
Dissipation-induced coherence and stochastic resonance of an open two-mode
Bose-Einstein condensate

D. Witthaut,1,* F. Trimborn,2 and S. Wimberger3

1QUANTOP, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
2Institut für Mathematische Physik, TU Braunschweig, D-38106 Braunschweig, Germany
3Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany

�Received 27 October 2008; published 23 March 2009�

We discuss the dynamics of a Bose-Einstein condensate in a double-well trap subject to phase noise and
particle loss. The phase coherence of a weakly interacting condensate, experimentally measured via the con-
trast in an interference experiment, as well as the response to an external driving becomes maximal for a finite
value of the dissipation rate matching the intrinsic time scales of the system. This can be understood as a
stochastic resonance of the many-particle system. Even stronger effects are observed when dissipation acts in
concurrence with strong interparticle interactions, restoring the purity of the condensate almost completely and
increasing the phase coherence significantly. Our theoretical results are backed by Monte Carlo simulations,
which show a good qualitative agreement and provide a microscopic explanation for the observed stochastic
resonance effect.
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I. INTRODUCTION

Stochastic resonance �SR� is a strongly surprising yet very
general effect in nonlinear dynamical systems. Against our
naive understanding, the response of a system to an external
driving can be facilitated if an appropriate amount of noise is
added. In fact, the maximum of the response—the stochastic
resonance—is found if the time scale of the noise matches an
intrinsic time scale of the system. The effect was first de-
scribed for strongly damped classical systems such as the
overdamped particle in a driven double-well trap. In this case
the noise is strong enough to induce the transition between
the wells, whereas it is still weak enough not to randomize
the dynamics completely. The particle will then hop to and
fro almost deterministically if the average transition time be-
tween the wells due to the noise equals half of the driving
period �1�. By now, a stochastic resonance has been shown in
a variety of systems; an overview can be found in the review
articles �2–5�. In addition to numerous examples in classical
dynamics, stochastic resonance has also been found in a va-
riety of quantum systems �see, e.g., �5–11��.

Recently, there has been an increased interest in the ef-
fects of dissipation and the possibilities to control these in
interacting many-body quantum systems. For instance, the
entanglement in a spin chain assumes an SR-like maximum
for a finite amount of thermal noise �12�. Methods to attenu-
ate phase noise for an open two-mode Bose-Einstein conden-
sate �BEC� were discussed in �13�, and the effects of particle
loss on the spin squeezing of such a system were analyzed in
�14�. Furthermore, it has been shown that dissipative pro-
cesses can be tailored to prepare arbitrary pure states for
quantum computation and strongly correlated states of ultra-
cold atoms �15,16� or to implement a universal set of quan-
tum gates �17�. Actually, a recent experiment has even
proven that strong inelastic collisions may inhibit particle

losses and induce strong correlations in a quasi-one-
dimensional �quasi-1D� gas of ultracold atoms �18,19�.

In the present paper, we investigate the effects of noise
and dissipation for a BEC in a double-well trap. The essen-
tial idea has been introduced in a recent letter �20�, and here
we extend the discussion to a detailed analysis of the pre-
dicted SR phenomenon. The setup under consideration has
been experimentally realized by several groups only in the
last few years �21–26�. Ultracold atoms in optical potentials
have the enormous advantage that they allow us to observe
the quantum dynamics of an interacting many-particle sys-
tem in situ. Thus they serve as excellent model systems,
bringing together aspects of nonlinear dynamics, solid-state
physics, and the theory of open quantum systems. Here we
show that the coherence of the two condensate modes as-
sumes a maximum in the fashion of the stochastic resonance
effect for a finite dissipation rate, which matches the time
scales of the intrinsic dynamics. In this case the particle loss
is strong enough to significantly increase the condensate pu-
rity, whereas it is still weak enough not to dominate the
dynamics completely. Similarly the response to an external
driving is increased if a proper amount of dissipation is
present. Even more remarkable results are found when dissi-
pation acts in concurrence with strong interparticle interac-
tions, leading to an almost complete revival of the purity of
the BEC. These effects are of considerable strength for real-
istic parameters and thus should be readily observable in
ongoing experiments.

