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Anirban Sharma,1 Ajit C. Balram ,2,3 and J. K. Jain 1

1Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Institute of Mathematical Sciences, CIT Campus, Chennai, 600113, India

3Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

(Received 6 September 2023; accepted 9 November 2023; published 22 January 2024)

The Halperin-Lee-Read Fermi sea of composite fermions at half-filled lowest Landau level is the realization
of a fascinating metallic phase that is a strongly correlated “non-Fermi liquid” from the electrons’ perspective.
Remarkably, experiments have found that, as the width of the quantum well is increased, this state makes a
transition into a fractional quantum Hall state, the origin of which has remained an important puzzle since
its discovery more than three decades ago. We perform detailed and accurate quantitative calculations using a
systematic variational framework for the pairing of composite fermions that closely mimics the Bardeen-Cooper-
Schrieffer theory of superconductivity. Our calculations show that, (i) as the quantum-well width is increased, the
single-component composite-fermion Fermi sea occupying the lowest symmetric subband of the quantum well
undergoes an instability into a single-component p-wave paired state of composite fermions; (ii) the theoretical
phase diagram in the quantum-well width–electron-density plane is in excellent agreement with experiments;
(iii) a sufficient amount of asymmetry in the charge distribution of the quantum well destroys the fractional
quantum Hall effect, as observed experimentally; and (iv) the two-component 331 state is energetically less
favorable than the single-component paired state. Evidence for fractional quantum Hall effect has been seen in
wide quantum wells also at quarter-filled lowest Landau level; here our calculations indicate an f -wave paired
state of composite fermions. We further investigate bosons in the lowest Landau level at filling factor equal to
one and show that a p-wave pairing instability of composite fermions, which are bosons carrying a single vortex,
occurs for the short range as well as the Coulomb interaction, in agreement with exact diagonalization studies.
The general consistency of the composite-fermion Bardeen-Cooper-Schrieffer approach with experiments lends
support to the notion of composite-fermion pairing as the primary mechanism of fractional quantum Hall effects
at even-denominator filling factors. Various experimental implications are mentioned.
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I. INTRODUCTION

The observation of a fractionally quantized Hall plateau
at RH = h/νe2 indicates the formation of an incompressible
state at filling fraction ν [1]. Beginning with ν = 1/3 [2],
a large array of fractions have been observed [3,4]. Most
of the observed fractions have the form ν = n/(2pn ± 1), n
and p integers, which are understood as the integer quantum
Hall effect of composite fermions (CFs), namely, electrons
bound to an even number (2p) of quantized vortices [5,6].
A CF is often pictured as the bound state of an electron and
2p flux quanta. These fractions terminate into compressible
states at even-denominator fractions such as ν = 1/2, which
are realizations of the Fermi seas of CFs [4,7–9]. The first
even-denominator fractional quantum Hall effect (FQHE) was
observed at ν = 5/2 in GaAs quantum wells [10]. Moore and
Read (MR) proposed a Pfaffian (Pf) state [11], which was sub-
sequently interpreted as representing a p-wave pairing of CFs
and associated with the ν = 5/2 FQHE [12–17]. This state is
akin to topological superconductivity of CFs and is therefore
believed to host quasiparticles obeying non-Abelian statistics
[11,14]. More recently, Balram, Barkeshli, and Rudner [18]
showed that the 5/2 state can also be successfully modeled in
terms of the so-called “2̄2̄111” parton wave function, which
belongs to the class of wave functions introduced in Ref. [19]
and shown in Ref. [20] to host non-Abelian excitations.

Möller and Simon [21] and Sharma et al. [22] treated the
CF pairing in the 5/2 state in an approach that closely mimics
the Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity and showed that the CF Fermi sea (CFFS) is unstable
to the pairing of CFs in the p-wave channel. As with the
BCS theory, this approach can be used to provide a unified
treatment of pairing instabilities in different relative angular-
momentum channels and to make predictions regarding the
optimal pairing channel. Also, because it contains the CFFS
as a limiting case, it can in principle be applied to situations
where a transition occurs, as a function of some parameter,
from the compressible CFFS state into an incompressible
paired FQHE state.

While a FQHE has been observed at ν = 5/2 in the sec-
ond Landau level (LL), the states at ν = 1/2 and ν = 1/4 in
narrow quantum wells (QWs) are well established to be com-
pressible Fermi seas of CFs carrying two and four vortices,
respectively [7–9,23–32], as expected for weakly interacting
CFs. Unexpectedly, Suen et al. observed FQHE at ν = 1/2
in wide QWs in 1992 [33,34], followed by systematic studies
demonstrating that a transition from the CFFS to a FQHE state
occurs as the width of the QW or the electron density is in-
creased [35,36]. A similar behavior was observed at ν = 1/4
by Shabani and collaborators [36–38]. One may ask why elec-
trons at ν = 1/2 and ν = 1/4 in the lowest LL (LLL) behave
differently from ν = 5/2 in the second LL in narrow QWs,
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and why a FQHE state appears at these LLL filling factors in
wide QWs? The fate of an even-denominator state eventually
depends on the interaction between CFs, which is a remnant
of the electron-electron (e-e) interaction after a large part of it
is exhausted in forming the CFs. The interaction between CFs
is a complex function of the parent e-e interaction, and it can
sometimes be estimated numerically within an approximate
scheme [39–44]. The picture that has emerged from numerical
studies and by comparing the CF theory to experiments is that
the model of noninteracting CFs is qualitatively valid when
the e-e interaction is strongly repulsive at short distance, as is
the case in the LLL for narrow QWs. When the e-e interaction
is made less repulsive at short distance, the interaction be-
tween CFs can become attractive, which may lead to a pairing
instability. There are several ways of making the e-e interac-
tion less repulsive at short distance: by going to higher LLs, by
making QWs wider, and by enhancing LL mixing. Of course,
as the e-e interaction strength is reduced at short distance,
eventually CFs themselves become unstable, and some other
state, such as a charge density wave of electrons, takes over.
A paired-CF state is obtained in a sweet spot where the e-e
interaction is sufficiently strongly repulsive as to produce CFs,
but not so strongly repulsive as to produce a CFFS. It is thus a
delicate quantitative question whether CF pairing occurs and,
if so, in what channel.

We will address the issue from the CF-BCS perspective.
In this approach, we proceed by constructing a BCS wave
function for CFs at ν = 1/2 and ν = 1/4 in the periodic torus
geometry [22]. For this purpose, we composite fermionize the
BCS wave function for electrons by attaching even number
of quantized vortices to electrons and then projecting it into
the LLL [5]. The CF-BCS wave function has two variational
parameters, which are analogous to the gap function and the
Debye cutoff in the standard BCS theory. While the idea is
in principle straightforward, its implementation is nontrivial
because several technical hurdles must be overcome and, in
particular, we must modify the Jain-Kamilla (JK) projection
scheme [45,46], because the standard JK projection in the
torus geometry takes us out of the original Hilbert space by
producing unphysical wave functions that do not satisfy the
stipulated periodic boundary conditions (PBCs).

The CF-BCS approach offers several advantages. First of
all, this method is not tied to a specific wave function but casts
a wider net where one can search for the lowest-energy wave
function of the BCS form by varying two parameters. (The
MR and parton wave functions do not contain any variational
parameters.) Second, the CF-BCS wave function reduces to
the CFFS in one limit, which will be the lowest energy solu-
tion when a pairing instability is absent. This method thus can
tell if the compressible CFFS is more likely to occur than an
incompressible paired state. It is expected to be most reliable
when the CFFS is a good starting point, which is the case at
ν = 1/2 and ν = 1/4 in the LLL. Finally, this method also
enables a study of the competition between different pairing
channels. A mention of the limitations of the method is also
in order. It is important to work with CFFS configurations
that are nearly circular, which limits our study to only a few
particle numbers (such as N = 12, 32, and 60 electrons for
a square torus). We will neglect LL mixing, which may also
induce pairing [47,48]. In the end, we note that we will also

not consider in this work certain other competing states, such
as stripes or Wigner crystals.

In this article, we apply the CF-BCS method to several situ-
ations where even-denominator FQHE has been observed. To
set our convention, we work with a gap function �

(l )
k ∼ e−ilθ ,

where θ is the angular coordinate of the wave vector k. We
consider pairing channels with relative angular momentum
l = 3 (denoted below as f wave), l = 1 (p wave), l = −1 and
l = −3. The state with the pairing channel l = 3 lies in the
same universality class as the “221” parton state [18]; l = 1
belongs in the same phase as the MR-Pf or the anti-2̄2̄111-
parton states; l = −3 paired state lies in the same phase as
the anti-Pfaffian [49,50] or the 2̄2̄111-parton states [18]; and
l = −1 paired state is topologically equivalent to the so-called
particle-hole symmetric Pf (PHS-Pf) phase [51,52]. (Here,
“anti” denotes hole conjugate state.) These states and some
of their topological quantum numbers are listed in Table I.
We provide here a brief summary of our results, including,
for completeness, the conclusions from earlier work [22,54].
Further details are given in subsequent sections.

ν = 1/2 and 5/2 in narrow QWs. It was shown by Sharma
et al. [22] that, for a two-dimensional (2D) system, no pairing
instability is seen at ν = 1/2, whereas a p-wave instability
occurs at ν = 5/2. This is consistent with experiments in the
sense that FQHE has been seen at ν = 5/2 but not at ν = 1/2.
These results are applicable, within approximations, to even
denominator FQHE observed in bilayer graphene [55–62],
which occurs in Landau bands that are analogous to the sec-
ond LL of GaAs QWs.

Even denominators in monolayer graphene. FQHE at
even-denominator fractions has been observed by Kim et al.
in the N = 3 LL of monolayer graphene [63]. The CF-BCS
formulation finds an f -wave pairing instability for the inter-
action appropriate for this LL [54]. This result is consistent
with the calculations in Ref. [63] which had suggested that
the 221 parton state [19], which also represents an f -wave
pairing [18,20], was the most plausible incompressible state
among various states considered.

ν = 1/2 in wide QWs. FQHE has been seen at ν = 1/2
in wide QWs [33–36]. Whether the observed FQHE state is
a one or a two-component state has been a matter of debate
for three decades [64–71], where the two components here
would be the lowest two subbands whose separation becomes
small with increasing width. In the present work, we begin by
assuming a single-component origin, determine the effective
e-e interaction as a function of the QW width and the electron
density and find that the CFFS is unstable to p-wave pairing at
large QW widths and/or large densities. Our calculated phase
diagram is in excellent agreement with the experimentally
determined phase diagram in the QW width–density plane.
We also find, in agreement with experiments, that the FQHE
in wide QWs is destroyed when the charge distribution in the
QW is made sufficiently asymmetric. Our calculations also
indicate that the two-component Halperin 331 state is energet-
ically less favored. These results demonstrate that experiments
are nicely consistent with a single-component paired CF state.
The assignment of the FQHE state with a single-component
p-wave state is also in line with another theoretical study
by Zhu et al. [72]. Experimentally, the observation of the
standard Jain sequences ν = n/(2n±1) on either side of the
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TABLE I. This table lists the candidate states at ν = 1/s for various pairing channels, where s is an even integer for fermions and an odd
integer for bosons. The term “anti” refers to hole conjugation. The values of the shift S and the chiral central charge c are also given.

