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Full characterization of a highly multimode entangled state embedded in an optical frequency
comb using pulse shaping
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We present a detailed analysis of the multimode quantum state embedded in an optical frequency comb
generated by a synchronously pumped optical parametric oscillator (SPOPO) [J. Roslund, R. Medeiros de
Araújo, S. Jiang, C. Fabre, and N. Treps, Nat. Photon. 8, 109 (2014)]. The full covariance matrix of the state
is obtained with homodyne detection where the local oscillator is spectrally controlled with pulse-shaping
techniques. The resulting matrix reveals genuine multipartite entanglement. Additionally, the beam is comprised
of several independent eigenmodes that correspond to specific pulse shapes. The experimental data is confirmed
with numerical simulations. Finally, the potential to create continuous-variable cluster states from the quantum
comb is analyzed. Multiple cluster states are shown to be simultaneously embedded in the SPOPO state, and
these states can be revealed by a suitable basis change applied to the measured covariance matrix.
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I. INTRODUCTION

Photonic architectures have emerged as a viable candidate
for the development of quantum information processing
protocols. Photons are immune to environmental disturbances,
readily manipulated with classical tools, and subject to high-
efficiency detection [1]. For these reasons, many proof-of-
principle experiments have been demonstrated that utilize
either optical qubits in the discrete variable (DV) regime [2] or
fluctuations of the quantized electric field (termed “qumodes”)
in the continuous variable (CV) regime [3]. Yet, an interaction
among various photonics channels must be established in order
to implement a universal set of quantum logical operations
(i.e., two-qubit gates).

While strong nonlinear interactions at the single-photon
level are difficult to achieve, it is possible to initiate an
interaction among photonic channels through the act of
measurement. Such measurement-induced nonlinearities are
the basis of linear optical quantum computing [4,5]. The Knill-
Laflamme-Milburn (KLM) scheme of quantum computing [6]
utilizes single-photon sources and a linear optical network,
and introduces the requisite nonlinearity with photon-counting
detectors. Although the KLM scheme is fundamentally non-
deterministic, it may, in principle, be rendered deterministic
with the addition of entangled multiphoton ancilla states.
Nonetheless, the overhead necessary to incorporate these
states grows rapidly and presents a challenge to the practical
scalability of the scheme.

An alternative approach has recently emerged that exploits
the act of projective measurement itself as a means for
achieving quantum gates [7]. In particular, a quantum logical
operation can be realized by measuring the state of single
nodes contained within a highly entangled multipartite state—
the cluster state [8,9]. Due to the multipartite nature of
the entanglement, the result of a measurement propagates
throughout the cluster in a deterministic fashion. Importantly,
different logical gates are implemented by altering only the
basis in which individual nodes are measured; consequently,
the choice of basis does not necessitate a change in the
cluster structure itself. As a result, the primary difficulty for
implementing measurement-based computing schemes lies in

the generation of the cluster state, which requires large-scale
entanglement.

Optical cluster states have been successfully constructed
both in the DV [2] and CV [3,10] regimes. Continuous-variable
entanglement, which is the domain of the current work, is
of particular interest since the electric field is efficiently
controlled and measured with classical devices, and the
unconditional nature of photon generation allows for both high
signal-to-noise ratios and data-transfer rates. The traditional
methodology to construct CV clusters is to introduce a series
of independent squeezed states of light into a linear optical
network that is arranged in such a way as to produce the
desired entanglement [11]. Each node contained within these
states, however, necessitates its own source of nonclassical
states. Consequently, the incorporation of a large number of
such modes rapidly encounters a complexity ceiling in terms
of scalability and flexibility.

Alternatively, a multimode source may be exploited in
which all of the requisite modes are copropagating within
a single beam. One avenue toward cluster-state generation
exploits temporal encoding [12]. Additionally, spatially mul-
timode beams have proven useful for the generation of cluster
states when detected with a spatially resolved, multipixel
apparatus [13]. However, achieving spatial degeneracy over
multiple modes is technically challenging, and an alternative
approach is to generate frequency multimode beams, which
may be accomplished with optical cavities that are resonant
for a large number of copropagating frequency modes. Toward
this end, optical frequency combs possess an intrinsic highly
multimode structure due to the large number of individual
frequencies contained within the comb. The frequency comb
has already proven to be a reliable source of cluster states as
the down-conversion of a single pump photon in an optical
parametric oscillator (OPO) with a broad phase-matching
bandwidth creates sets of entangled qumodes [14–16].

The present work demonstrates the use of an optical
frequency comb to synchronously drive the down-conversion
process. The result is a highly multimode quantum state of
light that may be described either as a product of uncorre-
lated nonclassical states that span the entire breadth of the
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down-converted spectrum and have specific pulse shapes,
or as a highly entangled multipartite state. We show that
the combination of homodyne detection with ultrafast pulse
shaping permits recovery of the state’s full covariance matrix
in a basis of up to eight modes. This description reveals
that multiple cluster states are simultaneously present in the
multimode beam.