This paper is organized as follows. First, we introduce the
theoretical description of the open two-mode Bose-Hubbard
system. We discuss the main sources of noise and dissipation
and derive the corresponding mean-field approximation of
the many-particle system. The resulting dynamics for weak
interparticle interactions is analyzed in Sec. III. It is shown
that the phase contrast between the two modes assumes an
SR-like maximum if the time scales of tunneling and dissi-
pation are matched. This result is explained within the mean-
field approximation as well as for the underlying many-*dirk.witthaut@nbi.dk
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particle quantum dynamics with Monte Carlo simulations
backing up the approximative results. The response of the
open system to an external driving is discussed in Sec. IV.
The amplitude of the forced oscillation also shows a pro-
nounced stochastic resonance effect. Section V then investi-
gates the case of a strongly interacting BEC, which is a prob-
lem of both fundamental theoretical interest as well as high
experimental relevance. The interplay between interactions
and dissipation can restore the purity of the condensate al-
most completely and significantly increase the phase coher-
ence in comparison with situations where one of the two is
weak or missing. This counterintuitive effect is robust and
can be explained by the appearance of novel nonlinear eigen-
states.

II. NOISE AND DISSIPATION IN A TRAPPED BEC

The basic setup under consideration is depicted in Fig. 1.
Ultracold atoms are confined in a double-well trap that can
be realized, e.g., by superimposing an optical lattice with an
optical dipole trap �21–23�, in a bichromatic optical lattice
�24,25�, or on an atom chip �26�. We consider the case of a
deep but tight trap, which is tuned such that only one mode
in each well is bounded and thus significantly populated. All
scattering solutions of the model form a continuum of un-
bound modes which adds up to the heat bath �see below�
�27�. One major assumption in the derivation of this model is
that the level spacing between the trap modes is significantly
larger than the self-energy of the atom-atom interactions in
the trap: UN���trap. For a typical trap frequency around
100 Hz, this restricts the atom number to a few hundreds.
Note that this model is not compatible to the Thomas-Fermi
approximation, where the many-body interaction dominates
the kinetic energy. Likewise, it is not directly applicable to
the case of two weakly coupled 1D quasicondensates �28,29�
due to the excitation of longitudinal modes.

The unitary dynamics of the atoms is then described by
the two-mode Bose-Hubbard Hamiltonian �30–33�,

Ĥ = − J�â1
†â2 + â2

†â1� + �2n̂2 + �1n̂1

+
U

2
�n̂1�n̂1 − 1� + n̂2�n̂2 − 1�� , �1�

which describes both the dynamics of the condensed frac-
tion, as well as the noncondensate, but nevertheless trapped

atoms. The operators âj and âj
† are the bosonic annihilation

and creation operators in mode j and n̂j = âj
†âj is the corre-

sponding number operator. Furthermore, J denotes the tun-
neling matrix element between the wells, U denotes the in-
teraction strength, and � j denotes the on-site energy of the jth
well. We set �=1, thus measuring all energies in frequency
units.

In order to clarify the algebraic structure of the model and
to analyze the dynamics in the Bloch representation we in-
troduce the collective operators,

L̂x =
1

2
�â1

†â2 + â2
†â1� ,

L̂y =
i

2
�â1

†â2 − â2
†â1� ,

L̂z =
1

2
�â2

†â2 − â1
†â1� , �2�

which form an angular-momentum algebra su�2� with quan-
tum number �=N /2 �30–35�, where N is the actual particle
number. Hamiltonian �1� then can be rewritten as

Ĥ = − 2JL̂x + 2�L̂z + UL̂z
2 �3�

up to terms only depending on the total number of atoms.
Here, �=�2−�1 denotes the difference of the on-site energies
of the two wells.

A model for noise and dissipation in a deep trapping po-
tential has been derived by Anglin �27� and later extended by
Ruostekoski and Walls �36� to the case of two weakly
coupled modes. The dissipation of energy is described by the
coupling to a thermal reservoir consisting of noncondensate
modes. The dynamics is then given by the master equation,

�̇̂ = − i�Ĥ, �̂� −
�p

2 �
j=1,2

�n̂j
2�̂ + �̂n̂j

2 − 2n̂j�̂n̂j�

−
�in

2 �
j=1,2;�

�Ĉj�
† Ĉj��̂ + �̂Ĉj�

† Ĉj� − 2Ĉj��̂Ĉj�
† � �4�

with the Lindblad operators

Ĉj+ = âj
†

and

Ĉj− = e�/2��j−	+Un̂j�âj , �5�

describing growth and depletion of the condensate.
Let us briefly discuss the effects of the noise and dissipa-

tion terms. The second term ��p in Eq. �4� describes phase
noise due to elastic collisions with the background gas at-
oms. It is usually the dominating contribution, effectively
heating the system, but leaving the total particle number in-
variant. If only phase noise is present, the system relaxes to
an equilibrium state where all coherences are lost and all
Dicke states �n1 ,N−n1�� â1

†n1â2
†N−n1�0,0� are equally popu-

lated,

FIG. 1. �Color online� The open double-well trap considered in
the present paper.
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	n1,N − n1��̂�n1�,N − n1�� =
1