Pairing symmetry Candidate states Shift S = l + s Central charge c = 1 + l/2

l = 3 ( f wave) MR- f , CF-BCS- f , 221s−1 3 + s 5/2 [20]
l = 1 (p wave) MR-Pf, CF-BCS-p, anti-(2̄2̄111)1s−2 1 + s 3/2 [11]
l = −1 PHS-Pf, CF − BCSl=−1 −1 + s 1/2 [52]
l = −3 Anti-Pf, CF-BCSl=−3, 2̄2̄1s+1 −3 + s −1/2 [53]

1/2 FQHE points to single-layer physics, and the measured
Fermi wave vector also indicates a single-component CFFS
[70]. Very recently, Singh et al. [73] observed, concurrent with
the 1/2 FQHE state, anomalously strong FQHE states at 8/17
and 7/13, which they interpreted in terms of the theoretically
predicted daughter fractions of the single-component Pf phase
[74].

ν = 1/4 in wide QWs. There is evidence for FQHE at
ν = 1/4 in wide QWs [36–38]. We show below that here the
CFFS yields to f -wave pairing of CFs with increasing width
or density. This is consistent with the calculation of Faugno
et al. [75], who found that the 22111 parton state, which also
represents f -wave pairing of CFs, has lower energy than the
CFFS for sufficiently large QW widths.

Bosons at νb = 1 and νb = 1/3. Bosons in the LLL turn
into CFs by attaching an odd number (s) of vortices to show
FQHE at the Jain fractions νb = n/(sn ± 1). One would ex-
pect a CFFS at νb = 1 by analogy to the electron problem, but,
for the contact interaction, exact diagonalization (ED) studies
show the MR-Pf to be energetically favorable. We refer the
reader to Refs. [76–81] for details. In this article we show
that the CFFS at νb = 1 is unstable to p-wave pairing for
both the contact and the long-range Coulomb interactions. In
contrast, for νb = 1/3, we do not find any pairing instability
of the CFFS for the Coulomb interaction. These results are
consistent with ED studies [82].

In summary, we find that the CF-BCS approach is reason-
ably successful in uncovering pairing instabilities in a number
of different contexts. In particular, an accumulation of the
experimental results and the present theoretical work makes
a strong case for a single-component FQHE at ν = 1/2 and
1/4 with pairing symmetries of p and f wave, respectively.

During the course of this work, we have found that the
model for electron-background and background-background
interaction affects the thermodynamic extrapolations obtained
from trial wave functions in the spherical geometry. See
Appendix C for a discussion of this issue. There and in
Sec. IV B we present more accurate calculations for the phase
diagram in the spherical geometry for ν = 1/4 and ν = 1/2.
At ν = 1/4 an instability into the 22111 parton state is still
seen, but the phase boundary we obtain is somewhat different
from that in Ref. [75]. At ν = 1/2, the MR Pfaffian state
is found to have higher energy than the CFFS in the entire
range of width and density studied, in contrast to the claim in
Ref. [83].

The plan for the remainder of the paper is as follows: In
Sec. II, we provide a brief review, for completeness, of the
basics of CFs on a torus and also introduce certain known

wave functions. In Sec. III, we construct our CF-BCS wave
function for spin-polarized CFs and show that the modified
JK projection scheme produces wave functions that satisfy
the proper quasiperiodic boundary conditions. In Sec. IV we
study the nature of the state at ν = 1/2 in a wide QW and find
that a p-wave pairing instability occurs as the QW width or
the density is increased. The theoretical phase diagram is in
excellent agreement with the experimental one. We also find
that asymmetry of the QW favors the CFFS state, and a two-
component candidate state is energetically less favorable. In
Sec. V, we present the results of our calculations for ν = 1/4,
which demonstrate an f -wave pairing instability as the QW
width or the density is increased. A system of bosons confined
to the LLL is considered in Sec. VI. A p-wave pairing insta-
bility is seen at filling factor νb = 1 for both the contact and
the Coulomb interactions. We provide a rough estimation for
the gap from the condensation energy in Sec. VII. The paper
is concluded in Sec. VIII. Many relevant details are presented
in the Appendixes.

II. COMPOSITE FERMIONS ON A TORUS

For completeness, this section contains a review of various
relevant wave functions in the torus geometry. A torus can be
mapped to a parallelogram with periodic boundary conditions.
We denote the two edges of the parallelogram by L1 = L and
L2 = Lτ , where τ = τ1 + iτ2 is a complex parameter. The
modular parameter τ specifies the torus [84]. We consider
L1 to be along the real axis. The magnetic field B = −Bẑ is
perpendicular to the parallelogram. The positions of the par-
ticles are represented by the complex coordinates z = x + iy.
We consider the symmetric gauge for our calculations, given
by A = B

2 (y,−x, 0). The single-particle wave functions on
the torus satisfy the periodic boundary conditions in the two
directions:

t (L1)ψ (z, z̄) = eiφ1ψ (z, z̄),

t (L2)ψ (z, z̄) = eiφ2ψ (z, z̄), (1)

where t (Li ) is the magnetic translation operator in the Li

direction defined by

t (ξ ) = e− i
2	2 ẑ.(ξ×r)T (ξ ), (2)

with 	 = √
h̄c/eB as the magnetic length and T (ξ ) as the

translation operator for a vector ξ . The translation operator
for a vector ξ can be written as

T (ξ ) = eξ∂z+ξ̄ ∂z̄ , (3)
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with ξ = ξx + iξy. Some of the important relations which are
needed to show the boundary conditions are

t (L1)e
z2−|z|2

4	2 = e
z2−|z|2

4	2 T (L1), (4)

t (L2)e
z2−|z|2

4	2 = e
z2−|z|2

4	2 e−iπNφ (2z/L+τ )T (L2). (5)

The many-particle wave function must satisfy the property

t j (L1)�({zi}, {z̄i}) = eiφ1�({zi}, {z̄i}),

t j (L2)�({zi}, {z̄i}) = eiφ2�({zi}, {z̄i}), (6)

where t j is the magnetic translation operator for the jth
particle.

Below are some candidate states at ν = 1/2m. The wave
functions are confined to the lowest Landau level (LLL) and
we do not include Landau-level mixing in our calculations.

CFFS wave function. The CFFS wave function on a torus
is given by

�CFFS
1/2m,kCM

= PLLLDet[eikn·rm ]�L
1/2m,kCM

, (7)

where PLLL is the LLL projection operator for the torus ge-
ometry [85,86]. The allowed values of the wave vectors k are
given by

kn =
[

n1 + φ1

2π

]
b1 +

[
n2 + φ2

2π

]
b2, (8)

where

b1 =
(

2π

L
,−2πτ1

Lτ2

)
, b2 =

(
0,

2π

Lτ2

)
. (9)

The discrete values of k are constrained by periodic boundary
conditions. In what follows, we will also use the notation k =
kx + iky. In Eq. (7), �L

1/2m,kCM
is the Laughlin wave function at

filling fraction ν = 1/2m, which is written as

�L
1/m,kCM

[zi, z̄i] = e
∑

i
z2
i −|zi |2

4	2

[
ϑ

[
φ1

2πm + kCM
m + N−1

2

− φ2
2π

+ m(N−1)
2

]

×
(

mZ

L1

∣∣∣∣mτ

)]∏
i< j

[
ϑ

[
1
2
1
2

](
zi − z j

L1

∣∣∣∣τ
)]2m

,

(10)

where kCM takes values kCM = 0, 1, . . . , 2m − 1; it selects the
center-of-mass momentum sector. For our calculations, we
select kCM = 0.

We use the Jacobi theta functions with rational characteris-
tics [87],

ϑ

[
a

b

]
(z|τ ) =

∞∑
n=−∞

eiπ (n+a)2τ ei2π (n+a)(z+b),

whose properties are summarized in Ref. [54].
MR wave function. The MR wave function in disk geome-

try at ν = 1
2m is given by

�MR = exp

⎡
⎣−

∑
j

|z j |2/4	2

⎤
⎦Pf

(
1

z j − zk

)∏
j<k

(z j − zk )2m,

(11)

where Pf represents Pfaffian, which is defined, for an N × N
(with even N) antisymmetric matrix Mi j as

Pf{Mi j} = 1

2N/2(N/2)!

∑
σ

N/2∏
i=1

Mσ (2i−1)σ (2i), (12)

where σ labels all permutations. The factor Pf( 1
z j−zk

) rep-
resents a p-wave paired wave function for electrons, while∏

j<k (z j − zk )2m attaches 2m vortices to electrons to convert
the wave function into a paired state of CFs. On a torus, the
MR wave function takes the form [13,88,89]

�
(a,b,kCM )
MR−p = e

∑
i

z2
i −|zi |2

4	2 ϑ

[
φ1

4π2m + kCM
2m + (N−1)

2 + (1−2a)
4

− φ2

2π
+ m(N − 1) − (1−2b)

2

](
2mZ

L

∣∣∣∣∣2mτ

)
Pf

⎛
⎜⎜⎜⎜⎜⎝

ϑ

[
a
b

]( zi−z j

L

∣∣τ)

ϑ

[
1
2
1
2

]( zi−z j

L

∣∣τ)

⎞
⎟⎟⎟⎟⎟⎠
∏
i< j

[
ϑ

[
1
2
1
2

](
zi − z j

L

∣∣∣∣∣τ
)]2m

.

(13)

The above wave function represents a p-wave paired state of CFs. Similarly, we write a MR type Pfaffian wave function with
f -wave pairing at ν = 1/2m (for m � 2):

�
(a,b,kCM )
MR− f = e

∑
i

z2
i −|zi |2

4	2 ϑ

[
φ1

4πm + kCM
2m + (N−1)

2 + (1−2a)
4

− φ2

2π
+ m(N − 1) − (1−2b)

2

](
2mZ

L

∣∣∣∣∣2mτ

)
Pf

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

ϑ

[
a
b

]( zi−z j

L

∣∣τ)

ϑ

[
1
2
1
2

]( zi−z j

L

∣∣τ)

⎤
⎥⎥⎥⎥⎥⎦

3
⎞
⎟⎟⎟⎟⎟⎟⎠
∏
i< j

[
ϑ

[
1
2
1
2

](
zi − z j

L

∣∣∣∣∣τ
)]2m

.

(14)
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The numerator inside the Pfaffian factor is required to produce
the desired boundary conditions, and the parameters (a, b)
can take values (0, 1

2 ), ( 1
2 , 0), or (0,0) (for which the theta

function is even under exchange of particles), which indicates
a topological ground-state degeneracy of three [88]. As the ith
and jth particles approach one another, the quantity

ϑ

[
a
b

](
zi − z j

L

∣∣∣∣τ
)

vanishes as zi − z j for (a, b) = (1/2, 1/2), whereas it does
not vanish for (a, b) = (0, 1

2 ), ( 1
2 , 0), or (0,0), approaching a

constant instead. (The above wave function for MR- f is ill
defined for ν = 1/2 because the Jastrow factor does not have
enough powers to cancel the divergence of the Pfaffian when
two particles approach one another.)