The paper is organized as follows: Section II outlines the
theoretical principles governing formation of the quantum
comb as well as the various bases in which it may be analyzed.
The quantum comb is characterized in terms of its covariance
matrix. The methodology by which this matrix is obtained is
detailed in Sec. III, and demonstration of the state’s multimode
character is presented in Sec. IV. Given the covariance matrix,
Sec. V illustrates how the quantum comb may be examined in
the various bases that reveal the presence of cluster states.
Finally, concluding remarks and an outlook toward future
development are discussed in Sec. VI.

II. THEORETICAL DESCRIPTION

Nonclassical CV photonic states are efficiently generated
with an OPO. In the frequency-comb regime, the high
peak powers associated with ultrafast pulses elicit a strong
nonlinear material response, which, in turn, provides an
efficient platform for the creation of highly nonclassical states
[17]. Moreover, a femtosecond pulse train contains upwards
of ∼105 individual frequency components, and is therefore
readily described as a multi-frequency-mode object. The
simultaneous down-conversion of all these frequency elements
in a nonlinear optical element induces an intricate ensemble of
both symmetric and asymmetric frequency correlations with
respect to the carrier frequency ω0 that extends across the
breadth of the resultant comb [18] (Fig. 1). These correlations
are preserved provided that the optical cavity is synchronously
pumped by the laser. If the resonant frequencies of the cavity

FIG. 1. (Color online) Parametric down-conversion of a fem-
tosecond comb. The splitting of a single pump photon of frequency
2ω0 by pathway 1 creates entanglement between the frequencies ωa

and ωb. An additional pump photon may down-convert by pathway 2
and correlate frequencies ωa and ωc. A correlation is also established
between frequencies ωb and ωc by virtue of their mutual link to ωa . In
this manner, every frequency of the down-converted comb becomes
correlated with every other member of the comb.

are written as ωp = ω0 + pωFSR, with p ∈ Z, this condition
implies that ωFSR is both the cavity free spectral range and
the repetition rate of the pump laser. Such a device is called a
SPOPO (synchronously pumped OPO).

The Hamiltonian corresponding to a single pass in the crys-
tal that describes the parametric coupling between different
cavity modes is then

Ĥ = i�g
∑
m,n

Lm,nâ
†
mâ†

n + H.c., (1)

where g, proportional to the pump amplitude, regulates the
overall interaction strength and â

†
m is the photon creation

operator associated with a mode of frequency ωm. The
coupling strength between modes at frequencies ωm and ωn

is governed by the matrix Lm,n = fm,n · pm+n, where fm,n is
the phase-matching function [19,20] and pm+n is the pump
spectral amplitude at frequency ωm + ωn [21]. In the absence
of loss, the evolution of a single mode âm is then specified by

d âm

dt
= g

∑
n

Lm,n â†
n, (2)

which reveals that following the down-conversion event, each
frequency mode is coupled to every other mode with a strength
moderated by Lm,n. Consequently, the down-conversion of an
ultrafast frequency comb has the potential to serve as a rich
source of multipartite entanglement [22].

A. Squeezed mode basis

An alternative description of the state is obtained upon
diagonalizing the coupling matrix Lm,n = ∑

k �kXk,m Xk,n,
where {�k} and {Xk} are its eigenvalues and eigenvectors,
respectively [23]. A new set of “supermodes” Ŝk may be
defined that are linear combinations of the original, single-
frequency modes: Ŝk = ∑

i Xk,i âi . The total Hamiltonian is
then written as a sum of single-mode squeezing Hamiltonians
independently acting on each supermode [21]:

Ĥ = i�g
∑

k

�k Ŝ
† 2
k + H.c. (3)

The eigenspectrum �k specifies the number of nonvacuum,
uncorrelated squeezed states contained in the SPOPO output
and their associated degree of squeezing. Thus, the quantum
comb may be described as either an entangled state in the basis
of individual frequencies or as a set of uncorrelated squeezed
states in the supermode basis. As the individual supermodes
are decoupled, it is straightforward to describe the effect of
the cavity. Since the cavity does not spectrally filter the optical
state, each eigenvector is resonant within the cavity, and a
standard type-I OPO calculation is applied to each mode as a
means to infer the output state. It follows from [21] that at the
cavity threshold and zero Fourier frequency, the noise of the
squeezed quadrature normalized to vacuum is given by

Vk =
(

�0 − |�k|
�0 + |�k|

)2

. (4)

Assuming a Gaussian shape for the coupling matrix Lm,n, these
eigenvalues may be written as [21]

�k = �0ρ
k, (5)
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with

�0 = π
1
4

√
2

τp ωFSR

√
τ 2

p

τ 2
1 + τ 2

p

, ρ = −1 + 2

√
τ 2

2

τ 2
1 + τ 2

p

,

(6)

where τ1 = |k′
p − k′

s|l/
√

10, τ2 = √|k′′
s |l/(4

√
3), and τp is the

temporal duration of the pump pulse. The nonlinear crystal
length is specified by l, while k′ and k′′ are the first and
second derivatives, respectively, of the frequency-dependent
wave vector for the pump (p) and signal (s) pulses. For
realistic experimental parameters, ρ � −1 [21]. Hence, Eq. (5)
corresponds to an alternating geometric progression of ratio ρ

whose first element �0 is positive.
The quadrature in which the kth mode of the field exhibits

squeezing is determined by the phase of the corresponding
eigenvalue �k [21]. As a result, the squeezing quadrature is
predicted to alternate between the x and p quadratures with
increasing mode index k. This theoretical prediction is well
verified in our experiment.