N + 1

n1,n1�

, �6�

as long as J�0 �37,38�. This corresponds to a thermal state

of infinite temperature with 	L̂�=0. The remaining terms
��in in the master equation �Eq. �4�� describe amplitude
noise, i.e., the growth and depletion of the condensate due to
inelastic collisions with the background gas. In contrast to
phase noise, amplitude noise heats and cools the system. If
both amplitude and phase noise are present, the system will
relax to the proper thermal state with a density operator

�̂�exp�−��Ĥ−	n̂�� �27�.
In current experiments amplitude noise and dissipation

are usually extremely weak in comparison to phase noise
�36�, if it is not introduced artificially as for example by
forced evaporative cooling during the preparation of the
BEC. For example, phase noise damps Josephson oscilla-
tions on a time scale of a few hundred milliseconds in the
experiments, while less than 10% of the atoms are lost dur-
ing a 30 s experiment �21–23�. This is much too weak to
produce significant effects, such that the terms describing the
particle exchange with the background gas in Eq. �4� can be
neglected, �in
0.

However, nontrivial effects of dissipation such as the sto-
chastic resonance discussed below require strong, tunable,
and biased loss rates. A well-controllable source of dissipa-
tion can be implemented artificially by shining a resonant
laser beam onto the trap, which removes atoms with the site-
dependent rates �aj from the two wells j=1,2. For such a
laser beam focused on one of the wells an asymmetry of fa
= ��a2−�a1� / ��a2+�a1�=0.5 should be feasible. In magnetic
trapping potentials, a similar effect can also be achieved by a
forced rf transition to an untrapped magnetic substate �39�.

Therefore the above master equation must be extended to
take into account the single-particle losses. The additional
term describing the particle loss is well established and rou-
tinely used in the context of photon fields �38�. In the fol-
lowing we will thus consider the dynamics generated by the
master equation:

�̇̂ = − i�Ĥ, �̂� −
�p

2 �
j=1,2

�n̂j
2�̂ + �̂n̂j

2 − 2n̂j�̂n̂j�

−
1

2 �
j=1,2

�aj�âj
†âj�̂ + �̂âj

†âj − 2âj�̂âj
†� . �7�

The macroscopic dynamics of the atomic cloud is to
a very good approximation �32,33,40� described by a
mean-field approximation, considering only the expectation

values sj�t�=2 tr�L̂j�̂�t�� of the angular-momentum operators
�Eq. �2�� and the particle number n�t�=tr��n̂1+ n̂2��̂�t��. The
evolution equations for the Bloch vector s= �sx ,sy ,sz� are
then calculated starting from the master equation via ṡ j

=2 tr�L̂j�̇̂� with the exact result �cf. �40��,

ṡx = − 2�sy − U�sysz + �yz� − T2
−1sx,

ṡy = 2Jsz + 2�sx + U�sxsz + �xz� − T2
−1sy ,

ṡz = − 2Jsy − T1
−1sz − T1

−1fan ,

ṅ = − T1
−1n − T1

−1fasz, �8�

where we have defined the transversal and longitudinal
damping times by

T1
−1 = ��a1 + �a2�/2 and T2

−1 = �p + T1
−1. �9�

These equations of motion resemble the celebrated Bloch
equations in nuclear-magnetic resonance �41,42�, with some
subtle but nevertheless important differences. The longitudi-
nal relaxation is now associated with particle loss and, more
important, the dynamics is substantially altered by the
U-dependent interaction term �21,30,31�.

The exact equations of motion �8� still include the cova-
riances

� jk = 	L̂jL̂k + L̂kL̂j� − 2	L̂j�	L̂k� . �10�

The celebrated mean-field description is now obtained by
approximating the second-order moments by products of ex-
pectation values such that � jk
0 �30–33�.

In the following, we will show that a finite amount of
dissipation induces a maximum of the coherence which can
be understood as a stochastic resonance effect. In this discus-
sion we have to distinguish between two different kinds of
coherence, which will both be considered in the following.
First of all we consider the phase coherence between the two
wells, which is measured by the average contrast in interfer-
ence experiments as described in �21–23� and given by

�t� =
2�	â1

†â2��
	n̂1 + n̂2�

=
�sx�t�2 + sy�t�2

n�t�
. �11�

Second, we will analyze how close the many-particle quan-
tum state is to a pure Bose-Einstein condensate. This prop-
erty is quantified by the purity

p = 2 tr��̂red
2 � − 1 �12�

of the reduced single-particle density matrix �32,33,35,43�,

�̂red =
1

N
�	â1

†â1� 	â1
†â2�

	â2
†â1� 	â2

†â2�
 . �13�

One can easily show that the purity is related to the Bloch
vector s by p= �s�2 /n2. A pure BEC, corresponding to a prod-
uct state, is, of course, characterized by p=1. For smaller
values of p, there is a growing amount of trapped but non-
condensate atoms. This depletion of the BEC results from the
many-particle interactions, which destroy the macroscopic
product state. However, in leading order these do not lead to
scattering to the background gas or to higher unpopulated
modes, respectively �cf. �27,36��.