III. CF-BCS WAVE FUNCTION

In this section, following the approach outlined in
Ref. [22], we construct BCS wave functions for spin polarized
CFs at ν = 1/2 and 1/4 for a general pairing, including p and
f -wave pairings. We then describe the projection scheme for
our calculations.

The real-space form of BCS wave function for fixed num-
ber of electrons is given by [90]

�BCS(r1, . . . , rN ) = Pf(g(l )(ri − r j )), (15)

where g(l )(ri − r j ) can be expanded as

g(l )(ri − r j ) =
∑

k

g(l )
k eik·(ri−r j ). (16)

Here each k, −k is occupied only once. For an odd pairing
symmetry l , following the BCS theory, we have

g(l )
k ≡ vk

uk
=

εk −
√

ε2
k + |�(l )

k |2
�

(l )∗
k

= −g(l )
−k, (17)

where εk = h̄2|k|2/2m − h̄2|kF |2/2m and �k is the gap func-
tion. The quantities kF and m represent the Fermi wave vector
and mass of the electron, respectively. Analogously, the CF-
BCS wave function at ν = 1/2m can be constructed as

�BCS
1

2m
= PLLLPf

(∑
k

g(l )
k eik·(ri−r j )

)
�L

1/2m, (18)

where the mass of electron m is replaced by effective mass of
CF, m∗. The form of the gap function for the l pairing channel
is �

(l )
k = �|k|e−ilθ , where θ is the relative angle between

the kx and ky components of the wave vector k. The pairing

channel is defined by the eigenvalues of rotations in k with
�

(l )
k as eigenfunctions [14]. The parameters l = 1 and l = 3

correspond to p- and f -wave pairing, respectively. It signifies
the number of copropagating Majorana edge modes, giving a
central charge c = 1 + l/2 [91]. Following Refs. [22,85,86],
the direct projected CF-BCS state at ν = 1/2m is given by

�BCS
1

2m
= e

∑
i

z2
i −|zi |2

4	2 ϑ

[
φ1

4πm + N−1
2

− φ2
2π

+m(N−1)

](
2mZ

L1
|2mτ

)

× Pf

[∑
n

g(l )
kn

F̂n(zi, z j )

]∏
i

Jm
i , (19)

where

Ji =
∏
r �=i

ϑ

[
1
2
1
2

](
zi − zr

L

∣∣∣∣∣τ
)

, (20)

F̂n(zi, z j ) = e− kn	2

2 (kn+2k̄n)e
i
2 (zi−z j )(kn+k̄n)eikn	

2∂zi e−ikn	
2∂z j ,

(21)

and kn are given by Eq. (8). The above form of the wave
function is not amenable to calculations for large systems, be-
cause LLL projection can be performed only for rather small
systems. We therefore follow the Jain-Kamilla (JK) projection
method [45,46]. The basic idea is to bring some of the Jastrow
factors inside the Pfaffian matrix and then project each matrix
element of the Pf separately

Pf

[∑
n

g(l )
kn

F̂n(zi, z j )

]∏
i

Jm
i

→ Pf

[∑
n

g(l )
kn

F̂n(zi, z j )JiJj

](∏
i

Jm−1
i

)
. (22)

The right-hand side is not a legitimate wave function in the
torus geometry because it does not satisfy the correct periodic
boundary conditions. It was shown in Ref. [22], following ear-
lier work dealing with FQHE states [85,86], that if we replace

the operators eikn	
2∂zi e−ikn	

2∂z j in F̂n(zi, z j ) by eikn	
2D̂( j)

zi e
−ikn	

2D̂(i)
z j ,

the boundary conditions are preserved. Here the new deriva-
tive operator D̂( j)

zi is defined as

D̂( j)
zi

ϑ

[
1/2

1/2

](
zi − zl

L

∣∣∣∣τ
)

≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 ∂
∂zi

ϑ

[
1/2

1/2

]( zi−zl
L

∣∣τ) if l = j

2m ∂
∂zi

ϑ

[
1/2

1/2

]( zi−zl
L

∣∣τ) if l �= j.

(23)
The final form of the JK projected wave BCS function is

�BCS
1

2m
= e

∑
i

z2
i −|zi |2

4	2

{
ϑ

[
φ1

4πm + N−1
2

− φ2

2π
+ m(N − 1)

](
2mZ

L

∣∣∣∣∣2mτ

)}
Pf(M̃i j )

∏
i< j

{
ϑ

[
1
2
1
2

](
zi − z j

L

∣∣∣∣∣τ
)}2(m−1)

, (24)
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where the matrix element is

M̃i j =
∑

kn

g(l )
kn

e− 	2

2 kn(kn+2k̄n )e
i
2 (zi−z j )(kn+k̄n )

∏
m

m �=i, j

ϑ

[
1
2
1
2

](
zi + i2mkn	

2 − zm

L

∣∣∣∣∣τ
)

×
∏

n
n �=i, j

ϑ

[
1
2
1
2

](
z j − i2mkn	

2 − zn

L

∣∣∣∣∣τ
){

ϑ

[
1
2
1
2

](
zi + i2mkn	

2 − z j

L

∣∣∣∣∣τ
)}2

. (25)

The JK projected wave function satisfies the periodic bound-
ary conditions, as shown in Appendix A.

For ν = 1/4 we have another choice for the JK projection,
where we pull all of the Jastrow factor into the Pf to write
Pf[
∑

n g(l )
kn

F̂n(zi, z j )J2
i J2

j ]. We have tested this as well and
found that the resulting wave function is very close to that
in Eq. (22) and does not change any conclusions.

We define a dimensionless variational parameter �̃ for the
CF-BCS wave function [54]:

�̃ = |�(l )
kF

|
h̄2|kF |2/2m∗ . (26)

This is the gap parameter. We introduce another parameter
kcutoff such that only wave vectors |k| � kcutoff participate in
pairing. The quantity g(l )

kn
can then be rewritten as [54]

g(l )
kn

=
⎧⎨
⎩

|kn|2−|kF |2−
√

(|kn|2−|kF |2 )2+�̃2|kF |2|kn|2
�̃|kn|eilθ |kF | , |kn| � kcutoff

0, |kn| > kcutoff .

(27)

For our calculations, we determine the magnitude of kF using
the relation

π |kF |2 = N |b1×b2|. (28)

We perform our numerical calculations for even number of
particles with N = 12 and N = 32 particles. The Fermi sea
configuration is approximately circular for these system sizes.

IV. ORIGIN OF FRACTIONAL QUANTUM HALL EFFECT
AT ν = 1/2 IN WIDE QUANTUM WELLS

The FQHE at ν = 1/2 was seen in wide QWs three decades
ago [33–36]. Because the 1/2 state in narrow QWs is un-
doubtedly a CFFS, experiments imply a phase transition into
a FQHE state as a function of the QW width or the electron
density. There has been much discussion regarding the nature
of the 1/2 FQHE, and especially on whether it is a single-
component or a two-component state. In the next section, we
show that theory predicts a CF pairing instability within a
single-component state residing within the lowest subband of
the wide QW. In the subsequent section we present variational
calculations indicating that a candidate two-component state
has higher energy than the CFFS. In the last section, we search
for a quantum phase transition in the nearby ν = 6/13 FQHE
state as a function of the QW width and the electron density.

A. BCS pairing instability in the lowest subband

We begin by exploring the possibility of a pairing transition
assuming a single-component origin, that is, assuming that
all electrons occupy only the lowest symmetric subband. The
effect of finite QW width can be incorporated by modifying
the Coulomb interaction as

VC(r1 − r2) =
∫

dw1

∫
dw2

|ξ (w1)|2|ξ (w2)|2√
|r1 − r2|2 + (w1 − w2)2

,

(29)

where ξ (w) is the electron wave function in the transverse
direction, w is the corresponding coordinate in the transverse
direction, and r is the in-plane distance between the electrons.
The transverse wave function ξ (w) is obtained in a local
density approximation (LDA) [92,93]. The coordinates are in
units of the magnetic length 	 = √

h̄c/eB and the energy is in
units of e2/ε	. For the torus geometry, we use a periodic form
of the interaction. The details of the calculations are given in
Appendix D.

In Fig. 1, we consider the system with a large density and
QW width (ρ = 2.5 × 1011 cm−2 and w = 70 nm) and plot
the energies of the CFFS, BCS-p, BCS- f , and MR-p states as
a function of �̃, where for each value of �̃ we vary kcutoff

to find the lowest energy for the CF-BCS wave functions.
(The energies of the CFFS and MR-p states are independent
of �̃.) All energies here and below are quoted in units of

FIG. 1. The energy per particle for various candidate states at
ν = 1/2 as a function of �̃ at density = 2.5 × 1011 cm−2 and QW
width = 70 nm for a system of 32 particles. The torus geometry is
used for the calculation. The BCS-p (l = 1) state clearly has lower
energy than the CFFS. The energies are measured relative to the
energy of the CFFS state (ECFFS) in units of e2/ε	.

035306-6



COMPOSITE-FERMION PAIRING AT HALF-FILLED AND … PHYSICAL REVIEW B 109, 035306 (2024)

FIG. 2. (upper panel) The energy as a function of the well width
for several candidate states at density = 2.5 × 1011 cm−2. (lower
panel) Energy as a function of density for a fixed well width = 60 nm.
The energies are plotted with respect to the energy of the CFFS, in
units of e2/ε	. The calculations are performed for N = 32 particles
on a torus.

e2/ε	. The results indicate a p-wave pairing instability for
these parameters.

Figure 2 shows the lowest energies of various paired states
as a function of the QW width for a fixed electron density
(upper panel) and also as a function of the density for a fixed
QW width (lower panel). An instability occurs from the CFFS
state into the BCS-p state as either the QW width or the
density is increased. We note that the minimum energy of the
CF-BCS state for any l is always less than or equal to that of
the energy of the CFFS, because the CFFS is a special case
of the CF-BCS state (obtained when kcutoff = kF ). The reader
will notice that for many parameters both CF-BCS states have
the same energy as the CFFS; there is no pairing instability
for these parameters.

We obtain the phase diagram for a 32 particle system at ν =
1/2, shown in Fig. 3. A blue dot indicates that the CFFS has
the lowest energy for that QW width and density, whereas the
red squares mark parameters where the BCS-p has the lowest
energy. The dashed line is the phase boundary obtained from
experiments [33–36]. Clearly, the theoretical phase boundary
is in excellent agreement with the experimental one.

