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Addition spectra of Wigner islands of electrons on superfluid helium
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We present here an experimental study of Wigner islands formed by electrons floating over helium. Electrons
are trapped electrostatically in a mesoscopic structure covered with a helium film, behaving as a quantum dot
in the near-classical limit. By removing electrons one by one, we are able to find the addition spectrum, i.e., the
energy required to add (or extract) one electron from the trap with occupation number N. Experimental addition
spectra are compared with Monte Carlo simulations for the actual trap geometry, confirming the ordered state

of electrons over helium in the island.
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I. INTRODUCTION

Electrons collect on a two-dimensional (2D) sheet when
they are spread over the surface of a liquid-helium film. This
is due to the attractive charge which appears by polarization
of the helium. Due to the weakness of the image charge,
electrons sit in the vacuum far away from the surface and
move freely at a fixed distance over the film. As such, they
constitute a very clean and predictable system.

When temperature is reduced, kinetic energy decreases
relative to Coulomb energy; correlations begin to dominate
the electronic structure. Wigner! predicted in 1934 that a
phase transition would take place in the infinitely extended
system, leading to the formation of a 2D electron lattice.
Wigner crystallization into a triangular lattice of electrons
over helium has been observed first by Grimes and Adams?
(see also Shikin®). This phase transition takes place below a
transition temperature that is a function of electronic density.
For the infinite system in the classical limit,* in which par-
ticles can be treated individually and which is mostly appro-
priate for electrons over helium, the transition occurs when
the ratio I" of the average Coulomb interaction energy E to
the thermal energy kzT becomes greater than 137. In the
quantum case, which is eventually reached at low enough
temperatures, the Wigner solid is predicted to form when the
Brueckner parameter r,, which is the interelectron distance
normalized by the Bohr radius, ag, becomes smaller than 37.
Recently, somewhat more complex phases and ordering tran-
sitions have been predicted around that r, threshold.>®

An assembly of rectilinear vortices provides another ex-
ample of Wigner lattice formation.”® Abrikosov’s triangular
lattice for vortices induced by magnetic fields in type II
superconductors’ was first observed indirectly by neutron
diffraction'® and later visualized directly by electron micros-
copy imaging by Bitter decoration of the trapped flux lines
with ferromagnetic microparticles.'!

Also, electrons in semiconductor heterostructures local-
ized by an applied magnetic field undergo a magnetically
induced Wigner transition.'> They form a well-studied and
well-understood system: the quantum dot, which has been
the object of extensive research for the past two decades.'?

A. Wigner molecules

When confining 2D electrons to a restricted planar area,
the breaking of translation invariance brings in important
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changes with respect to the infinite geometry case, in particu-
lar because thermodynamic phase transitions are suppressed
by fluctuations. This problem of 2D ordering in restricted
geometries has been extensively studied theoretically, mostly
for parabolic traps with Coulomb interaction between the
electrons: first in the limit where electrons behave as classi-
cal particles,®!#16 and then, in the computationally more de-
manding quantum case.'7~20

Finite-size effects become prevalent for N=< 100. Such is
the case in the work described below. Different features ap-
pear that depend on the competition between the triangular
lattice, which takes over for sufficiently large systems, and
the shape and strength of the confining potential, which tends
to suppress it. The electron states and energies depend mark-
edly on the trap geometry and on the details of the interpar-
ticle interaction, which in turn depends on the number of
electrons in the trap and their arrangement.

For traps with hard confining walls and a flat trap bottom,
it is predicted that the ordering is mostly affected close to the
boundaries. Electrons in the interior of the 2D island tend to
retain the triangular lattice structure and adjust to the walls at
the trap periphery with a disorganized layer. For traps with
cylindrical symmetry and a parabolic confining potential, the
particles arrange themselves in circular concentric shells
with widths that are small compared to the radius of the
shell. These structures follow a Hund-type law'# and are re-
ferred to as Wigner molecules. The direct observation of
such structures in restricted geometry has been achieved only
for systems of macroscopic charged particles,?' and for vor-
tices in superconductors??> and superfluid helium.?>2*

For electrons over helium, finite islands of electrons can
now be realized? so that well-controlled experiments can be
conducted on this very clean system, which we report here.
Direct (visual) observation of the electronic structure cannot
be performed in the present experiments: the geometric ar-
rangement of the electrons in the island must be deduced
from properties such as their escape energy from the island.

