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A More Efficient Way to Describe
Interacting Quantum Particles in 1D
A new method for calculating the time-evolving behavior of interacting quantum particles in
one dimension can be used to model experiments that were previously beyond description.

by Jérôme Dubail∗

W hether attempting to crack the mystery of
high-temperature superconductors or describe
a cloud of ultracold atoms, theorists face a sim-
ilar question: What is the best way to model the

behavior of many interacting quantum particles? Most mod-
els for such systems are extremely hard to solve analytically,
or even simulate on a classical computer. In this context,
models for one-dimensional (1D) systems are special be-
cause they have mathematical properties that often permit
an exact mathematical solution. But even these solvable
models aren’t ideal for describing real experiments, par-
ticularly those involving many out-of-thermal-equilibrium
particles, like a cloud of atoms being released from a trap.
A way to realize this description for a large class of widely
used 1D models has now been reported in two independent
papers, one by Olalla Castro-Alvaredo from the University
of London, UK [1], and colleagues and the other by Bruno
Bertini from the International School for Advanced Studies
in Trieste, Italy, and colleagues [2].

A beautiful method of realizing quantum particles in a 1D
setting is to confine ultracold atoms in an elongated (cigar-
shaped) trap [3]. If the atoms are bosons, this system can be
described by the 1D “delta Bose gas.” In this paradigmatic
model, particles move solely along a line. They also mutu-
ally repel each other, but only when they are at exactly the
same position, hence the “delta” in the model’s name. In
the absence of an external trapping potential, this model is
exactly solvable in the sense that the particles’ energy spec-
trum can be calculated [4].

What facilitates solving such models is to use the guess,
or ansatz, for the wave function of the particles that was
discovered by Hans Bethe in 1931 [5]. The Bethe ansatz
expresses the otherwise complicated energy eigenstates of
the Hamiltonian of the many-body system in terms of scat-
tering processes of pairs of particles. The eigenstates are
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Figure 1: Castro-Alvaredo et al. [1] and Bertini et al. [2] used a
hydrodynamics approach to describe interacting quantum particles
in 1D (bottom). The approach takes a zoomed-out picture of the
particles (middle), viewing it on a length scale l that is much longer
than the average distance d between particles. In this way, the
particles appear as a continuous medium, like a fluid. A
description of the system on a very long length scale L can then be
calculated, such as how its mass density varies in space (top) and
how this quantity evolves in time. (APS/Carin Cain)

expressed in terms of the so-called Bethe equations, which
relate the particles’ momenta to the phases they pick up
when they bounce against each other. Although theorists
have relied on the Bethe-ansatz method for decades, it is
not a flexible technique that can be used to model all kinds
of experimental situations in 1D. In particular, most Bethe-
ansatz solvable models, also known as integrable models,
cannot describe atoms in a nonuniform trapping potential or
a chain of atomic spins in a spatially varying magnetic field.
The reason is that doing so would require adding terms to
the Hamiltonian that break the mathematical properties that
made the models solvable in the first place.

Castro-Alvaredo et al. [1] and Bertini et al. [2] obtained
a more versatile way of dealing with those 1D models by
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adopting a hydrodynamics approach. Here, one takes a
“zoomed-out” view of the particles, such that they no longer
appear as individual particles but, instead, as one continu-
ous fluid (Fig. 1). The approach is used in many areas of
physics because it replaces the complex problem of describ-
ing large numbers of interacting particles with the simpler
problem of describing a fluid in terms of local characteristics
like its mass density and energy density. In this case, the re-
searchers formulated a general hydrodynamics framework
that is applicable to most Bethe-ansatz solvable models. The
inputs for this framework are the Bethe equations; the out-
put is a set of differential equations that can be solved to
find the dynamics of the fluid-like system. These solutions
become more accurate at length scales much greater than the
average separation between particles.

The setup of the two papers differs slightly: Castro-
Alvaredo et al. worked within the framework of integrable
quantum field theory. In contrast, Bertini et al. studied inte-
grable spin chains, which are discrete lattice models in 1D.
However, the two approaches rely on the same underlying
mathematics and reach analogous results.

What is fascinating about the hydrodynamics framework
developed by Castro-Alvaredo et al. and Bertini et al. is
that the differential equations they derived have a surpris-
ingly simple and general form. That this was possible was
largely unexpected. To see this, it’s worth reviewing two
basic assumptions of the hydrodynamics description of any
system [6]. The first is that each point in the fluid-like sys-
tem is (locally) at equilibrium. This allows the system to be
entirely characterized by local quantities, such as its parti-
cle density, energy density, momentum density, and so on.
Each of these densities corresponds to a quantity, or con-
served charge, that is conserved for the full system: the total
number of particles, the total energy, the total momentum,
and so on. The second assumption is that there is a con-
servation law for each density in the form of a continuity
equation, which relates the time evolution of the density to
a charge current. Hence, more conserved charges means
more continuity equations, which complicates the hydrody-
namics description. Now, the Bethe-ansatz-solvable models
that Castro-Alvaredo et al. and Bertini et al. studied pos-
sess an infinite number of conserved charges. So one might
have thought that developing a hydrodynamics approach
would quickly turn into an intractable problem. The two
teams demonstrate the opposite. By carefully choosing the
right mathematical representation for the set of conserved
charges, they were able to identify the currents associated
with each of them.

The work by the two teams opens exciting possibilities.
Specialists in integrable systems and mathematical physics
will likely attempt to prove the authors’ hydrodynamics
formulation. More generally, the results provide a natu-
ral framework with which to describe the time evolution of
interacting particles that are out of thermal equilibrium, a
class of system that is frequently the focus of modern exper-
iments. One example is the quantum Newton’s cradle [7],
in which two 1D clouds of interacting atoms bounce against
each other like the balls in the famous desktop office toy. It
is known that the right microscopic model to describe this
nonequilibrium system is the 1D delta Bose gas. What has
been elusive, however, is the ability to calculate (even nu-
merically) the evolution of the atom density for more than
a few dozen atoms. The new framework makes such cal-
culations possible for large atomic clouds and for arbitrary
interaction strength, which could perhaps allow direct com-
parisons between model predictions and experimental data.
In addition, the simplicity of the hydrodynamics equations
found by Castro-Alvaredo et al. and Bertini et al. mean that
they can be used by someone who doesn’t have a detailed
knowledge of the Bethe-ansatz literature. In fact, the partial
differential equations that they found can (in principle) be
implemented and solved rather easily on a laptop.

This research is published in Physical Review X and Physical
Review Letters.
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