The CFFS is known to be an excellent variational state
at ν = 1/2 [83,85,94,95]. It is therefore significant and non-
trivial that a paired state has been found that has a lower

20 30 40 50 60 70
Well width (in nm)
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25

30
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m
-2

)

CFFS
BCS-p

 N=32

FIG. 3. This figure shows the minimum-energy state at ν = 1/2
(blue dots for the CFFS and red squares for the p-wave paired state;
all other candidate states have higher energies) as a function of the
electron density and the QW width. The calculation is performed
for a system of 32 particles on a torus. The dashed line depicts the
experimental phase boundary separating the compressible and the
FQHE states at ν = 1

2 taken from Refs. [33–36].

energy than the CFFS. The rather small energy gains of
0.002e2/εl–0.003e2/εl per particle due to pairing (Fig. 2)
indicate the level of quantitative accuracy required to capture
this physics. Note that the MR-p state has higher energy
than the CFFS for all parameters considered in our study.
(The competition between these two states in the spherical
geometry is discussed in Appendix C.) That underscores the
importance of the CF-BCS formalism in the explanation of
the experiments.

Finally, we consider the role of asymmetry. Experiments
have found that the incompressibility at ν = 1/2 is lost
as the QW is made sufficiently asymmetric [38]. This has
been taken as evidence for two-component nature of the
FQHE state. However, a similar effect may occur even for
a single-component FQHE, because making the transverse
wave function asymmetric alters the interaction between elec-
trons occupying the lowest symmetric subband. Indeed, in
the limit of very large asymmetry, when all of the wave
function is confined to one half of the quantum well, we
end up with a narrow QW and expect a CFFS rather than a
FQHE state.

We have investigated the effect of asymmetry of quantum
well on the phase diagram. We introduce asymmetry by plac-
ing the dopant layers at different distances on two sides of the
QW in the self-consistent LDA calculation. We take as a mea-
sure of the asymmetry the quantity �ρ = (ρL − ρR)/(ρL +
ρR), where ρL and ρR denote the densities in the left half
and the right half of the QW, with the total density given by
ρL + ρR. In Fig. 4, we plot the theoretical phase boundaries for
three different values of �ρ. We find that the phase boundary
shifts towards larger QW width or larger density as the QW
is made asymmetric. This is consistent with the experimental
observation that the resistance minimum at ν = 1/2 becomes
weaker with increasing asymmetry [38].
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FIG. 4. This figure shows the variation in the phase boundary
separating the CFFS and the CF p-wave paired state at ν = 1/2 as
a function of the degree of asymmetry of the charge distribution in
the QW (defined in the text).

B. Candidate two-component state

Two-component states may be relevant for wide QWs
because, with increasing QW width, the energy separation
between the lowest symmetric and antisymmetric subbands,
denoted �SAS, becomes small and the system becomes more
and more like a bilayer. For an ideal bilayer, namely the
system of two two-dimensional layers separated by a distance
d , one expects two independent 1/4 CFFSs in the limit of
large d and a pseudospin singlet CFFs at small d [96]. At
intermediate values 2 � d/	 � 3, the Halperin 331 state [97]
is a better variational state than these two [98] and has been
observed in a bilayer system [99]. One may ask if the Halperin
331 state is also relevant for the wide QWs of interest here. Its
wave function in the disk geometry is given by

�331 =
∏
j<k

(z j − zk )3
∏
j<k

(z[ j] − z[k] )
3
∏
j,k

(z j − z[k] ), (30)

where j, k = 1, . . . , N/2, [ j] = N/2 + j, z j denotes the elec-
tron position within the two-dimensional plane, and we have
suppressed the Gaussian factors for simplicity. For an ideal
bilayer, the interaction between electrons in the same layer has
the usual form, e2/ε|z j − zk| and e2/ε|z[ j] − z[k]|, whereas the
interaction between electrons in different layers is given by
e2/ε(|z j − z[k]|2 + d2)1/2.

For the present problem, we can either define the
right and the left basis functions as ξL(w) = [ξS (w) +
ξA(w)]/

√
2 and ξR(w) = [ξS (w) − ξA(w)]/

√
2, where ξS (w)

and ξA(w) are the transverse wave functions of the lowest
symmetric and antisymmetric subbands obtained in the LDA
or equivalently, we can consider the symmetric and antisym-
metric subbands as the two components. We perform the
calculations in Haldane’s spherical geometry [100], where,
as discussed in Appendix C, it is important to be careful
about the electron-background and background-background
contributions to the energy. As discussed in that Appendix,
the most accurate extrapolations to the thermodynamic limit
are obtained when the background charge is assumed to have
the same transverse charge distribution as the electrons, which

is what we do. In addition to the Coulomb energy, another
contribution to the energy is given by �SAS/2 per particle,
where an estimate for �SAS can be obtained from the LDA
calculation.

For a single-component state, we write the interaction
term including the electron-electron, electron-background,
and background-background interaction as

V̂ = 1

2

∫
dR
∫

dR′[ρ̂(R) − ρ(R)]V (R − R′)[ρ̂(R′) − ρ(R′)],

where R = (r,w) is a three-dimensional coordinate, V (R) is
the Coulomb interaction e2/ε|R|, ρ̂(R) is the electron-density
operator and ρ(R) = 〈ρ̂(R)〉. The expectation value 〈V̂ 〉 is
given by

1

2

∫
dR
∫

dR′〈ρ̂(R)V (R − R′)ρ̂(R′)〉

− 1

2

∫
dR
∫

dR′ρ(R)V (R − R′)ρ(R′). (31)

The last term is the electron-background and background-
background contribution, denoted below by Eb. By integrating
over the transverse coordinates, one can rewrite it as

Eb = −1

2

∫
dr
∫

dr′ρ(r)VC(r − r′)ρ(r′), (32)

where the effective interaction VC is given in Eq. (29).
For a two-component state, we write the interaction as

(with the components labeled S and A):

1

2

∫
dR
∫

dR′[ρ̂S (R) − ρS (R)]V (R − R′)[ρ̂S (R′) − ρS (R′)]

+ 1

2

∫
dR
∫

dR′[ρ̂A(R) − ρA(R)]V (R − R′)

× [ρ̂A(R′) − ρA(R′)] +
∫

dR
∫

dR′[ρ̂S (R) − ρS (R)]

× V (R − R′)[ρ̂A(R′) − ρA(R′)]. (33)

Now the sum of the electron-background and background-
background contribution is given by

Eb = −1

2

∫
dR
∫

dR′ρ(R)V (R − R′)ρ(R′), (34)

where ρ(R) = ρS (R) + ρA(R). This can be rewritten as a two-
dimensional problem by introducing the effective interaction

VC,σσ ′ (r − r′) = e2

ε

∫
dw

∫
dw′ |ξσ (w)|2|ξσ ′ (w′)|2√

|r − r′|2 + (w − w′)2
,

(35)

where (σ, σ ′) = (S, S), (A, A), (S, A), (A, S) (evidently, we
have VC,AS = VC,SA) so that

Eb = −
∑

σ=A,S
σ ′=A,S

1

2

∫
dr
∫

dr′ρσ (r)VC,σσ ′ (r − r′)ρσ ′ (r′), (36)

where ρσ (r) is the σ component’s two-dimensional electron
density.

We have obtained the thermodynamic limits for the ener-
gies of the Halperin 331, Pf, and CFFS states in the spherical
geometry for a range of QW widths and densities. Some

035306-8



COMPOSITE-FERMION PAIRING AT HALF-FILLED AND … PHYSICAL REVIEW B 109, 035306 (2024)

FIG. 5. The energy E/N of the CFFS, Pfaffian and the 331 states
as a function of 1/N for QW width w = 70 nm and electron density
ρ = 3.0 × 1011 cm−2 at ν = 1/2. The spherical geometry is used for
the calculation. The energies are plotted in units of e2/ε	. The energy
of the 331 state plotted above is the interaction energy; it does not
include the contribution 1

2 �SAS per particle.

details are given in Appendix C. We find that the CFFS has
lower energy than the 331 and the Pf states in the entire range
of parameters shown in Fig. 3. Figure 5 shows the thermo-
dynamic extrapolation for a 70-nm-wide QW with density
3 × 1011 cm−2. We note that the energy of the 331 state shown
in this figure is only the interaction energy; it does not include
the contribution �SAS/2 (the LDA value is �SAS = 5.65 K
for the parameters in Fig. 5), which will lead to a further en-
hancement of its energy. Our calculations thus do not support
the two-component 331 state. We note that this conclusion is
based on a single wave function, and we have not considered
a two-component CF-BCS type wave function.

C. Daughter states near ν = 1/2

Interestingly, the nature of the FQHE states in the vicinity
of ν = 1/2 may also hold a clue into the origin of the FQHE
at ν = 1/2. Let us recall the situation in the second LL where
Kumar et al. [101] found that the FQHE at ν = 2 + 6/13 is
anomalously strong. Note that 6/13 is routinely seen in the
LLL; it belongs to the standard Jain sequence n/(2n + 1) and
is understood as six filled � levels of CFs. However, the state
at 2 + 6/13 appears to have a different origin because no
FQHE is seen at 2 + 3/7, 2 + 4/9, and 2 + 5/11. The work
by Balram et al. [18,102] provides insight into the nature of
this state by employing the parton theory of the FQHE [19].
Briefly, the parton construction proceeds by dividing each
electron into an odd number (m) of fictitious fermions called
partons, placing each parton species into an integer quantum
Hall state and finally identifying the partons to yield back the
physical electrons. The wave function of the resulting state
is �ν = PLLL

∏m
λ=1 �nλ

, where �n is the wave function of
n filled LLs, PLLL denotes projection into the LLL, and the
filling factor is given by ν = [

∑m
λ=1(nλ)−1]−1. This state is

denoted as the n1n2 · · · nm parton state. Negative values of n
are allowed; these are denoted by n̄, with �−|n| = [�|n|]∗. The
parton states n11 and n̄11 represent the standard Jain CF states
at n/(2n + 1) and n/(2n − 1). Reference [18] showed that the

2̄2̄111 state at ν = 1/2 lies in the anti-Pf phase and provides
a better account of the FQHE state at 2 + 1/2 than the anti-Pf
[60]. The next state in this sequence, namely, 3̄2̄111, gives
a satisfactory account of the FQHE state at 2 + 6/13. The
3̄2̄111 state has high overlap with the exact Coulomb state
and also has lower energy than the Jain CF 6/13 state (i.e.,
the 611 parton state) [102,103]. This is consistent with the
5/2 FQHE being in the anti-Pf phase. (In the absence of LL
mixing the Pf and the anti-Pf are equally plausible, but LL
mixing is believed to select one of them.)