Contrarily to solid-state quantum dots, for which interac-
tions between electrons decrease exponentially due to the
screening from surrounding electrodes, electrons over helium
are located far from conducting bodies; the Coulomb inter-
action is mostly unscreened and gives rise to strong, long-
range, interparticle correlations. Also, there are no nearby
impurities and no effective-mass correction; image charges
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are well defined. These features concur to make Wigner is-
lands of electrons over helium an ideal model for the study
of strongly correlated few-body fermionic systems and the
formation of Wigner molecules.

B. “Phase” diagram

Various ordering processes take place in 2D clusters of
electrons—the Wigner islands—and the formation of radially
correlated structures—the Wigner molecules—have been the
subject of a large number of theoretical studies. Our interest
here lies in systems with a small number of electrons, N
=20, confined in relatively large traps so that the electronic
density is low.

The behavior of N electrons freely suspended in vacuum
over liquid helium and confined laterally in a circular para-
bolic trap by a potential %mew(z)rz, m, being the bare electron
mass and wy/2m being the harmonic trap frequency, is de-
scribed by the following Hamiltonian:

N

H=,
i=1

N
iviz + m‘f_w(z) 2 —82 ) (1)
2m, 2 ') S 4melr -]

The terms in curly brackets describe noninteracting electrons
in the trap. The characteristic length lo=(/m,w,)"? associ-
ated with these two terms can be viewed as the spatial extent
of electronic motion. The Coulomb interaction, which is the
last term in Eq. (1) in which e is the electron charge, even-
tually localizes and orders the electrons within the trap to
distances of the order of ry, such that Eq=e*/4mer,
=3m,wirt. Following Filinov ez al.,'® we can therefore take
the quantity n= \521(2)/ ré, which represents the fraction of the
trap area actually occupied by the electrons as a dimension-
less measure of the electronic areal density.

The configuration and energies of Wigner islands with N
electrons are described by Eq. (1), the eigenstates of which
however can be found analytically only for N=<2.2° Various
approximation schemes have to be used for few-body occu-
pation number.?’~?° Larger electron islands require a numeri-
cal approach (see, for a review, Reimann and Manninen?®).
Interactions with the environment—heat bath and measuring
equipment—are not included in Eq. (1). In the simulations of
Filinov et al.'® the temperature comes in as an input in the
Monte Carlo (MC) simulations.

A generalized “phase” diagram for the various ordering
processes taking place in Wigner islands with few electrons
has been constructed numerically by Filinov et al.,'® whose
findings are sketched in Fig. 1. These authors characterize
the onset of order by looking at the correlations between
electrons both radially and angularwise. In the ordered state,
they find that r, introduced above on dimensional grounds,
is quite close to the mean interparticle distance defined by
the first maximum of the pair distribution function. When
coming from the dense, hot (large 7z and/or T) regions of the
diagram, where the 2D electron cluster is in a disordered
(liquid or gaslike) state and moving to more dilute, cooler
region, boundary lines are found first to the radially ordered
state [radially “melting” (RM)], and, moving further in, to
complete ordering where the orientation of the various shells
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FIG. 1. (Color online) RM and OM “melting” in Wigner islands
sketched in the i vs kgT/E. plane for small electron occupation
numbers N—(<¢) 10—(@) 11—() 12—(A) 19—(H) 20, follow-
ing Filinov er al. (Ref. 18). The OM boundaries for N=10, 11, and
20 are very close to the origin and are not shown. The horizontal
(vertical) dash-dash lines indicate the quantum (classical) Wigner
crystallization in the infinite system, for r,=1/n>=37 and I,
=FEc/kgT=137, respectively.

become frozen with respect to one another [orientational
melting (OM)].

C. Electronic configurations

As seen in Fig. 1, Wigner ordering takes place at low
densities 77 and low reduced temperatures kzT/E- along
boundaries that differ markedly for various occupation num-
bers N. Some clusters are more stable than others. Specifi-
cally, clusters with N=11 and 20 in Fig. 1 melt radially at
higher 7', n but orientationally at much lower values of T,n.18

The orientationally more stable clusters, the magic clus-
ters, N=10, 12, 16, and 19 in Ref. 18, possess a fully frozen
structure that is closest to the Wigner triangular lattice so that
the shells cannot rotate on one another. Those that can, N
=11 and 20, are far less stable orientationally but a little
more stable radially.