B. Cluster-state basis

The output state of the SPOPO may be analyzed in a variety
of different mode bases, and each basis reveals a specific
entanglement structure [24]. One class of entangled states of
particular relevance for quantum information processing is that
of cluster states. A cluster state is a highly entangled multimode
state associated with a graph [25]. This graph contains nodes
that represent the various modes of the cluster state. An
adjacency matrix V , which is real and symmetric, describes
this graph and summarizes the entanglement connections
among the various nodes (see Fig. 2 for concrete examples). It
has been shown that the cluster state defined by the adjacency
matrix V may be constructed from a set of independently
p-squeezed input modes by combining them with a linear
optical network in the appropriate manner [11]. The action
of this optical network can be mathematically described by
a unitary matrix UV that transforms the collection of N

uncoupled p-squeezed modes into a N -mode cluster state. The
mathematical relation between V and UV is detailed below.

The nullifier operators of a N -mode cluster state are derived
from the adjacency matrix V and may be written as

δ̂i =
⎛
⎝p̂C

i −
∑

j

Vij · x̂C
j

⎞
⎠ , (7)

FIG. 2. (Color online) Four-mode linear, square, and T-cluster
states (graphs and respective adjacency matrices Vlin, Vsquare, VT).

where x̂C
i and p̂C

i are the quadrature operators for the node
âC

i , defined such that âC
i = x̂C

i + ip̂C
i , and i,j = 1, . . . ,N .

Theoretically, a state is considered a cluster state of the
adjacency matrix V if and only if the variance of each nullifier
approaches zero as the squeezing of the input modes approach
infinity. From this definition, a unitary matrix UV may be
constructed that defines the optical network for constructing a
given cluster graph [11].

In order to determine the class of unitary matrices cor-
responding to a given adjacency matrix V , the unitary is
decomposed as UV = XV + iYV , where XV = Re[UV ] and
YV = Im[UV ]. The requirement that the variances of the
nullifiers approach zero as squeezing goes to infinity is satisfied
given the relation [11]

YV = V XV . (8)

After exploiting the fact that UV is a unitary matrix (i.e.,
XV XT

V + YV Y T
V = 1 [26]), an initial unitary matrix U 0

V is
found for the desired graph state.

Importantly, the unitary matrix UV that creates a given
cluster state is not unique, and the corresponding nullifier
criteria of Eq. (7) are satisfied for a collection of different
unitary matrices. In the case of finite squeezing, certain unitary
matrices are more efficacious than others at creating the target
cluster state (in the sense that they lead to a lower value
of the nullifier variances). Other possible solutions may be
obtained from the initial U 0

V by multiplying it by a general,
real orthogonal matrix O with OOT = I, i.e., U ′

V = U 0
VO

[27]. Given that U 0
V forms a cluster state, it is straightforward

to demonstrate that U ′
V also satisfies Eq. (8). Thus, upon

multiplying a specific UV by any orthogonal matrix, it is
possible to span the complete space of physical unitary
matrices satisfying Eq. (8).

In the case of the SPOPO, a large set of supermodes is
available, with each mode exhibiting a noise level given by
Eq. (4). In order to construct a cluster state from these modes,
the N modes displaying the highest degree of squeezing
are selected, and the appropriate basis change defined by
the matrix UV is applied. However, as the SPOPO output
modes are not all squeezed along the same quadrature
component, it is necessary to include an extra diagonal matrix
�sqz = diag{eiφ1 , . . . ,eiφN } that rotates each mode’s squeezed
quadrature into the common p̂ direction. The transformation
from the SPOPO squeezed modes to the desired cluster modes
is then written as

�a C = UV �sqz �S, (9)

where �a C = (âC
1 , . . . ,âC

N ) is the collection of mode operators
corresponding to each cluster node and �S = (Ŝ1, . . . ,ŜN )
is the set of the leading N supermodes as defined in
Eq. (3). The remaining supermodes are left unchanged
by the transformation and are not relevant for the N -
mode cluster state considered here. In the present cir-
cumstance, a basis change UV is equivalent to a specific
choice of measurement basis, which will be utilized to
reveal cluster correlations embedded in the optical comb
structure.
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III. EXPERIMENTAL METHODS

The laser source is a Ti-sapphire mode-locked oscillator
delivering ∼140 fs pulses (∼6 nm FWHM) centered at
795 nm with a repetition rate of 76 MHz. This source is
frequency doubled in a 0.2 mm bismuth borate (BiBO) crystal
(single pass), and the resultant second harmonic pumps an
OPO, which consists of a 2 mm BiBO crystal contained
within a ∼4 m ring cavity exhibiting a finesse of ∼27.
The OPO-crystal thickness was chosen so that the spectral
width of the local oscillator matches the one of the first
supermode. The length of the cavity is locked to the interpulse
spacing by injecting a phase-modulated near-infrared beam
in a direction counterpropagating to the pump and seed.
This locking beam is phase modulated at 1.7 MHz with an
electro-optic modulator (EOM), and locking of the cavity
length is accomplished with a Pound-Drever-Hall strategy.
The cavity is operated below threshold and in an unseeded
configuration. Frequency correlations of the vacuum output
are investigated with homodyne detection in which the local
oscillator (LO) pulse form is manipulated with ultrafast pulse-
shaping methodologies.