Levin and Halperin [74] have constructed a hierarchy em-
anating from the Pf and anti-Pf states. They find that the first
daughters of the Pf occur at 8/17 and 7/13, whereas those
of the anti-Pf at 9/17 and 6/13. These daughter states are
not amenable to quantitative calculations. The 3̄2̄111 parton
state is topologically equivalent to the Levin-Halperin daugh-
ter state at 6/13 [103]. While the hole conjugate of 3̄2̄111
provides a wave function at 7/13, the parton construction does
not provide a simple wave function for 9/17 or 8/17. Huang
et al. [59] have observed that the 1/2 states in bilayer graphene
have either 8/17 and 7/13 or 9/17 and 6/13 flanking them,
which enables the authors to deduce whether the 1/2 state is in
the Pf or the anti-Pf phase. Very recent experiments by Singh
et al. [73] find that, for a range of parameters the 1/2 state in
wide QWs coexists with the Jain n/(2n ± 1) CF states, but as
the 1/2 FQHE becomes stronger, there is a striking quantum
phase transition at 8/17 and 7/13 into unusually strong FQHE
states, which is consistent with the ν = 1/2 state being in the
same phase as the Pf or the p-wave CF-BCS state.

We have investigated if theory can provide evidence of a
phase transition at ν = 6/13 from the CF state to the 3̄2̄111
parton state as the density and/or width of the QW is in-
creased. (Because our theory does not include LL mixing,
it is not able to distinguish between the Pf and the anti-Pf.)
We have calculated the energies of the two states for several
parameters, and as shown in Fig. 6, the Jain CF state has lower
energy in the thermodynamic limit. However, we stress that
the comparison here is analogous to comparing the energies
of the CFFS and the MR Pf states at ν = 1/2, which finds that
the latter has higher energy and which thus fails to discover
a pairing instability. A more accurate wave function for the
paired state, namely the CF-BCS wave function is needed
to capture, theoretically, the pairing instability of the CFFS.
Given that the energies of the CF state and the 3̄2̄111 parton
state at ν = 6/13 are close, we believe that a slight improve-
ment in the latter would be needed to reveal an instability of
the Jain 6/13 state into the 3̄2̄111 parton state. While we are
unable to implement such an improvement at the moment, this
brings out the subtlety of the physics in play here.

V. COMPOSITE-FERMION PAIRING AT ν = 1/4 IN WIDE
QUANTUM WELLS

The 1/4 state in narrow QWs is well confirmed, both
experimentally [32,104] and theoretically [82], to be a CFFS
of composite fermions carrying four vortices. There is ev-
idence for FQHE at ν = 1/4 in wide QWs [35,37], again
suggesting a pairing instability as a function of the QW width.
Reference [75] studied several wave functions and found that
the 22111-parton wave function, which signifies an f -wave
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FIG. 6. The energies of the Jain CF state and the 3̄2̄111 parton
state at ν = 6/13 as a function of 1/N for three different systems. In
all cases, the former has lower energy in the thermodynamic limit.

pairing of composite fermions, has the lowest energy of all
wave functions considered, and in particular has lower energy
than the CFFS and the Pfaffian states for large QW widths.
We revisit this issue within the CF-BCS approach.

Figure 7 shows the energy as a function of �̃ for quantum
QW width of 70 nm and density of 1.5 × 1011 cm−2, where
the energy at each �̃ is obtained by varying kcutoff . The f -wave
CF-BCS state has the lowest energy.

Figure 8 shows the lowest energy as a function of the QW
width for a fixed density (upper panel), and also as a function
of the density for a fixed QW width (lower panel). A pairing
instability occurs as either the QW width or the density is
increased. Figure 9 depicts the phase diagram determined for
a system of 32 particles as a function of the QW width and
the electron density. At low densities and small QW widths,
the CFFS is stabilized, while for large densities and large QW

FIG. 7. The energy per particle as a function of �̃ for several
candidate states at ν = 1/4. The results are for the density = 1.5 ×
1011 cm−2 and QW width = 70 nm for a system of 32 particles. The
torus geometry is used for the calculation. The BCS- f (l = 3) state
clearly has lower energy than the other states considered in our study.
The energies are quoted relative to the energy of the CFFS (ECFFS) in
units of e2/ε	.

widths, the BCS- f state minimizes the energy. The stars mark
densities where FQHE begins to be seen in experiments for
two different QW widths [37]. These are in decent agreement
with the theoretical phase boundary, thus supporting f -wave
pairing as the mechanism of the observed FQHE state. Note
that the MR- f and MR-p wave functions have higher energies
than the CFFS state in the entire parameter range studied here.

FIG. 8. (upper panel) Plot of per particle energy as a function of
QW width at a fixed density of 20 × 1010 cm−2 at ν = 1/4. (lower
panel) Plot of energy as a function of density for a fixed QW width =
60 nm at ν = 1/4. The energies are plotted with respect to the energy
of the CFFS (ECFFS) state in units of e2/ε	. The calculations are
performed for 32 particles on a torus.
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FIG. 9. This figure indicates the minimum-energy state at ν =
1/4 (blue dots for the CFFS state and black squares for the f -wave
paired state; all other candidate states have higher energies) as a
function of the density and the QW width for a system of 32 particles.
The torus geometry has been used for the calculation. The solid
line represents the approximate theoretical phase boundary. The stars
mark the experimental onset of the FQHE as a function of the density
for two QW widths [37].

VI. COMPOSITE-FERMION PAIRING
FOR BOSONS AT νb = 1, 1/3

We finally ask what the CF-BCS formalism predicts for
bosons in the LLL. Bosons in the LLL can bind to odd
number (m) of vortices to form composite fermions, which
can fill an integer number of CF-LLs to produce FQHE states
at fillings νb = n/(mn ± 1). The Jain CF wave functions for
the bosonic FQHE states at νb = n/(n + 1) are given by
�n/(n+1) = PLLL�n�1, where �n is the wave function of n
filled LLs. In exact diagonalization studies for bosons in-
teracting with a contact interaction (i.e., only the Haldane
pseudopotential V0 is nonzero and positive), these are seen to
provide a reasonably accurate description of the actual ground
states at νb = 1/2, 2/3, 3/4, although the CF description be-
comes less accurate with increasing n [76–78]. If the CFs were
noninteracting, one would expect a CF Fermi sea in the limit
n → ∞, i.e., at νb = 1. However, the bosonic ground state for
the hard-core V0 interaction at νb = 1 is not a CFFS but an
incompressible state that has a high overlap with the p-wave
paired MR-Pf state [77,78].

We ask if our BCS formalism can capture this physics.
In the spherical geometry, starting from the fermionic BCS
state at ν = 1/2, a bosonic BCS state at νb = 1 can be written
as [105] �bosonic−BCS

1 = �CF−BCS
1/2 /�1, where �1 is the wave

function for one filled LL of electrons and �CF−BCS
1/2 is the

fermionic BCS state at ν = 1/2. In the torus geometry, the JK
projected bosonic BCS state at νb = 1 is written as

�bosonic−BCS
νb=1 = e

∑
i

z2
i −|zi |2

4	2

{
ϑ

[
φ1

2π
+ N−1

2

− φ2

2π
+ N−1

2

](
Z

L

∣∣∣∣∣τ
)}

× Pf(M̃i j )∏
i< j ϑ

[
1
2
1
2

]( zi−z j

L

∣∣τ)
, (37)

FIG. 10. The energy per particle for the bosonic BCS state with
l = 1 pairing at νb = 1 for two interactions: the Coulomb interaction
and the contact interaction. The results are for a system of 12 par-
ticles on a torus. The energies are quoted relative to the energy of
the bosonic CFFS state in units of e2/ε	. The minimum-energy state
occurs at �̃ ≈ 0.8.

where M̃i j is given in Eq. (25). The above wave function has
the same variational parameters as Eq. (24). The center-of-
mass part is constructed at filling fraction νb = 1. The above
wave function satisfies the proper quasiperiodic boundary
conditions.

We calculate the energy of the bosonic BCS state for two
interactions: Coulomb and V0. The real space form of the V0

interaction is given by 4πδ2(r) [106], for which we use the
approximation

δ2(r) ≡ lim
σ→0

1

2πσ 2
e− r2

2σ2 , (38)

where σ is the width of the Gaussian. We calculate the energy
for multiple values of σ and do an extrapolation to find the
energy in the σ → 0 limit. We calculate the energy per par-
ticle with respect to the variational parameters for a system
of 12 bosons and minimize the energy by varying the two
variational parameters: �̃ and kcutoff . We find that in our cal-
culations, the lowest-energy state is obtained for l = 1 pairing
with �̃ �= 0 and kcutoff �= kF . As shown in Fig. 10, the lowest
energies (measured relative to the CFFS energy) are ≈ − 0.02
and −0.009 for the Coulomb and the V0 interactions, respec-
tively. This indicates the possibility of p-wave (l = 1) pairing
for both Coulomb and the V0 interaction, consistent with pre-
vious studies [77,78]. For the f -wave (l = 3) CF-BCS state,
the lowest-energy state is obtained for kcutoff = kF , which is
the CFFS.

In addition to the above state, an anti-Pfaffian bosonic state
can be constructed by dividing the fermionic anti-Pfaffian
wave function by the Jastrow factor [107]. This naturally
raises the question of whether the anti-Pfaffian phase is com-
petitive at νb = 1. Because the anti-Pfaffian phase belongs
to the l = −3 pairing, we look for pairing instability of the
bosonic BCS state in the l = −3 channel. While it follows a
similar trend as the BCS l = 1 state, as shown in Fig. 10, the
lowest energy is obtained for BCS l = 1 state.

We have also studied this issue through exact diagonaliza-
tion of the LLL Coulomb and the V0 Hamiltonians for bosons
at νb = 1 in the spherical geometry [100]. We find that the
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TABLE II. Squared overlaps of the exact V0 and LLL Coulomb
(C) ground states [obtained using the spherical (S) and planar disk
(D) pseudopotentials] with the νb = 1 MR Pf wave function of
Eq. (C6) for N bosons in the spherical geometry. This table includes
results from Refs. [77,78] for completeness.

N
∣∣〈�V0

1

∣∣�MR−p
1

〉∣∣2 ∣∣〈�C(S)
1

∣∣�MR−p
1

〉∣∣2 ∣∣〈�C(D)
1

∣∣�MR−p
1

〉∣∣2
4 1.0000 1.0000 1.0000
6 0.9728 0.9728 0.9728
8 0.9669 0.9771 0.9625
10 0.9592 0.9659 0.9618
12 0.8844 0.9165 0.9230
14 0.8858 0.9213 0.9156
16 0.8833 0.9170 0.9127
18 0.8504 0.8926 0.8923
20 0.7885 0.8599 0.8621

ground state at only the MR-Pf shift is consistently uniform
i.e., has orbital angular momentum L = 0 on the sphere, and
has a good overlap with the MR-Pf wave function indicating
that the thermodynamic ground state lies in the MR-Pf phase
(see Table II). In contrast, the ground state at the anti-Pfaffian
shift is uniform for some particle numbers but not for others.
We have not performed a systematic calculation of instability
in the torus geometry as a function of N .