Somewhat surprisingly, these more radially stable con-
figurations turn out to be even more stable than the homoge-
neous Wigner crystal itself, which melts in the classical limit
for temperatures above that set by I'.,=137. For the full
quantum case, the critical melting density for the homoge-
neous system is set by the value of the Brueckner parameter
ry=ry/ag=37. The Brueckner parameter can be extended to
finite systems by taking the definition of ry in an electron
cluster given above, which yields r,=1/%. All boundary
lines in Fig. 1 lie below the melting curve for the quantum
Wigner crystal.3

These boundaries do not correspond to sharp transitions
between electronic structures with different types of order.
The localization process of the electrons into organized
structures takes place only gradually, as stressed by Ghosal et
al.% in particular.

Detailed studies of the ordered configuration of these few-
body clusters have been performed, mostly by numerical
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simulations, both for systems of vortices in rotating helium
and superconducting disks,”®3! and in quantum dots by a
number of authors, notably Peeters and co-workers!*!332 in
the classical limit, to whose work we compare our own simu-
lations in Sec. IV below.

D. Addition spectra

Addition spectra are built from the energy required to add
one extra electron in the trap. This energy is equal to the
difference in electrochemical potentials between clusters
with N and N+1 electrons:

Ay(N) = (N + 1) = w(N) = E(N + 1) = 2E(N) + E(N - 1),
()

with E(N) being the ground-state energy of the cluster with
N electrons. Once this last quantity has been determined nu-
merically, the values of the experimentally more accessible
quantity A,(N) are known. A study of the details of this
spectrum thus gives access to the N-electron cluster ground-
state energies and provides clues about the occurrence of
ordering in the Wigner island.

As it became appreciated that addition spectra contain ex-
perimentally accessible signatures of the onset for the forma-
tion of shells in Wigner molecules,?’ detailed theoretical pre-
dictions for various confinement potentials appeared in the
literature (see the reviews by Kouvenhoven et al.’* or Re-
imann and Manninen,?’ and, for more recent work, notably
Ghosal et al.® and Giiclii et al.®).

In the weakly interacting case, when the last term of the
right-hand side of Eq. (1) contributes little, the quantity
A,(N) remains small as shells simply fill in and w(N+1)
= 1(N). When the addition of an electron triggers the forma-
tion of a new shell, for N=3,6,10,15,..., the addition en-
ergy displays spikes that reveal the shell structure of the 2D
harmonic confinement potential.

As the confinement potential decreases with respect to the
Coulomb interaction contribution, i.e., as the electron density
i diminishes, the Wigner triangular lattice structure eventu-
ally forces its imprint on the electron cluster. A new addition
energy signature appears with peaks at N=3,7,11,13,...
(Ref. 35). The crossover occurs around n=r;1/2~0.22:
denser clusters are in a liquidlike state while thinner ones
gradually develop a crystal-like state. As emphasized by
Ghosal et al.® the transition is smooth; addition spectra are
expected to change gradually from shell formations to full
spatial ordering. By contrast, the phase diagram in Fig. 1
shows well-marked thresholds for the onset of order as re-
vealed by the study of pair correlations.'® It however exhibits
the same qualitative trend in the ordering sequence of the
electron islands, which can be studied by measuring the ad-
dition spectra.

Our goal in the work reported here is a comparison be-
tween the addition spectra observed in our experiments and
the outcome of numerical simulations that we have per-
formed using the known geometry of the trap. This trap is
described in Sec. II, the experimental procedure in Sec. III,
the obtained spectra in Sec. IV, and the numerical simula-
tions in Sec. V.
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FIG. 2. (Color online) Scanning electron microscopy (SEM)
picture of the complete microfabricated device (left) and magnified
view of the electron trap (right).

II. ELECTRON TRAP

The trap used in the present work to confine electrons to a
2D island is simple compared to other traps used for charged
particles, which are usually closed by radio-frequency fields,
or for atoms, closed by magneto-optical means. Here, the
electron motion is restricted along a plane, on the one side,
by the free surface of liquid helium that presents an energy
barrier of ~1 eV to the electron and, on the other side, by
the image charge in the fluid bulk that provides electrostatic
attraction.

At temperatures below 1 K the saturated vapor pressure of
helium is very low: electrons float above the surface of he-
lium in near absolute vacuum. Unlike solids, liquid helium
contains no impurities. Its topological defects—the
vortices—and its elementary excitations—the phonons, ro-
tons, and ripplons—are well known, allowing relatively
simple calculations of interactions between the object in the
trap and the environment.*-3® A comprehensive review of
the physics of electrons on liquid helium can be found in
Ref. 39.