A 4f-configuration shaper is constructed in a reflective
geometry with a programmable 512 × 512-element liquid-
crystal modulator in the Fourier plane. Application of a
periodic spatial grating to the spatial light modulator induces
diffraction of the spectrally dispersed light. The amplitude and
phase of the diffracted spectrum are independently controlled
by the groove depth and position of the spatial grating,
respectively [28]. By varying the relative phase between the
shaped LO and the SPOPO output, a measurement is obtained
of the x- and p-quadrature noises for the quantum state
projected onto the spectral form of the LO mode (see Fig. 3).

Light detection is performed with silicon photodiodes
(∼90% detection efficiency, 100 MHz detection bandwidth),
and the homodyne visibility is 92%. The noise level of
sidebands situated 1 MHz from the optical carrier is then

examined. The cumulative loss of the system is taken to be
∼25%, and the measured signals are corrected accordingly.
The SPOPO generates vacuum squeezed at a level of ∼6 dB
(corrected) when projected onto a local-oscillator pulse taken
directly from the Ti-sapphire laser.

The noise properties of a Gaussian state are fully char-
acterized in terms of its phase-space covariance matrix [24].
This matrix of second moments is directly reconstructed in
the spectral domain by using the pulse shaper to measure
noise correlations among different spectral regions. The LO
spectrum is divided into discrete bands of equal energy (e.g.,
in eight bands), and the amplitude and phase of each band
may be individually addressed. Gaps between the individual
spectral regions are intentionally imposed in order to ensure
orthogonality of the different regions. Importantly, the sup-
plemental loss incurred from the inclusions of these holes is
not accounted for when correcting the noise levels. The x

quadrature is defined as the field quadrature of lowest noise
for the unshaped LO pulse. The noise content of both the x and
p quadratures for each spectral region and all possible pairs
of regions are measured, which amounts to 36 measurements
in the case of eight frequency zones. Individual covariance
elements are then constructed according to the following
relation:

〈xixj 〉 =
[
〈(xi + xj )2〉 − Pi

Pi + Pj

〈
x2

i

〉 − Pj

Pi + Pj

〈
x2

j

〉]

× Pi + Pj

2
√

PiPj

, (10)

where Pi and Pj are the optical powers of frequency bands i

and j , respectively, which are measured with the homodyne
photodiodes.

Importantly, it has been verified that the LO phase de-
pendence for each of the 36 noise measurements follows
the same dependence as that of the unshaped LO refer-
ence. Consequently, the lowest noise level for every spectral

795 800
790
Wavelength (nm)

1
8

4

FIG. 3. (Color online) Experimental layout for the creation and characterization of multimode frequency combs. A Ti-sapphire oscillator
produces a 76 MHz train of ∼140 fs pulses centered at 795 nm. Its second harmonic synchronously pumps an OPO. The cavity output is
analyzed with homodyne detection, where the spectral amplitude and phase of the local oscillator (LO) are shaped. The LO shaper is depicted
here in a transmissive geometry for clarity. By varying the relative phase between the shaped LO and the SPOPO output, the x- and p-quadrature
noises of the quantum state projected onto the LO mode are measured.
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combination is present in the x quadrature, i.e., there is
no rotation of the squeezing ellipse between successive
measurements. Additionally, it has been observed that cross
correlations of the form 〈x p〉 are absent, which permits the
covariance matrix to be cast in a block-diagonal form: one
block for the x quadrature and one block for the p quadrature.

We have seen that a good reconstruction of the quantum
comb is accomplished with eight discrete LO spectral bands
(or with ten bands as presented in [29]). However, it is
feasible to perform the measurements with a reduced number
of spectral regions depending upon the application. In what
follows, results will be presented for a variety of different
dimensionalities of the LO frequency space.

IV. EXPERIMENTAL RESULTS

A. State reconstruction

The full covariance matrix of the quantum comb is recon-
structed following the 36 requisite homodyne measurements.
Fluctuations and correlations departing from the vacuum level
are depicted with the noise correlation matrix, which is defined
as

Cx
ij = 〈xixj 〉/

√〈
x2

i

〉〈
x2

j

〉 − δij

〈
x2

vacuum

〉/〈
x2

i

〉
(11)

for the x quadrature, with a similar definition for the p

quadrature. The retrieved correlation matrices for the two
field quadratures are shown in Fig. 4. The spectral wings of
the state’s x quadrature possess excess noise as compared to

(a)

(b)

FIG. 4. (Color online) Experimentally measured quantum noise
matrices for the (a) x and (b) p quadratures. The noise correlation
matrix is defined as in Eq. (11). Each matrix reveals significant
correlations among the frequency bands of the comb.

FIG. 5. (Color online) The PPT (blue) inseparability criteria for
all 127 bipartite combinations of the eight spectral bands. All 127
bipartitions possess a PPT value below the entanglement boundary of
0.0, which indicates complete nonseparability for the state. The PPT
criteria are also applied to a simulated single-mode squeezed state
(red) with noise parameters corresponding to the first supermode. The
single-mode PPT values are ordered according to the full PPT values.
The black dotted line represents the mean single-mode PPT value.
All full PPT bipartitions below this line are indicative of multimode
character.

the frequency bands near the central wavelength; however,
the strongest correlations are also evident in the wings.
Qualitatively, this situation is consistent with a two-mode
squeezed state, in which tracing out a single mode results
in a thermal state (i.e., quadrature-independent excess noise).