III. DISSIPATION-INDUCED COHERENCE
IN A WEAKLY INTERACTING BEC

In this section, we show that a proper amount of dissipa-
tion can indeed increase the phase coherence �11� of a two-
mode BEC similar to the stochastic resonance effect. For
simplicity, we start with the linear case U=0, where the
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mean-field equations of motion for the expectation values
�Eq. �8�� are exact. The linear equations resemble the Bloch
equations for driven nuclear spins in the rotating wave ap-
proximation �42�, which are known to show a pronounced
stochastic resonance effect �41�: the amplitude of forced os-
cillations of the spins given by sy assumes a maximum for a
finite value of the relaxation rates T1

−1 and T2
−1, provided

these are coupled. For the two-mode BEC considered here
this is automatically the case as given by Eq. �9�. Thus we
also expect a maximum of the steady-state value of the phase
coherence �11� for a finite value of T1

−1.
Let us now determine the steady-state value of the con-

trast �11� which quantifies the phase coherence of the two
wells as a function of the system parameters and the relax-
ation rates. Obviously, the only steady state in the strict sense
is given by s=0 and n=0, corresponding to a completely
empty trap. However, the system rapidly relaxes to a quasi-
steady-state where the internal dynamics is completely fro-
zen out and all components of the Bloch vector and the par-
ticle number decay at the same rate,

s�t� = s0e−�t, n�t� = n0e−�t. �14�

Substituting this ansatz into the equations of motion �8�, the
quasi-steady-state is determined by the eigenvalue equation,

M�
sx0

sy0

sz0

n0

� = ��
sx0

sy0

sz0

n0

� �15�

with the matrix

M =�
T2

−1 2� 0 0

− 2� T2
−1 − 2J 0

0 2J T1
−1 faT1

−1

0 0 faT1
−1 T1

−1
� , �16�

which is readily solved numerically.
Figure 2 depicts the smallest real eigenvalue � corre-

sponding to the most stable quasi-steady-state as a function
of J and 1 /T1 for the noninteracting case and �=0. It deter-
mines the basic time scale of the system and is essentially
proportional to the dissipation rate T−1.

Figure 3 shows the resulting values of the contrast  as a
function of the dissipation rate T1

−1 and the tunneling rate J
for U=�=0 and �p=5 s−1. For a fixed value of one of the
parameters, say J, one observes a typical SR-like maximum
of the contrast for a finite value of the dissipation rate 1 /T1
as shown in part �b� of the figure. In particular, the contrast is
maximal if the time scales of the tunneling and the dissipa-
tion are matched according to

4J2 
 fa
2T1

−2 + fa�pT1
−1. �17�

Furthermore, the contrast �J� shows a similar maximum for
a finite value of the tunneling rate J when the dissipation rate
is fixed as shown in Fig. 3�c�. Contrary to our intuition this
shows that an increase in the coupling of two modes can
indeed reduce their phase coherence.

In the special case �=0, illustrated in Fig. 3, one can solve
the eigenvalue problem �Eq. �15�� exactly. In this case one
has sx=0 and the contrast  is related to the eigenvalue � by

 =
2J�T1

−1 − ��
faT1

−1�T2
−1 − ��

. �18�

Evaluating the roots of the characteristic polynomial to de-
termine � leads to an algebraic equation of third order which
can be solved analytically. The resulting expressions are
quite lengthy, but the limits for small and large values of the
tunneling rate are readily obtained as
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FIG. 2. �Color online� Decay rate � of the quasi-steady-state
�14� as a function of the tunneling rate J and the dissipation rate
1 /T1 for �p=5 s−1 and U=�=0.
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FIG. 3. �Color online� Contrast  of the quasi-steady-state �14�
as a function of the tunneling rate J and the dissipation rate 1 /T1 �a�
for �p=5 s−1 and U=�=0 and �b� for a fixed value of the tunneling
rate J=2 s−1 and �c� a fixed value of the dissipation rate
1 /T1=2 s−1. The dashed-dotted red lines represent the approxima-
tions �Eq. �19�� for small and large values of J.
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faT1

−1

2J
for J � T1

−1. �19�

These approximations are plotted as dashed red lines in Fig.
3�c�. Their intersection given by Eq. �17� gives a very good
approximation for the position of the SR-like maximum of
the contrast �J�.