νb = 1/3. The bosonic BCS state at νb = 1/3 can be
written as �CF−BCS

1/2 �1. Following the modified JK projection
scheme, we obtain the bosonic BCS wave function:

�bosonic−BCS
νb= 1

3
= e

∑
i

z2
i −|zi |2

4	2

{
ϑ

[
φ1

6π
+ N−1

2

− φ2

2π
+ 3(N−1)

2

](
3Z

L

∣∣∣∣∣3τ

)}

× Pf(M̃i j )
∏
i< j

ϑ

[
1
2
1
2

](
zi − z j

L

∣∣∣∣∣τ
)

, (39)

where M̃i j is given in Eq. (25). We calculate the energies for
the BCS l = 1, BCS l = −3, and BCS l = 3 for the Coulomb
interaction at νb = 1/3 as a function of kcutoff and �̃ and
obtain the minimum-energy states (see Fig. 11). We find the

FIG. 11. The energy per particle for the bosonic BCS state with
l = 1 pairing at νb = 1/3 for a system of 12 bosons on a torus. The
energies are plotted relative to the energy of the bosonic CFFS. The
minimum-energy state is obtained for kcutoff = kF for all values of
�̃, indicating the absence of a pairing instability. The same result is
obtained for BCS l = −3 and BCS l = 3 states.

minimum-energy state is obtained when kcutoff = kF for each
value of �̃ for BCS l = 1, BCS l = −3, and BCS l = 3.
In other words, there is no pairing instability here. This is
not surprising since the bosonic CFFS provides an excellent
representation of the exact Coulomb ground state obtained
from exact diagonalization studies [82]. Our findings suggest
that the BCS formalism can also be used to explore bosonic
states.

VII. GAP ESTIMATES FROM CONDENSATION ENERGIES

The variational parameter � ought not to be identified with
the physical gap Eg of the paired CF state. However, it is
tempting to ask if the condensation energy, i.e., the energy
gain due to pairing of CFs, can provide an estimate for Eg of
the paired state. According to the BCS theory, the condensa-
tion energy is given by [108]

ECFFS − ECF−BCS = NEc = ρ(EF)E2
g /2, (40)

where ρ(EF) = Ak2
F /(4πEF ) is the density of states at the

Fermi energy (A is the area) and Ec is the energy gain per
particle due to pairing. Using the relations kF = √

2ν/	 and
N/A = ν/(2π	2), we get

Eg =
√

2EcEF . (41)

This is only a crude estimate of the physical gap, as we are
assuming that the CFs can be modeled as weakly interacting
fermions with a well-defined mass with a quadratic disper-
sion.

At ν = 1/2, if we take the Fermi energy of the CFs to
be 0.1e2/ε	 (which is the estimated value at zero width
[95,109]), then a condensation energy of 0.002e2/ε	 per
particle yields Eg ≈ 0.02e2/ε	. With finite-width the gap is
expected to go down but currently we do not have a precise
estimate of EF as a function of width. Since the charge gap
at 1/3 at zero width is also 0.1e2/ε	 [17,110,111], as a first
approximation one could use the 1/3 gap to estimate the
Fermi energy of CFs. The 1/3 charge gap, as a function of the
width and density, for a system of N = 12 electrons obtained
from exact diagonalization is given in Fig. D1(g) of Ref. [83].
Using that as an estimate of EF , a condensation energy of
0.002e2/ε	 per particle yields Eg � 0.02 e2/ε	 for the widths
and densities shown in Fig. 3.

Similarly, for 1/4, we can approximate the EF as the charge
gap at 1/5. The charge gap at 1/5 at zero width is 0.02e2/ε	

[103]. Using that as an estimate of EF (note that we do not
have an estimate of the 1/5 gap as a function of width and
density), a condensation energy of 0.01e2/ε	 per particle at
w = 70 nm for ρ = 2 × 1011 cm−2 (see Fig. 8) yields Eg ≈
0.02e2/ε	 for these parameters.

VIII. CONCLUSIONS

In this article, we have applied the CF-BCS formalism to
study phase transitions at filling factors ν = 1/2 and ν = 1/4
as a function of the QW width and density. We include the
effect of finite width through an effective interaction between
electrons, and find a p-wave instability at ν = 1/2 and an
f -wave instability at ν = 1/4 as either the QW width or
the density is increased. The phase diagram in the electron
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density–QW width plane is in excellent agreement with ex-
periments at ν = 1/2 and in reasonable agreement at ν = 1/4.
We note that the CFFS state is an excellent variational state
at ν = 1/2 for narrow QWs, and therefore, the fact that we
explicitly find a lower energy state for large QW widths is
significant, and the agreement with experiments attests to the
quantitative accuracy of our approach.

As noted above, the FQHE on either side of the 1/2
FQHE is single-component like, showing the standard Jain
fractions n/(2n ± 1), and the measured Fermi wave vector of
CFs in close proximity to ν = 1/2 is also consistent with a
single-component CFFS [70]. Recent experiments have seen
anomalously strong FQHE states at 8/17 and 7/13, which
are consistent with the Levin-Halperin daughter states of the
single-component Pfaffian state at ν = 1/2 [74]. We show
in our present work that the single-component origin is also
consistent with the disappearance of the 1/2 FQHE in QWs
with a sufficient degree of asymmetry in the charge distribu-
tion. Calculations also show that the single-component paired
CF state is a better variational state than the two-component
Halperin 331 state in these wide QWs. These facts combined
with the excellent agreement between our calculated and the
measured transition boundaries separating the CFFS and the
FQHE states strongly point to a one-component CF-pairing
origin for the 1/2 FQHE in wide QWs. At ν = 1/4 as well,
two-component FQHE states do not appear to be competitive
[75].

Different pairing channels can in principle be distinguished
through thermal Hall conductance, which is given by κ =
c π2k2

B
3h T , where the chiral central charge is related to the rela-

tive angular momentum of the pair l as c = 1 + l/2. Another
quantity that can discriminate between the various candidate
states is the Hall viscosity ηA [112], which is given by [113]
ηA = S h̄

4 ρ, where ρ is the two-dimensional (2D) density and
S = N/ν − Nφ is the “shift” [114] in the spherical geome-
try. The quantized values of S for different candidate states,
given by the relation S = (2p + l ), are listed in Table. I.
Another quantity of interest is the entanglement spectrum
[115], which contains information regarding the universal
topological features of the phase. We note that Yutushui and
Mross [116] have considered CF-BCS wave function in the
l = −3 channel in the spherical geometry and showed that its
entanglement spectrum is consistent with that of the anti-Pf
state.

We have also applied the CF-BCS formalism to the prob-
lem of bosons in the lowest LL. At νb = 1 we find that
the CFFS is unstable to p-wave pairing for both the contact
and the Coulomb interactions, consistent with previous exact-
diagonalization studies that support the MR-Pfaffian state. No
such instability is found at νb = 1/3 for the Coulomb interac-
tion, again in agreement with exact diagonalization studies.

We believe that the success of the CF-BCS theory in ex-
plaining a variety of experimental results makes a strong case
for the CF pairing as the primary mechanism of FQHE at
even-denominator fractions.
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APPENDIX A: PERIODIC BOUNDARY CONDITIONS

In this section, we show that the JK projected CF-BCS
wave function given by Eq. (24) satisfies periodic boundary
conditions given in Eq. (7). For specificity, we shall con-
sider the BCS wave function of 2N particles with positions
z1, z2, . . . , z2N at ν = 1/4, i.e., subjected to Nφ = 8N mag-
netic flux quanta. (Please bear in mind that the number of
particles is denoted by 2N in this section.) It is straightforward
to see that the boundary conditions in the L1 direction are
satisfied. Therefore, we consider here the boundary conditions
in the L2 direction.

We consider the application of ordinary translation opera-
tor Tp(L2) on different parts of the wave function. Let us first
consider Tp(L2) acting on M̃i j , where we have two possibili-
ties: (i) i, j �= p and (ii) i or j = p. For p �= i, j, we have

Tp(Lτ )M̃i j =
{∑

kn

gke− 	2

2 kn(kn+2k̄n)e
i
2 (zi−z j )(kn+k̄n )eiπ

(
2(zi+i4kn	2−zp )

L −τ

)
eiπ
(

2(z j −i4kn	2−zp )

L −τ

) ∏
r

r �=i, j

(
ϑ

[
1
2
1
2

](
zi + i4kn	

2 − zr

L
t

∣∣∣∣τ
))

×
∏

m
m �=i, j

(
ϑ

[
1
2
1
2

](
z j − i4kn	

2 − zm

L

∣∣∣∣τ
))(

ϑ

[
1
2
1
2

](
zi + i4kn	

2 − z j

L

∣∣∣∣τ
))2}

= ei2π
(zi+z j )

L e−i
4πzp

L e−i2πτ M̃i j . (A1)
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For p = i or p = j, we get

Tp(Lτ )M̃p j = Tp(Lτ )

{∑
kn

gkn e− 	2

2 kn(kn+2k̄n)e
i
2 (zp−z j )(kn+k̄n)

∏
r

r �=p, j

(
ϑ

[
1
2
1
2

](
zp + i4kn	

2 − zr

L

∣∣∣∣τ
))

×
∏

m
m �=p, j

(
ϑ

[
1
2
1
2

](
z j − i4kn	

2 − zm

L

∣∣∣∣τ
))(

ϑ

[
1
2
1
2

](
zp + i4kn	

2 − z j

L

∣∣∣∣τ
))2}

=
∑

kn

gkn e− 	2

2 kn(kn+2k̄n)e
i
2 (zp−z j )(kn+k̄n)e

i
2 Lτ (k+k̄)e

−i(N−2)π

(
2(zp+i4kn	2 )

L +τ

)
ei2π

∑′
a za
L e

−i2π

(
2(zp+i4kn	2−z j )

L +τ

)

×
∏

r
r �=p, j

(
ϑ

[
1
2
1
2

](
zp + i4kn	

2 − zr

L

∣∣∣∣τ
)) ∏

m
m �=p, j

(
ϑ

[
1
2
1
2

](
z j − i4kn	

2 − zm

L

∣∣∣∣τ
))

×
(

ϑ

[
1
2
1
2

](
zp + i4kn	

2 − z j

L

∣∣∣∣τ
))2

=
∑

kn

gkn e− l2

2 kn(kn+2k̄n)e
i
2 (zp−z j )(kn+k̄n)e

i
2 Lτ (kn+k̄n)e

−iNπ
(

2zp
L + i4knl2

L +τ
)
ei2π

∑′
a za
L e

i2π
(

2z j
L

)

×
∏

r
r �=p, j

(
ϑ

[
1
2
1
2

](
zp + i4kn	

2 − zr

L

∣∣∣∣τ
)) ∏

m
m �=p, j

(
ϑ

[
1
2
1
2

](
z j − i4kn	

2 − zm

L

∣∣∣∣τ
))

×
(

ϑ

[
1
2
1
2

](
zp + i4kn	

2 − z j

L

∣∣∣∣τ
))2

= e−i
2Nπzp

L e−iNπτ ei2π
∑′

a za
L e

i2π
(

2z j
L

)
M̃p j, (A2)

where
∑′

a =∑a �=p, j .
Remembering that the subscript p appears in only one factor on the right-hand side of Eq. (12), the action of Tp(Lτ ) on the