Entanglement among various frequency bands is quanti-
tatively assessed with the positive partial transpose (PPT)
criterion for continuous variables [30], which probes the
inseparability of a given state bipartition. A bipartition is
created by dividing the eight frequency bands of the comb
into two sets. The transposition of one of these sets is
achieved through a sign change of all momenta operators p̂i

contained within the set: (x̂i ,p̂i) → 
ii · (x̂i ,p̂i) = (x̂i ,−p̂i).
This time-reversal operation creates a new covariance matrix
VPPT = 
V 
, which must continue to satisfy the Heisenberg
uncertainty relation: P = 
V 
 − i� � 0, where � is the
symplectic matrix [24]. The two bipartitions are entangled
if the Heisenberg matrix P is not positive definite. Given eight
distinct spectral bands, 127 unique frequency band bipartitions
exist. Each of these possible bipartitions is subjected to the
PPT criterion, and the minimum eigenvalue of P is shown in
Fig. 5. As seen in the figure, every possible state bipartition
is entangled. The absence of any partially separable form
implies that the SPOPO output constitutes a genuine eight-
partite state in which each resolvable frequency element is
entangled with every other component [24]. Accordingly, the
down-conversion of a femtosecond frequency comb indeed
creates a quantum object exhibiting wavelength entanglement
that extends throughout the entirety of its structure.

Two distinct bands of PPT values are evident in Fig. 5.
The band exhibiting a higher degree of entanglement (lower
PPT value) is composed of all bipartitions that separate the
highest and lowest frequency zones (pixels 1 and 8). Within this
band, the most strongly entangled form results from division
of the spectrum at the central wavelength. Conversely, the
alternative band (higher PPT value) consists of those partitions
in which these extreme spectral zones are not disconnected.
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R. MEDEIROS DE ARAÚJO et al. PHYSICAL REVIEW A 89, 053828 (2014)

The partition that dissociates the two spectral wings from the
remaining spectrum corresponds to the most weakly entangled
structure. Consequently, the spectral wings may be considered
as reproducing the situation of two-mode entanglement, which
is consistent with the structure of the covariance matrix.

To assess the limitations induced by the eight-pixel con-
figuration, we have performed simulations with 16 frequency
pixels while maintaining other experimental parameters un-
changed (see end of Sec. IV B for details). Here again, all
the bipartitions are still entangled, with most of the PPT
values below −0.4. However, the multimode character of the
comb cannot be directly inferred from the high degree of
multipartite entanglement. It is well known that the bipartition
of a single-mode squeezed field creates two entangled modes
that satisfy the PPT criteria. As a means for comparison, Fig. 5
also includes the same 127 spectral partitions for a simulated
single-mode field with quadrature values that correspond to
those of the first comb supermode. As seen in the figure, all
of these bipartitions also satisfy the inseparability criterion.
The minimum eigenvalue of P no longer depends upon the
symmetry of the bipartition but only upon the relative power
between the two partitions. Nonetheless, PPT values for the
single-mode case are weaker than those observed for the comb,
which provides a first indication of the comb’s multimode
character.

B. Eigenmode decomposition

Although multipartite frequency entanglement is relevant
for the creation of specialized entangled states, it is an
extrinsic property of the comb. For example, as explained
above, the PPT criteria depend upon a predefined allocation
of individual frequency bands. Multipartite character may
always be imparted to a single-mode quantum object by simply
dividing it with a beam splitter.

However, the basis change introduced in Eq. (3) may be
implemented as a means to recover a set of independently
squeezed spectral modes embedded in the beam. This gen-
eralized Schmidt decomposition is achieved by diagonalizing
the recovered covariance matrix to reveal a set of decorrelated
supermodes Ŝk . When the matrices of Fig. 4 are eigendecom-
posed, it is observed that although the individual x and p block
eigenvectors are quite similar, they are not exactly equal. This
implies that a common mode basis is not able to simultaneously
diagonalize the two quadrature blocks.

In order to understand the physical origin of this ef-
fect, the complete decomposition of the symplectic matrix
responsible for creating the multimode state is considered.
The Bloch-Messiah reduction [26,31] allows any symplectic
transformation to be decomposed into an initial basis change,
a perfect multimode squeezer, and a final basis change. When
the input state to this transformation is vacuum, the first basis
rotation is arbitrary, and the resultant multimode state may be
understood as an assembly of squeezers in a given eigenbasis
[as seen in Eq. (3)]. However, when the input state either
contains classical noise or is not pure, both of these basis
rotations become meaningful.

Application of the Bloch-Messiah reduction to a covariance
matrix reveals the Williamson (or “symplectic”) eigenvalues
as well as the mode structures for both the classical noise

and quantum squeezers. It is these Williamson eigenvalues
that indicate the existence of residual classical noise on the
input state. Importantly, in the presence of excess classical
noise, the quantum squeezer basis and the supermode basis
do not necessarily correspond. In the present experiment,
the input state to the cavity is vacuum, which implies that
residual classical noise is introduced by loss mechanisms.
Correspondingly, the fact that the x and p blocks of the
covariance matrix are not diagonalized by a common basis
indicates that the loss mechanism is spectrally dependent
(e.g., nonuniform transmission profile of the SPOPO output
coupler).