An important experimental issue is the question whether
the quasi-steady-state is reached fast enough, such that the
typical SR-like curve of the contrast as shown in Fig. 3 can
be observed while still enough atoms are left in the trap.
To answer this question, we integrate the equations of
motion �8� starting from a pure BEC with s�0� /n�0�
= ��3 /2,0 ,1 /2� and n�0�=100 particles. Figure 4�a� shows
the relaxation of the contrast for J=4 s−1 and T1=1 s. The
steady-state value is nearly reached after t=1 s when still
40% of the atoms are left in the trap. Figure 4�b� shows the
development of the contrast �J� in time. It is observed that
the characteristic SR-like maximum is already well devel-
oped after 1 s, where roughly half of the atoms are lost. Thus
we conclude that the SR-like maximum of the contrast
should be observable in ongoing experiments.

The stochastic resonance effect introduced above is robust
and generally not altered by changes in the system param-
eters or in the presence of weak interparticle interactions. For
instance, a change in the bias � of the on-site energies of the
two wells preserves the general shape of �1 /T1 ,J� shown in
Fig. 3 and especially the existence of a pronounced SR-like
maximum. At most, the function �1 /T1 ,J� is stretched,
shifting the position of the SR-like maximum. This shift is

illustrated in Fig. 5�a� where we have plotted the contrast as
a function of J for the dissipation rate T1

−1=2 s−1 and differ-
ent values of �. Thus, this effect provides a useful tool to
shift the maximum to values of J, which are easier accessible
in ongoing experiments.

Similarly, the position of the maximum of the coherence
�J� is shifted in the presence of weak interparticle interac-
tions. An interacting BEC will usually not show a simple
exponential decay of form �14� because the instantaneous
decay rate depends on the effective interaction strength
Un�t�, which also decreases �44–46�. However, the discus-
sion of quasi-steady-states and instantaneous decay rates is
still useful if the decay is weak. In this case the system can
follow the quasi-steady-states adiabatically and the decay of
the population is given by

dn�t�
dt

= − �„n�t�…n�t�

and

ds�t�
dt

= − �„n�t�…s�t� , �20�

in good approximation. Substituting this ansatz into the
equations of motion �8� yields four coupled nonlinear alge-
braic equations, which can be disentangled with a little alge-
bra. For a given number of particles n, the instantaneous
decay rate � is obtained by solving the fourth-order algebraic
equation,

��� − T2
−1�2 + �Un�2�� − T1

−1�2���� − T1
−1�2 − fa

2T1
−2�

+ 4J2fa
2T1

−2�� − T1
−1��� − T2

−1� = 0. �21�

The Bloch vector for the corresponding quasi-steady-state is
then given by

sx0 =
� − T1

−1

� − T2
−1

�� − T1
−1�2 − fa

2T1
−2

2Jfa
2T1

−2 Un2,

sy0 =
�� − T1

−1�2 − fa
2T1

−2

2JfaT1
−1 n ,

sz0 =
� − T1

−1

faT1
−1 n . �22�

The fourth-order equation �Eq. �21�� yields four solutions for
the decay rate �. Discarding unphysical values, one finds
either one or three quasi-steady-states. This appearance of
novel nonlinear stationary states has been discussed in detail
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as a function of the tunneling rate �a� for U=0
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as a function of the effective interaction strength
g=Un for �=0. The remaining parameters are
�p=5 s−1 and T1

−1=2 s−1.
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in the context of nonlinear Landau-Zener tunneling �44–50�
and nonlinear transport �51,52�.

The resulting contrast �J� in a quasi-steady-state is
shown in Fig. 5�b� for different values of the effective inter-
action constant g=Un. One observes that the position of the
SR-like maximum of the contrast is shifted to larger values
of the tunneling rate, while the height remains unchanged.
Furthermore the shape of the stochastic resonance curve �J�
is altered, becoming flatter for J�Jmax and steeper for
J�Jmax. For even larger values of the interaction constant
Un one finds a bifurcation into three distinct quasi-steady-
states as introduced above. This case will be discussed in
detail in Sec. V.