Pf[M̃i j] yields

Tp(Lτ )Pf(M̃i j ) = ei 4πZ
L e−i

4πNzp
L e−i2Nπτ ei2πτ Pf(M̃i j ). (A3)

The action of Tp(Lτ ) on the Jastrow factor is given by

Tp(Lτ )
∏
i< j

ϑ

{[
1
2
1
2

](
zi − z j

L

∣∣∣∣τ
)}2

= e−i
4πzp (N−1)

L ei4π
∑′′

a za
L e−i2πτ (N−1)

∏
i< j

ϑ

{[
1
2
1
2

](
zi − z j

L

∣∣∣∣τ
)}2

= e−i4πN
zp
L ei4π Z

L e−i2πτ (N−1)
∏
i< j

ϑ

{[
1
2
1
2

](
zi − z j

L

∣∣∣∣τ
)}2

, (A4)

where
∑′′

a =∑a �=p.
The translation of the center of mass gives the relation

Tp(Lτ )

{
ϑ

[
φ1

8π
+ N−1

2

− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
= eiφτ e−i4πτ e−i 8πZ

L

{
ϑ

[
φ1

8π
+ N−1

2

− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
. (A5)

Combining all the factors obtained in Eqs. (25), (A4), and (A5), we find that

Tp(Lτ )

{
ϑ

[
φ1

8π
+ N−1

2

− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
Pf(M̃i j )

∏
i< j

ϑ

{[
1
2
1
2

](
zi − z j

L

∣∣∣∣τ
)}2

= eiφ2 e
−iπNφ

(
2zp
L +τ

){
ϑ

[
φ1

8π
+ N−1

2

− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
Pf(M̃i j )

∏
i< j

ϑ

{[
1
2
1
2

](
zi − z j

L

∣∣∣∣τ
)}2

.
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Using Eq. (5), we have for the magnetic translation operator

tp(Lτ )�BCS = eiφ2�BCS, (A6)

which is the desired quasiperiodic boundary condition along the τ direction.
For completeness, we now show the JK projected wave function obtained by bringing all the Jastrow factors inside the Pfaffian

matrix also preserves the PBCs:

Pf

[∑
n

gkn F̂n(zi, z j )

]∏
i

J2
i → Pf

[∑
n

gkn F̂n(zi, z j )J
2
i J2

j

]
, (A7)

�BCS
1
4

= e
∑

i
z2
i −|zi |2

4	2

{
ϑ

[
φ1

8π
+ N−1

2

− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
Pf(M∗

i j ), (A8)

in which the Pfaffian matrix element is

M∗
i j =

∑
kn

gkn e− 	2

2 kn(kn+2k̄n)e
i
2 (zi−z j )(kn+k̄n)

∏
m

m �=i, j

(
ϑ

[
1
2
1
2

](
zi + i2kn	

2 − zm

L

∣∣∣∣τ
))2

×
∏

n
n �=i, j

(
ϑ

[
1
2
1
2

](
z j − i2kn	

2 − zn

L
|τ
))2{

ϑ

[
1
2
1
2

](
zi + i2kn	

2 − z j

L

∣∣∣∣τ
)}4

.

Here M∗ does not indicate complex conjugate of M. The translation of the CM part of the wave function gives us the relation:

Tp(Lτ )

{
ϑ

[
φ1

8π
+ N−1

2

− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
= eiφτ e−i4πτ e−i 8πZ

L

{
ϑ

[
φ1

8π
+ N−1

2

− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
. (A9)

The translation of a single matrix element along the τ direction gives us, for p �= i, j,

Tp(Lτ )M∗
i j =

{∑
kn

gke− 	2

2 kn(kn+2k̄n )e
i
2 (zi−z j )(kn+k̄n )ei2π

(
2(zi+i2kn	2−zp )

L −τ

)
ei2π

(
2(z j −i2kn	2−zp )

L −τ

)

×
∏

r
r �=i, j

(
ϑ

[
1
2
1
2

](
zi + i2kn	

2 − zr

L

∣∣∣∣τ
))2

×
∏

m
m �=i, j

(
ϑ

[
1
2
1
2

](
z j − i2kn	

2 − zm

L

∣∣∣∣τ
))2(

ϑ

[
1
2
1
2

](
zi + i2kn	

2 − z j

L

∣∣∣∣τ
))4}

= ei4π
(zi+z j )

L e−i
8πzp

L e−i4πτ M∗
i j, (A10)

and for p = i or p = j, we get

Tp(Lτ )M∗
p j = Tp(Lτ )

{∑
kn

gkn e− 	2

2 kn(kn+2k̄n)e
i
2 (zp−z j )(kn+k̄n )

∏
r

r �=p, j

(
ϑ

[
1
2
1
2

](
zp + i2kn	

2 − zr

L

∣∣∣∣τ
))2

×
∏

m
m �=p, j

(
ϑ

[
1
2
1
2

](
z j − i2kn	

2 − zm

L

∣∣∣∣τ
))2(

ϑ

[
1
2
1
2

](
zp + i2kn	

2 − z j

L

∣∣∣∣τ
))4}

= e−i
4Nπzp

L e−i2Nπτ ei4π
∑′

a za
L e

i4π
(

2z j
L

)
M∗

p j, (A11)

where
∑′

a =∑a �=p, j . This gives

Tp(Lτ )

{
ϑ

[
φ1

8π
+ N−1

2
− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
Pf(M∗

i j ) = e
i
[
φτ −Nφπ

(
2zp
L +τ

)]{
ϑ

[
φ1

8π
+ N−1

2
− φ2

2π
+ 2(N − 1)

](
4Z

L

∣∣∣∣∣4τ

)}
Pf(M∗

i j ),

(A12)

which is exactly what the periodic boundary condition requires. In the other direction, the periodic boundary condition is satisfied
in a similar way.
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APPENDIX B: MOMENTUM SECTOR
FOR THE WAVE FUNCTIONS

This sections concerns the momentum sector for the
MR type states, labeled by their Haldane pseudomomen-
tum (Kx, Ky). The Haldane pseudomomenta are given by the
eigenvalues of the relative translation operator [118,119],

t̃i(Lj/N ) =
N∏

k=1

ti(Lj/N )tk (−Lj/N ). (B1)

The center-of-mass part of the wave function in Eq. (13) is
invariant under the action of the relative translation operator.
If we consider the action of the relative translation operator
on the Pfaffian part of the MR-Pf wave function, we obtain
the relation:

t̃i(L/N )Pf

⎛
⎜⎜⎜⎝

ϑ

[
a
b

]( zi−z j

L

∣∣τ)
ϑ

[
1
2
1
2

]( zi−z j

L

∣∣τ)
⎞
⎟⎟⎟⎠

= ei2π(a− 1
2 )Pf

⎛
⎜⎜⎜⎜⎜⎝

ϑ

[
a
b

]( zi−z j

L

∣∣τ)

ϑ

[
1
2
1
2

]( zi−z j

L

∣∣τ)

⎞
⎟⎟⎟⎟⎟⎠. (B2)

The action of the relative translation operator on a single
Jastrow factor is

t̃i(L/N )ϑ

[
1
2
1
2

](
zi − z j

L

∣∣∣∣τ
)

→ ϑ

[
1
2
1
2

](
zi − z j

L
+ 1

∣∣∣∣τ
)

.

The action of the operator t̃i(L/N ) on terms of the form

ϑ

[
1
2
1
2

](
zp − zq

L

∣∣∣∣τ
)

,

where p, q �= i leaves the term invariant. Thus, the action of
t̃i(L/N ) on the Jastrow factors gives a factor of one. Putting
all the terms together, we obtain

t̃i(L/N )� (a,b)
MR−p = ei2π(a− 1

2 )� (a,b)
MR−p = e−i2π Kx

N �
(a,b)
MR−p. (B3)

In the other direction, we obtain the relation

t̃i(Lτ/N )� (a,b)
MR−p = e−i2π(b− 1

2 )� (a,b)
MR−p = e−i2π

Ky
N �

(a,b)
MR−p,

(B4)

where (a, b) can take values (0, 1
2 ), ( 1

2 , 0), or (0,0), which
correspond to (Kx, Ky ) = (N/2, 0), (0, N/2), or (N/2, N/2).

APPENDIX C: TESTING PAIRED STATES
IN THE SPHERICAL GEOMETRY

In the course of this work, we have also performed cal-
culations in Haldane’s spherical geometry [100], which we
discuss in this Appendix. In this geometry, different candidate
states at a given filling factor occur, in general, at different N
and different flux values, and therefore the electron-electron
interaction energies of finite systems may not be directly
compared. To obtain the thermodynamic limits of the energies

one must include the contribution coming from the posi-
tively charged neutralizing background. Two previous works
that dealt with finite width effects [75,83] had assumed that
the electron-background and background-background ener-
gies can be evaluated by assuming that the electron as well
as the neutralizing background charge was purely two dimen-
sional. The expectation was that the nature of the neutralizing
background should not affect the energy differences between
the various candidate states at a given filling factor. This
would be true if sufficiently large systems could be consid-
ered. However, as the following discussion shows, that is
not the case for finite systems accessible to our study and
the model used may affect the thermodynamic limit. In this
Appendix we consider a model in which the background
charge has the same finite width distribution as the electron
charge. This yields much better linear fits for the energy as a
function of 1/N and hence, we believe, produces more reliable
thermodynamic values. With this method, the phase boundary
obtained in Ref. [75] at ν = 1/4 is slightly modified, although
a transition into the f -wave 22111 still occurs. On the other
hand, in contrast with the claim in Ref. [83], the Pfaffian state
has higher energy than the CFFS at ν = 1/2 in the entire range
of width and density studied.

We note that this is not an issue for the torus geome-
try because there all states at a given filling factor occur
at the same flux, and therefore the electron-background and
background-background terms exactly cancel for any finite
system when energy differences are determined, independent
of which model is used for the background charge.

We consider N particles confined to the surface of a sphere
subjected to 2Q magnetic flux quanta [100] perpendicular to
the surface. The radial magnetic field is originating from a
magnetic monopole at the center of the sphere. The posi-
tions of the electrons can be denoted by spinor coordinates
u = cos(θ/2)eiφ/2 and v = sin(θ/2)e−iφ/2, where θ and φ

are the polar and azimuthal angles, respectively. The radius
of the sphere is R = √

Q	. The distance of any two parti-
cles i and j is given by the chord length, which is equal to
2
√

Q	|uiv j − u jvi|.
For a FQH state at ν = n/(2pn + 1), the composite

fermions feel an effective magnetic field originating from a
monopole of strength 2Q∗ = N/n − n, where n is the number
of filled LLs. The relation between the total magnetic field
and number of particles is as follows: 2Q = N/ν − S , where
S is called the “shift” [114]. The filling factor in spherical
geometry is defined as ν = limN→∞N/2Q.