A Bloch-Messiah reduction of the eight-mode covariance
matrix was implemented in order to reveal the full structure
of the comb state. The Williamson eigenvalues possess values
close to unity, which indicates that the purity of the comb
state is quite high. Additionally, the bases of the classical
noise eigenmodes and the squeezed modes are independently
uncovered. The squeezed mode basis remains largely un-
changed from run to run, while the basis associated with
the classical noise exhibits a large degree of variation that
depends upon specific experimental conditions. This effect
arises because the classical noise is relatively small compared
to the quantum properties of the comb, and the eigenvalues
are nearly degenerate. Consequently, the extraction of well-
defined supermodes from the experimental covariance matrix
is feasible even though the matrix cannot be placed in a
perfectly diagonal form due to the influence of classical noise.

In practice, the experimental supermodes are recovered
with a more pragmatic strategy. Upon eigendecomposition
of the covariance matrix, the modes exhibiting squeezing
are observed to alternate between the x and p quadratures.
The eigenstructures corresponding to the antisqueezed modes,
which likewise alternate between the two quadratures, ex-
hibit increased robustness to noise (which arises from their
increased angular contribution to the squeezing ellipse). In
order to determine the covariance matrix of an entirely
decoupled mode set, the eight antisqueezed eigenmodes are
orthogonalized with a Gram-Schmidt procedure, and the
covariance matrix is reexpressed in terms of this newly
orthogonal basis. The resulting matrix is nearly diagonal and
contains the squeezing value for each orthogonalized mode on
its diagonal.

When performing the individual frequency band measure-
ments utilized to construct the covariance matrix, multiple
oscillations of each noise trace are collected in order to
estimate the uncertainty of the corresponding squeezing and
antisqueezing levels. These uncertainties are exploited to
assess the error level of each supermode squeezing value
with a stochastic sampling methodology. Noise values for
a particular spectral band combination are drawn from a
normal distribution with a mean specified by the average of all
identified peaks or valleys and a variance given by the variance
of the extrema. A collection of 104 individual covariance
matrices is amassed, where each matrix is assembled by
drawing samples from the necessary normal distributions. The
Gram-Schmidt orthogonalization procedure is implemented
for each matrix, which yields a squeezing spectrum and mode
set. The mean squeezing spectrum is shown in Fig. 6 for the
situations of four, six, and eight discrete spectral regions.
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FIG. 6. (Color online) Mean noise levels and uncertainties (dB)
for each of the orthogonalized Gram-Schmidt modes. The mean
eigenspectra are shown for eight (red), six (blue), and four (green)
unique frequency bands. The simulated eigenvalues corresponding to
eight frequency bands are shown for comparison (black).

In each case, the mean spectrum is generally noise robust.
For the leading modes, a larger overall squeezing level
is observed for a smaller number of pixels, which is a
consequence of the imposed spectral gaps. However, when
the covariance matrix is reconstructed with a larger number of
pixels, the eigenspectrum exhibits more modes. An increase
in the number of available pixels is needed to replicate the
spectral complexity of higher-order supermodes. In the case
of eight unique frequency bands, up to seven squeezed modes
are contained within the conglomerate comb structure (while
eight squeezed modes were found in the ten-pixel spectral
reconstruction performed in [29]). The quadrature in which
each of these modes exhibits noise reduction (x or p) alternates
between successive modes, in agreement with theoretical
predictions [21]. As such, the SPOPO behaves as an in situ
optical device, consisting of an assembly of independent
squeezers and phase shifters.

The orthogonalized modes that originate from covariance
matrices comprised of four and eight spectral zones are shown
in Figs. 7(a) and 8, respectively. The spectral makeup of each
retrieved experimental mode displayed in Fig. 7(a) follows
the form of a Hermite-Gauss polynomial, which approximates
the predicted supermode profile [21]. However, as mentioned
above, it becomes evident that the spectral complexity of
higher-order supermodes is only reproducible with an increase
in the number of pixels. Additionally, the spectral width �λk of
supermodes following a Hermite-Gauss progression increases
with the mode index k as �λk = √

2k + 1 · �λ0.
In order to assess the impact of both the LO bandwidth and

the number of independent shaper elements on the observed
squeezing levels, a series of simulations was performed uti-
lizing the current experimental parameters. These simulations
were performed by directly calculating the supermodes from
the phase-matching properties of a BiBO crystal [21] while
assuming a perfect cavity with a bandwidth of 50 nm. The
purity of the state is taken to match the quadrature noises of
the first supermode. With these parameters, the cavity output
contains ∼25 modes with an equivalent level of squeezing.