The reasons for the occurrence of an SR-like maximum of
the contrast in terms of the underlying many-particle dynam-
ics are illustrated in Fig. 6. To obtain these results we have
simulated the dynamics generated by the master equation
�Eq. �7�� using the Monte Carlo wave-function �MCWF�
method �53–55� averaging over 100 quantum trajectories.
For a given particle number n, the probabilities P to obtain
the population imbalance sz and the relative phase � in a
projective measurement are thereby given by

P�sz� = tr��sz�	sz��̂�

and

P��� = tr����	���̂� , �23�

where the L̂z eigenstates

�sz� = �n/2 − sz,n/2 + sz�

with

sz = − n/2,− n/2 + 1, . . . ,n/2 �24�

and the phase eigenstates

��� ª
1

�n + 1
�

sz=−n/2

+n/2

ei�sz�sz�

with

� = 0,2�
1

n + 1
, . . . ,2�

n

n + 1
�25�

each form a complete basis.
Part �a� of Fig. 6 shows a histogram of the probabilities to

observe the relative population imbalance sz /n and the rela-
tive phase � in a single experimental run for three different
values of the tunneling rate J after the system has relaxed to
the quasi-steady-state. With increasing J, the atoms are dis-
tributed more equally between the two wells so that the
single shot contrast increases. Within the mean-field descrip-
tion this is reflected by an increase in �sx

2+sy
2 / �s� at the ex-

pense of �sz� / �s� �cf. part �b� of the figure�. However, this
effect also makes the system more vulnerable to phase noise
so that the relative phase of the two modes becomes more
and more random and �s� /n decreases. The average contrast
�11� then assumes a maximum for intermediate values of J as
shown in part �b� of the figure.

IV. STOCHASTIC RESONANCE OF A DRIVEN BEC

So far we have demonstrated a stochastic resonance of the
contrast for a BEC in a static double-well trap with biased
particle losses. In the following we will show that the sys-
tem’s response to a weak external driving also assumes a
maximum for a finite dissipation rate—an effect which is
conceptually closer to the common interpretation of stochas-
tic resonance. From a mathematical viewpoint, however, one
can rather relate the undriven case discussed above to the
stochastic resonance effect in nuclear-magnetic resonance
�41�. In fact, the Bloch equations for the magnetization have
constant coefficients in the rotating wave approximation and
should thus be compared to the undriven equations of motion
�8�.

Let us consider the response of the system to a weak
sinusoidal driving of the tunneling rate

J�t� = J0 + J1 cos��t� �26�

at the resonance frequency �=�J0
2+�2, while the amplitude

of the driving is small and fixed as J1 /J0=10%. A variation
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in J can be realized in a quite simple way in an optical setup
�21–23�, where the tunneling barrier between the two wells
is given by an optical lattice formed by two counterpropa-
gating laser beams. A variation in the intensity of the laser
beams then directly results in a variation in the tunneling rate
J. Figure 7 shows the resulting dynamics for T1=0.5 s and
three different values of J0 and U=0. After a short transient
period, the relative population imbalance sz�t� /n�t� oscillates
approximately sinusoidally. One clearly observes that the re-
sponse, i.e., the amplitude of the forced oscillations, assumes
a maximum for intermediate values of J0 matching the ex-
ternal time scale of the dissipation given by T1

−1.
For a detailed quantitative analysis of this stochastic reso-

nance effect, we evaluate the amplitude of the oscillation
based on a linear-response argument for U=0. In the follow-
ing, we will use a complex notation for notational conve-
nience, while only the real part is physically significant. The
equations of motion �8� are then rewritten in matrix form as

d

dt
�s

n
 = �M0 + M1ei�t��s

n
 . �27�

The matrices M0 and M1 are defined by

M0 =�
T2

−1 2�0 0 0

− 2�0 T2
−1 − 2J0 0

0 2J0 T1
−1 faT1

−1

0 0 faT1
−1 T1

−1
� �28�

and

M1 =�
0 0 0 0

0 0 − 2J1 0

0 2J1 0 0

0 0 0 0
� . �29�

As before we consider the dynamics after all transient oscil-
lations have died out, assuming that s�t� as well as n�t� decay

exponentially at the same rate. However, we now also have
an oscillating contribution so that we make the ansatz,

s�t� = �s0 + s1ei�t�e−�t,

n�t� = �n0 + n1ei�t�e−�t. �30�

The amplitude of the oscillations, i.e., the system response, is
thus directly given by s1 /n0. Substituting this ansatz in the
equations of motion and dividing by e−�t yields

− ��s0

n0
 + �i� − ���s1

n1
ei�t

= �M0 + M1ei�t���s0

n0
 + �s0

n0
ei�t� . �31�

Neglecting the higher order terms �e2i�t in a linear-
response approximation and dividing Eq. �33� in the time-
dependent and the time-independent parts yields the equa-
tions

