasted” through degradation, produces large fluctu-
ations in the pool of free proteins. As an example, suppose
protein A and protein B combine in a cell to give complex C.
If there is a shortage in A, a highly efficient assembly process
will rapidly utilize any new copies of A, thus reinforcing the
shortage. This shows that while fluctuations can result from
small copy-number (e.g., gene expression) fluctuations, they
may also be an unavoidable byproduct of efficient processes.

In a second application, the authors prove that fluctua-
tions may similarly be a consequence of effective control.
Living cells abound with control systems—regulatory chem-
ical networks that maintain stability in key processes or
quantities, such as the osmotic pressure. While these control
systems keep fluctuations in some parts of the system under
control, Hilfinger et al. show that these stabilizers inevitably
generate large fluctuations in other parts of the system.

So far, cellular biophysics has tried to identify and char-
acterize the dynamics of small network motifs, the building
blocks of cellular networks. The trouble is that these motifs

are not isolated, but are instead embedded in larger systems
that are often poorly characterized. The work of Hilfinger et
al. shows that it is possible to derive general bounds on the
behavior of these motifs, irrespective of how they affect and
are affected by the rest of the system. These bounds yield
testable predictions on what these systems can and cannot
do in, for example, noise reduction, and can be used to test
kinetic models against data.

More generally, the paper highlights progress being made
in deriving fundamental limits on the behavior of a wide
range of biological processes. For example, recent work on
cellular sensing proved that the sensing precision of all equi-
librium systems is fundamentally limited by the number of
receptors [3]. This means that the sensing error cannot be
reduced below a hard bound set by the number of receptors
that bind the ligand molecules. Related efforts have found
limits for cellular sensing in nonequilibrium systems [4], as
well as for the fidelity of cellular “error-correction” schemes
called kinetic proofreading [5–7]. The work of Hilfinger et al.
provides hope that bounds like these can be generalized to
any cellular biochemical network.

This research is published in Physical Review Letters.
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