The total energy includes a contribution from the positively
charged uniform background. Previously [75,83], the sum
of the electron-background and the background-background
contributions was taken to be −N2/2

√
Q in Coulomb units,

which assumes the interaction to be of the bare Coulomb
form. However, if we assume that the positively charged
neutralizing background has the same charge distribution as
the electrons as a function of the width, the background
contribution for the finite-width interaction is different from
that ascertained from the bare Coulomb form. For an ar-
bitrary interaction V (r) the contribution of the positively
charged background (i.e., the sum of electron-background and
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background-background interactions) is given by [17,107]

Eb = −N2

4

∫ π

0
sin (θ )dθ V

[
2R sin

(
θ

2

)]
, (C1)

where r = 2R sin(θ/2) is the chord distance on the sphere
with respect to which we evaluate energies. (The above equa-
tion is written for a single-component system, but can be
readily generalized to the two-component state.) The density-
corrected [123] per-particle total energy, which is what we
extrapolate as a linear function of 1/N to the thermody-
namic limit, is Epp

tot = √
2Qν/N (Ee-e + Eb)/N , where Ee-e is

the electron-electron contribution. We find that incorporating
the background contribution using Eq. (C1) significantly im-
proves the linear fit of the Epp

tot as a function of 1/N , indicating
that it provides better thermodynamic limits.

As before, we use transverse wave functions obtained using
LDA and do not consider any LL mixing in the calculations
reported in this section.

ν = 1/2. We have considered the competition between
CFFS, MR state, and the Halperin 331 states at ν = 1/2 in
spherical geometry. The MR wave function at ν = 1/2 in
spherical geometry is given by

�MR−p = Pf

(
1

uiv j − u jvi

)∏
i< j

(uiv j − u jvi )
2. (C2)

The Halperin 331 state is obtained by replacing zi − z j by
(uiv j − u jvi ) in Eq. (30). As shown in Fig. 5, we find that in
the thermodynamic limit, the CFFS has lower energy than the
MR and 331 states for all values of densities and well widths
considered for our numerical calculations. (In this case, the
model used for the background charge leads to a qualitatively
different conclusion than that in Ref. [83].)

ν = 1/4. We consider the competition between the CFFS,
MR-p, and the 22111 parton state which are given as
[7,75,120]

�CFFS = PLLL�FS�
4
1, (C3)

�MR−p = Pf

(
1

uiv j − u jvi

)∏
i< j

(uiv j − u jvi )
4, (C4)

�22111 = PLLL�2�2�
3
1. (C5)

Since the universality class of the wave function as well as
its microscopic form is not very sensitive to the details of the
projection [95,121], we project �22111 to the LLL as �2

2/5/�1,
which allows for its evaluation for large system sizes using the
JK projection of �2/5. The 22111 state is an f -wave paired
state with l = 3 [18,75]. The shift for the 22111 state is S = 7.
In Fig. 12, we show the lowest-energy state as a function
of density and well width. For each data point in the phase
diagram, we obtain the thermodynamic per particle energies
by extrapolating the per particle energies of finite systems as
shown in Fig. 13. The energies are in units of e2/ε	. We find
that the CFFS has lower energy for small well widths and low
densities. However, for very large well width and densities,
we find that the 22111 parton state has lower energy. We
find that the MR-p state always has higher energy than the
CFFS and the 22111 states in the thermodynamic limit, in
agreement with the result reported in Ref. [75]. We note that,
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-2

)

CFFS
22111
Experiment

FIG. 12. The phase diagram indicating the lowest energy state at
ν = 1/4 as a function of density and quantum-well width. The solid
line represents the approximate theoretical phase boundary. The stars
indicate the parameter values where experiments show the onset of
FQHE at ν = 1/4.

while we still see a transition into the 22111 state as a function
of increasing width or density, the phase boundary has shifted
as compared with that in Ref. [75] because of the different
models for background charge.

νb = 1 bosons. For completeness, we have evaluated the
overlaps of the bosonic MR state at νb = 1 in the spheri-
cal geometry with the exact ground state of the δ-function
and Coulomb interactions. For reference, the δ-function in-
teraction on the sphere corresponds to a pseudopotential
of V δ-function

0 = (1 + 2Q)2/[4πQ(1 + 4Q)] (with V δ-function
m =

0 ∀ m > 0) which in the thermodynamic limit Q→∞ im-
plies that the Vm = δm,0 pseudopotential interaction (referred
to from here on in as the V0 interaction) corresponds to the
interaction V (r) = 4πδ(r) in real space. On the sphere, the

FIG. 13. The energy E/N for the CFFS and the 22111 states at
ν = 1/4 as a function of 1/N . The results are for a QW width w =
70 nm and density ρ = 3.0 × 1011 cm−2. The spherical geometry is
used for the calculation. The 22111 state has lower energy than the
CFFS in the thermodynamic limit. The error bars are smaller than the
size of the symbols. The energies are plotted in units of e2/ε	.
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MR wave function describing bosons at νb = 1 is given by

�
MR−p
νb=1 = Pf

(
1

uiv j − u jvi

)∏
i< j

(uiv j − u jvi ). (C6)

In Table II we present the overlaps of the ground states of the
V0 and the LLL Coulomb Hamiltonians with the MR wave
function for bosons at νb = 1. We find that the overlaps are
reasonably high for all systems we have considered suggesting
that the ground state of short-range dominated interactions for
bosons at νb = 1 resides in the MR phase. Some of the num-
bers shown in Table II, for systems smaller than the largest
ones considered here, were previously given in Refs. [77,78].

Next, to check the incompressibility of the νb = 1 state, we
compute its neutral and charge gaps for the V0 and Coulomb
interactions using exact diagonalization in the spherical ge-
ometry. The neutral gap �neutral is defined as the difference
between the two lowest energies for a given system of N
electrons at the MR flux of 2Q = N − 2. The charge gap is
defined as [17]

�charge = E (2Q − 1) + E (2Q + 1) − 2E (2Q)

nq
,

E (2Q − 1) = E (2Q − 1) − [N2 − (nqeq)2]
C(2Q − 1)

2
,

E (2Q) = E (2Q) − (N2)
C(2Q)

2
,

E (2Q + 1) = E (2Q + 1) − [N2 − (nqeq)2]
C(2Q + 1)

2
,

(C7)

where C(2Q) is the charging energy that accounts for the
background, E (2Q) is electron-electron interaction energy of
the ground state obtained from exact diagonalization of N
electrons at flux 2Q, nq = 2 is the number of quasiholes pro-
duced when a single flux quantum is inserted in the MR state
and eq = 1/2 is the charge of the fundamental MR quasihole
in units of the electronic charge. The N2 term accounts for the
background contribution while the (nqeq)2 term corrects for
the fact that in the presence of additional charge in the form
of quasiholes or quasiparticles the background is different
[122]. The charging energies C(2Q) of various interactions
considered here at flux 2Q are given by [17]

C(Vm = δm,0) = (4Q + 1)

(2Q + 1)2

e2

ε	
,

Csphere

(
1

r

)
= 1√

Q

e2

ε	
,

Cdisk

(
1

r

)
= [3 + 4(2Q)]�[2Q + 3/2]

3(2Q + 1)2�[2Q + 1]

e2

ε	
, (C8)

where �[x] is the Gamma function. The gaps are density-
corrected [123] by a factor of

√
2Qν/N before extrapolation

to the thermodynamic limit.
In Fig. 14 we show the neutral and charge gaps for the V0

and Coulomb interactions evaluated this way at νb = 1. We
find that the gaps for both interactions are sizable and of the
same order since the Coulomb interaction is dominated by

0.00 0.05 0.10 0.15 0.20 0.25

0.4

0.6

0.8

0.00 0.05 0.10 0.15 0.20 0.25

0.4

0.6

FIG. 14. Thermodynamic extrapolation of the neutral (blue cir-
cles) and charge (red diamonds) gaps of the V0 (top panel) and LLL
Coulomb interactions (bottom panel) obtained in the spherical ge-
ometry using the disk (open symbols) and spherical (filled symbols)
pseudopotentials for N electrons at the bosonic νb = 1 MR Pf flux
of 2Q = N − 2. The lines show a linear extrapolation of the gaps as
a function of 1/N and the extrapolated gaps are quoted in the plots
with the error in the extrapolation shown in the parentheses. These
include gaps previously given in Ref. [77].

V0 and V disk, Coulomb
0 = 0.886. Furthermore, the Coulomb gaps

obtained from the disk and spherical pseudopotentials are
fully consistent. These results suggest that the νb = 1 bosonic
MR-phase can be stabilized by the hard-core V0 and Coulomb
interactions in the LLL. Some of the gaps shown in Fig. 14, for
systems smaller than the largest ones considered here, were
previously given in Ref. [77].

APPENDIX D: PERIODIC INTERACTION

The Coulomb interaction in real space with finite width
corrections can be written as

VC(r) =
∫

dw1

∫
dw2

|ξ (w1)|2|ξ (w2)|2√
r2 + (w1 − w2)2

, (D1)

where r2 = (x1 − x2)2 + (y1 − y2)2 and r is the in-plane dis-
tance. ξ (w) represents the wave function of electrons in the
transverse direction and w is the transverse coordinate. How-
ever, on a torus, the interactions are periodic, i.e.,

V (r + mL1 + nL2) = V (r), (D2)

where m and n are integers. We use the periodic form of the
interaction given by

V (r) = 1

L2Im(τ )

∑
q

ṼC(q)eiq·r, (D3)

q =
(

2πm

L
,−2πτ1m

Lτ2
+ 2πn

Lτ2

)
, (D4)
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where ṼC(q) is obtained by taking Fourier transform of the interaction VC(r):

ṼC(q) =
∫

d2r e−iq·r
(∫

dw1

∫
dw2

|ξ (w1)|2|ξ (w2)|2√
r2 + (w1 − w2)2

)

=
∫

dw1

∫
dw2 |ξ (w1)|2|ξ (w2)|2

∫
d2r e−iq·r 1√

r2 + (w1 − w2)2

=
∫

dw1

∫
dw2 |ξ (w1)|2|ξ (w2)|2

∫ ∞

0
dr r

1√
r2 + (w1 − w2)2

2πJ0(qr)

=
∫

dw1

∫
dw2 |ξ (w1)|2|ξ (w2)|2

(
2π

q

)
e−q|w1−w2|. (D5)

For our calculations, we use a cutoff value of |m|, |n| � 30 in Eq. (D3). We neglect the q = 0 term in Eq. (D3) since it cancels
the electron-background and background-background energies. We also need to include the self-interaction energy, which is
the interaction of an electron in the principal zone with its image in other zone. The form of the self-interaction energy for the
Coulomb interaction in the LLL is given by [124,125]

W = − e2

ε
√

L2|τ |

[
2 −

′∑
mn

ϕ− 1
2
[π (|τ |m2 + |τ |−1n2)]

]
,

ϕn =
∫ ∞

1
dte−zt t n. (D6)

The primed summation excludes the term m = 0, n = 0. At a given system size with similar periodic boundary conditions, the
same self-interaction energy is independent of the state for a given QW width and density.
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