�− M0 + �i� − ��1��s1

n1
 = M1�s0

n0
 �32�

and Eq. �15�, which determine s1 and n1. The resulting val-
ues of the system response are shown in Fig. 8. One observes
the characteristic signatures of a stochastic resonance: if one
of the two parameters J0 and T1 is fixed, the response as-
sumes a maximum for a finite value of the remaining param-
eter as shown in parts �b� and �c� of the figure. Part �a� shows
that this maximum is assumed if the external �T1

−1� and the
internal �J0� timescales are matched similar to the undriven
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FIG. 7. Dynamics of the relative population imbalance sz�t� /n�t�
in a weakly driven double-well trap for three different values of the
tunneling rate: �a� J0=0.5 s−1, �b� J0=1.5 s−1, and �c� J0=5 s−1.
The amplitude of the forced oscillations is maximal for intermediate
values of J0 as shown in part �b�. The remaining parameters are
T1

−1=2 s−1, U=0, �=0, �p=5 s−1, and J1 /J0=10%. Please note the
different scalings.
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case illustrated in Fig. 3. Let us stress that this scenario is
again not fundamentally altered in the case of weak interac-
tions as numerically tested but not shown here.

A different situation arises if the energy bias is driven
instead of the tunneling rate J such that

��t� = �1 cos��t� . �33�

As above we can evaluate the amplitude of the forced oscil-
lations within the linear-response theory, however, with

M1 =�
0 − 2�1 0 0

2�1 0 0 0

0 0 0 0

0 0 0 0
� . �34�

Solving Eqs. �32� and �15� then yields s1y =s1z=0. Remark-
ably, a driving of the energy bias does not affect the popula-
tion imbalance in leading order. Only the first component of
the Bloch vector sx, and thus also the contrast , is strongly
affected.

This is illustrated in Figs. 9�a� and 9�b� where the relative
population imbalance sz�t� /n�t� and the first component of
the Bloch vector sx�t� /n�t� are plotted for J0=2 s−1,
T1

−1=4 s−1, and �1=1 s−1. The coherence oscillates strongly
at the fundamental frequency �, while the population imbal-
ance oscillates only with a tiny amplitude at the second-
harmonic frequency 2�. The oscillation amplitude of the co-
herence then again shows the familiar SR-like dependence
on the parameters J0 and T1 as illustrated in Fig. 9�c�.

V. DISSIPATION-INDUCED COHERENCE
IN A STRONGLY INTERACTING BEC

Let us finally discuss the case of strong interactions,
which is experimentally most relevant and theoretically most
profound. This is the regime of the current experiments
�21–23�, which confirm the theoretical predictions using the
two-mode approximation �1� extremely well. However, the
model assumes that the ground-state properties of the indi-
vidual potentials are only slightly affected by the interac-
tions, such that the condition UN���trap discussed above
must be fulfilled. Moreover, the results presented here are not
directly applicable to the case of extended trapping poten-
tials, where longitudinal excitations cause dephasing and a
loss of purity.

An example for the dynamics of a strongly interacting
BEC is shown in Fig. 10�a� for an initially pure BEC with
sz=n /2, calculated both with the MCWF method and within

the mean-field approximation �8�. One observes that the pu-
rity p and the contrast  first drop rapidly due to the phase
noise and, more importantly, due to the interactions. This is
an effect well known from the nondissipative system and can
be attributed to a dynamical instability which also leads to
the breakdown of the mean-field approximation
�32,33,35,56�. However, a surprising effect is found at inter-
mediate times: the purity p is restored almost completely and
the contrast  is slightly increasing.

Most interestingly, the observed values of the purity and
the coherence are much larger than in the cases where one of
the two effects—interactions and dissipation—is missing.
The time evolutions for these two cases are also shown in
Fig. 10. In the case of no interactions both purity and coher-
ence rapidly drop to values of almost zero and do not revive.
This case has been discussed in detail in Sec. III. In the
interacting case without dissipation one observes regular re-
vivals, which are artifacts of the small particle number in the
simulation and become less pronounced with increasing par-
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−1

=4 s−1. �c� Response �amplitude of the oscilla-
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−1 and J0 calculated
within linear-response theory. The remaining pa-
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ticle number. Apart from these occasional revivals, however,
the purity and the coherence relax to values which are much
smaller than in the interacting and dissipative case.

The surprising repurification of a strongly interacting
BEC by particle dissipation can be understood within a semi-
classical phase-space picture. In order to visualize the effects
of particle loss, we have plotted the “classical” phase-space
structure generated by the Bloch equation �Eq. �8�� for �p
=0 in Fig. 11 without interactions and dissipation �a�, with
interactions �b�, and with both �c�. For illustrative purposes,
we have plotted the rescaled Bloch vector s /n and have ar-
tificially fixed the particle number so that n=const. Since we
are interested only in the short-time dynamics of the Bloch
vector and not in the decay of the particle number on longer
time scales, this is an appropriate treatment. Moreover, in the
quantum jump picture this approximation corresponds to the
periods of constant particle number between two loss pro-
cesses �40,53,55�.