Subsequently, an eight-frequency pixel homodyne detec-
tion apparatus is simulated without accounting for the supple-
mental losses incurred by the gaps between pulse-shape pixels.
The resulting eigenspectrum is shown in Fig. 6. The simulation

FIG. 7. (Color online) (a) Retrieved experimental supermodes
with the spectral gaps removed. The field of each supermode is
measured with spectral interferometry. (b) Noise traces corresponding
to each of the experimental supermodes.

results are consistent with the fact that the spectral overlap
diminishes between the fixed bandwidth of the LO spectrum
and each progressively broadened supermode. This decline
in the spectral overlap becomes especially prominent in the
wings. While ∼25 modes are initially present in the comb state,
only ∼5 are detected, as seen in Fig. 6. Two technical effects

FIG. 8. (Color online) Amplitude spectra corresponding to each
of the orthogonal supermodes retrieved from the covariance matrix
shown in Fig. 4.
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account for this loss of modes in the detection process. First,
the fixed bandwidth of the LO only achieves perfect overlap
with the first supermode. In addition, the high spatial frequency
of the spectral structures created by the pulse shaper begins
to exhibit appreciable spectral overlap with very high-order
supermodes that are not squeezed. Both of these limitations
introduce vacuum into the measurement, which degrades the
overall squeezing levels. Consequently, the current observation
of seven squeezed modes does not represent an inherent
upper limit to the quantum dimensionality of comb states.
With the use of broader bandwidth LO pulses, increased
spectral resolution, and large cavity bandwidths (all achievable
experimentally), states possessing as many as ∼100 squeezed
modes are expected [21].

C. Eigenmode corroboration

The supermodes displayed in Fig. 7(a) constitute an
uncoupled set of independent squeezed states that can serve
as a resource for the construction of specialized entangled
structures, such as cluster states. As such, it is important
to validate the structure and squeezing level of the modes
retrieved from the covariance matrix.

Each of the modes derived from the covariance matrix
is written directly onto the pulse shaper after bridging the
spectral gaps that were imposed in the frequency band basis.
The corresponding noise traces are seen in Fig. 7(b). Most
importantly, each of these four modes exhibits squeezing at
a level in accordance with that retrieved from the covariance
matrix. Furthermore, the quadrature of squeezing alternates
between successive modes. Thus, when the sum of the first
two modes is written to the shaper, excess noise is present
in both quadratures (not shown). Consequently, the SPOPO
simultaneously generates states that are squeezed in either the
amplitude or the phase quadrature.

D. Discussion on state purity

The purity P , which is an intrinsic property of the state,
is accessible from the covariance matrix with the relation
P = 1/

√
det(�E), where �E is the measured covariance

matrix. The covariance matrix eigenvalues shown in Fig. 6
enable comparison of the state purity for four-, six-, and
eight-spectral-zone divisions of the LO spectrum. The purity
values were also measured for different pump powers (not
shown), and the observed variation follows the expected
behavior for the output state of an OPO.

The imposition of gaps between the discrete spectral regions
represents a loss, and therefore decreases the state purity. As
fewer gaps are necessary to create four spectral zones, a higher
state purity is expected for the four-band matrix as compared
to the eight-band matrix. As seen in Fig. 6, although the overall
squeezing levels are made similar with an appropriate tuning of
the pump power, the four-band state possesses a slightly higher
purity. By fine adjustment of the experimental parameters, a
global purity ranging from P ∼ 0.7–0.8 is achievable while
maintaining significant squeezing levels. The ability to achieve
high-purity states while maintaining their multimode nature
constitutes an important resource for the construction of
network structures.

V. CLUSTER-STATE ANALYSIS

A. Creation of the cluster basis

In the previous section, a basis change of the covariance
matrix allowed retrieval of the theoretically predicted super-
modes. Similarly, an analogous procedure may be applied to
construct cluster-state bases as defined by Eq. (9). In doing so,
the feasibility for creating cluster states from experimentally
retrieved covariance matrices may be directly probed.

Application of the Gram-Schmidt orthogonalization
method described above defines a rotation matrix UT , which
transforms the correlated pixel bands �a pix into a set of nearly
decorrelated experimental supermodes �S through the rela-
tion �S = U−1

T �a pix. The experimentally retrieved supermodes
shown in Fig. 7 exhibit squeezing in alternating quadratures.
Hence, it becomes necessary to apply a mode-selective phase
rotation in order to transfer each mode’s squeezing axis into the
same direction. In order to accomplish this task, the phase-shift
matrix �sqz = diag{i,1, . . . ,i,1} is applied. Subsequently, the
cluster state corresponding to a particular adjacency matrix V

is constructed by applying the appropriate unitary matrix UV .
Thus, the total transformation relating the original pixel basis
to the one parameterizing the cluster state is described by

�a C = UV �sqz U−1
T �a pix ≡ Utot �a pix, (12)

where UV satisfies Eq. (8).
Among the group of matrices UV that satisfy Eq. (8), one

is selected that minimizes the nullifier variances of Eq. (7) for
the transformed cluster modes �a C . This is accomplished by
parameterizing the most general orthogonal matrix in terms
of a collection of angles: O(�θ). Upon doing so, all physically
relevant cluster unitaries are spanned as UV = U 0

V O(�θ), in
line with the discussion of Sec. II B. An evolutionary strategy
[32] is employed to search for a set of angles �θ that minimizes
the nullifier variances in Eq. (7) for the transformed cluster
modes �a C .