Parts �a� and �b� of the figure show the phase-space struc-
ture without dissipation and Un=0 and Un=4J, respectively.
One observes the familiar self-trapping bifurcation of the
fixed points for Un�2J �31,32�. The phase-space structure is
significantly altered in the presence of particle loss as shown
in part �c�. The most important consequence is the occur-
rence of an attractive and a repulsive fixed point instead of
the elliptic fixed points in the dissipation-free case �40�.

In the course of time the system will thus relax to the
attractive stationary state illustrated Fig. 11�c�. A
many-particle quantum state can now be represented by a
quasidistribution function on this classical phase space, for
instance, the Husimi Q function �34,35�. In this picture, a
pure BEC is represented by a maximally localized distribu-
tion function and the loss of purity corresponds to a broad-
ening or distortion of the Q function. The existence of an
attractive fixed point clearly leads to the contraction of a
phase-space distribution function and thus to a repurification
of the many-particle quantum state as observed in Fig. 10�a�.

However, this nonlinear stationary state exists only as
long as the particle number exceeds a critical value given by
�cf. �40��

U2n2 � 4J2 − fa
2T1

−2. �35�

As particles are slowly lost from the trap, the particle number
eventually falls below the critical value. For this reason the
attractive fixed point vanishes and the purity drops to the

values expected for the linear case U=0. Since the attractive
fixed point tends toward the equator maximizing sx / �s�, the
contrast assumes a maximum just before the disappearance
of the attractive fixed point, while the purity is still large. In
Fig. 10�a� this happens after approximately 2.5 s.

The surprising effect of the repurification of a BEC is
extremely robust—it is present as long as condition �35� is
satisfied. A variation in the system parameters does not de-
stroy or significantly weaken the effect, it only changes the
time scales of this relaxation process. Figure 12 compares
the time evolution of the purity and the contrast for three
different values of the particle loss rate T1

−1. With increasing
losses, the nonlinear stationary state is reached much faster
but is also lost earlier. One can thus maximize the purity or
the contrast at a given point of time by engineering the loss
rate. This effect is further illustrated in Fig. 13, where the
purity and the contrast after 2 s of propagation are shown in
dependence of the loss rate T1

−1. Both curves assume a maxi-
mum for a certain finite value of T1

−1.

(a) (b) (c)

FIG. 11. �Color online� Mean-field dynamics �a� without interactions and dissipation, �b� with interactions Un=40 s−1, and �c� with
interactions and dissipation �a=10 s−1. The remaining parameters are J=10 s−1 and �=0. To increase the visibility we have plotted the
rescaled Bloch vector s /n and we have artificially fixed the particle number so that n=const.
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VI. CONCLUSION AND OUTLOOK

In summary, we have shown that the coherence properties
of a weakly and, in particular, also of a strongly interacting
Bose-Einstein condensate in a double-well trap can be con-
trolled by engineering the system’s parameters and dissipa-
tion simultaneously. Surprisingly, dissipation can be used to
stimulate coherence in the system rather than—as may be
expected—solely reduce it.

In the weakly interacting case, the contrast of the quasi-
steady-state of the system assumes a maximum for a finite
value of the tunneling and the dissipation rate. This stochas-
tic resonance effect is robust against parameter variations. A
Monte Carlo wave-function simulation of the full many-body
quantum dynamics shows a good agreement to the mean-
field description and provides a microscopic explanation of
the observed effect. Moreover, a similar effect can be ob-
served in the case where either the tunneling or the energy
bias is driven, which is conceptually even closer to the com-
mon interpretation of stochastic resonance.

In Sec. V, we have studied the effects of dissipation on the
strongly interacting system. An important conclusion is that
the interplay of interactions and dissipation can drive the
system to a state of maximum coherence, while both pro-

cesses alone usually lead to a loss of coherence. We show
that this effect can be understood from the appearance of an
attractive fixed point in the mean-field dynamics reflecting
the metastable behavior of the many-particle system.

Since the double-well BEC is nowadays routinely realized
with nearly perfect control on atom-atom interactions and
external potentials �21–23�, we hope for an experimental
verification of the predicted stochastic resonance effect. An
interesting perspective is to lift our results to extended dissi-
pative setups as, e.g., studied in �28,29�. Besides the general
idea of controlling many-body dynamics �57�, one may also
investigate the possibility of dynamically engineering en-
tanglement in similar systems as to some extend possible in
state-of-the-art experiments �58�.
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