A symplectic transformation Stot corresponding to the
optimal unitary matrix Utot may then be written as Stot =
(Xtot −Ytot
Ytot Xtot

), with Utot = Xtot + iYtot [26]. This transformation
is applied to the covariance matrix measured in the pixel basis
�E in order to yield the covariance matrix of the cluster state,

�C = Stot�
EST

tot. (13)

Individual cluster correlations are then verified by determining
whether the set of nullifier variances for each cluster state
[as defined by Eq. (7)] lies below the shot-noise level, i.e.,
δi < δshot for i = 1, . . . ,N . In this context, the shot-noise
level is defined as the nullifier variances obtained with a
vacuum input to the linear network.

B. Six-mode cluster states

In order to provide specific examples as to the potential
for creating cluster states within the quantum comb, several
different six-mode cluster structures are considered, with
corresponding graphs displayed in Table I. The requisite
squeezed input modes are those originating from a covariance
matrix measured in a basis of six spectral zones. Following
optimization of the orthogonal matrix O(�θ ), the nullifier
variances for each cluster structure are computed from
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TABLE I. Cluster-state nullifiers {δi} normalized with respect to the corresponding shot noise value. Set A consists of input modes with
a maximum squeezing value of −2.34 dB and a high state purity of P = 0.84. Conversely, set B utilizes input modes exhibiting a maximum
squeezing level of −6.48 dB and a state purity of P = 0.69. In both cases, all of the considered cluster states are realized. The higher input
squeezing levels associated with set B result in enhanced violations of the nullifier variance criteria.

Graph Nullifiers {δi} (set A) Nullifiers {δi} (set B)

Linear {0.85, 0.74, 0.69, 0.67, 0.75, 0.86} {0.76, 0.58, 0.42, 0.46, 0.55, 0.78}

Hexagon {0.79, 0.76, 0.76, 0.73, 0.76, 0.70} {0.55, 0.55, 0.59, 0.52, 0.59, 0.63}

Connected hexagon {0.66, 0.65, 0.67, 0.65, 0.66, 0.63} {0.43, 0.37, 0.44, 0.36, 0.44, 0.33}

Maximally connected hexagon {0.67, 0.68, 0.65, 0.67, 0.67, 0.64} {0.42, 0.43, 0.41, 0.45, 0.37, 0.27}

Prism {0.66, 0.71, 0.73, 0.66, 0.71, 0.73} {0.42, 0.47, 0.55, 0.42, 0.47, 0.55}

Connected square pyramid {0.67, 0.64, 0.65, 0.64, 0.65, 0.67} {0.41, 0.37, 0.37, 0.37, 0.37, 0.41}
Double square {0.71, 0.75, 0.66, 0.65, 0.71, 0.75} {0.48, 0.60, 0.44, 0.36, 0.48, 0.60}
Connected double square {0.71, 0.71, 0.66, 0.66, 0.72, 0.71} {0.50, 0.53, 0.36, 0.36, 0.49, 0.53}

Pentagonal pyramid {0.69, 0.73, 0.73, 0.70, 0.66, 0.71} {0.59, 0.48, 0.41, 0.48, 0.60, 0.40}

the cluster covariance matrix �C , as defined in Eq. (13).
Each set of variances is normalized to the respective
shot-noise levels.

The cluster analysis is performed with two different sets
of squeezed input modes. Set A exhibits relatively low input
squeezing levels but a high state purity, while set B displays
high input squeezing levels and a lower state purity. This
latter set of supermodes is obtained by operating closer to
the cavity threshold. In both cases, each of the requisite
nullifiers possesses a value below the shot-noise level for all of
the considered cluster structures. The higher input squeezing
values present in set B result in improved cluster correlations,
as highlighted by nullifier variances significantly below the
shot-noise limit.

VI. DISCUSSION

The intrinsic entanglement of the quantum frequency comb
provides an irreducible, universal quantum resource [31] of
direct relevance for quantum information processing. From
this multimode resource, the creation of cluster states or
any user-defined structure is affected through an appropri-
ate basis change. In particular, the frequency entanglement
present in the comb is arranged in such a way that multiple
cluster states are simultaneously embedded in its structure.
Importantly, the realization of these states does not necessitate
any change in the optical architecture itself, but rather
simply in the manner by which the state is measured. The
projective measurements necessary to realize such entangled
states may be implemented with any variety of spectrally
resolved homodyne detection, including pulse shaping of
the local oscillator. Theoretical analysis has proven that it

is possible to fabricate the cluster structures necessary for
computation from the modes contained within the quantum
comb [27]. Likewise, the experimental feasibility of achieving
basis transformations through measurement has already been
demonstrated in the analogous domain of spatially multimode
beams [13].

It is important to stress that the technical difficulties
currently limiting the number of observed squeezed modes
to ∼10 are not fundamental to the methodology. Suitable
improvements to the experimental setup (e.g., better adapting
the pump spectrum, etc.) are expected to lift these obstacles.
Accordingly, simulations predict that ∼100 squeezed modes
are expected to be embedded in the frequency structure of the
quantum comb [21]. Such a resource is scalable and ideal for
implementing quantum information protocols.

In summary, the parametric down-conversion of ultrafast
frequency combs provides a practical and scalable multimode
resource. The ability to generate top-down entanglement
among thousands of frequencies with a single nonlinear
interaction provides a unique capability and bodes well for
the continued development of specialized quantum networks
within highly multimode structures.
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