The free electron is attracted toward the helium surface by
its image charge and is repelled by the 1 eV barrier for en-
tering the liquid bulk; it forms what can be viewed as a
one-dimensional hydrogenlike atom. The dielectric constant
of helium is low (e=1.057) and the image charge Q=e(e
—1)/(e+1), with e being the electron charge, is small. The
characteristic length scale along the z axis analogous to the
Bohr radius is ay=4az(e+1)/(e~=1)=76 A, with m, being
the bare electron mass and az=0.5292 A the atomic Bohr
radius. The electron in its ground state is floating at 1.5aj
~114 A above the helium surface. An electric field can be
applied externally to press the electron on the surface, and
tune both its height and energy.

If unconfined laterally, the electron moves freely over the
surface of bulk helium. Its mobility is the highest of all
condensed-matter systems, exceeding 108 cm?/V s.40 The
transverse motion of the electron can be restricted by a sys-
tem of electrodes located below the helium surface. The mi-
crofabricated device used in the present work is shown in
Fig. 2 and is described in full detail in Ref. 41.

The right panel of Fig. 2 shows the trap where electrons
form a Wigner island. It is a three-dimensional (3D) structure
micromachined on a silicon wafer consisting of (i) a ring-
shaped electrode designed to hold the electrons in a well-
defined position over the liquid-helium surface, and (ii) a
single-electron transistor (SET) on a pyramidal island at the
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FIG. 3. (Color online) Profile of the electrostatic potential in the
plane of symmetry of the trap for Vger=0.5, 0.2, and 0 V from
bottom to top. Distances along the x axis are in microns from the
edge of the reservoir. The difference between the top of the barrier
and the minimum define the confining potential 8. The top of the
barrier for Vggr=0.2 and 0 V is in the gorge.

center of the trap used to detect the presence of electronic
charges and, possibly, the excitation state of the cluster. The
pyramidal structure was built with a five-angle evaporation
procedure based on the well-known shadow technique. All
electrodes are made of niobium except the SET which is
made of aluminum. More details are given in Ref. 42.

The trap and the reservoir, shown in the left panel of Fig.
2, are 600 nm lower than the surrounding guard electrode.
Both are filled with liquid helium. The long rectangular re-
gion acts as a reservoir for surface electron storage. If all
electrons in the trap happen to become lost, the trap can be
replenished by tapping the reservoir. The guard electrode is
made out of a thick (~0.25 um) layer of Nb deposited on
an insulating layer of comparable thickness. This electrode is
used to support, by surface tension, the helium film over the
reservoir and the trap ring so that the liquid depth is
~0.5 um. The electrode itself and the rest of the sample are
covered by a thin (~200-400 A) film of helium, held by
Van der Waals attraction. The bottom of the reservoir is cov-
ered by two electrodes, made out of thin niobium. These
separate electrodes control the potentials of the right and left
halves of the reservoir. They are used to shuffle electrons
from one side to the other. The resulting change in capaci-
tance provides a mean of gauging the total mobile charge
contained in the reservoir.

A narrow channel across the guard electrodes connects the
reservoir to the trap, forming a gorge through which elec-
trons can be forced to move to populate the trap. Under
normal operation, the guard electrode is biased to negative
potential relative to the SET. A potential barrier thus forms at
the gorge, isolating the trap from the reservoir. As the right
reservoir electrode protrudes inside the gorge, the potential
on this electrode strongly affects the height of this barrier
and is preferentially used for tuning. Typical potential pro-
files along the gorge are shown in Fig. 3. The trap can be
made shallow or deep at will by tuning the potentials of the
reservoir and the SET island.
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The geometric radius of the trap is 3 wm but its effective
radius is significantly smaller and depends on the configura-
tion of the electrostatic potentials on the various neighboring
electrodes. The actual potential well is neither parabolic nor
quite axisymmetric. Both shape and depth change with the
voltage applied to the electrodes. To set numbers, a trap fre-
quency of wy/2m of ~40 Ghz represents a low estimate
when the trap holds few electrons only. The extension of the
ground-state wave function of noninteracting electrons is
then ly=(%/m,w,)"">~21.5 nm. The mean distance between
interacting electrons r fixed by the Coulomb energy and the
parabolic confining energy is 200 nm, the average density
parameter 7 is 0.016, and the Coulomb energy E is 83.5 K.
At a temperature of 0.2 K, I'"'=kzT/E-=0.0024. Referring
to the phase diagram in Fig. 1, the electron island lies well
into the radially ordered-phase region, and, moreover, in the
near-classical part of that region.

Such electrostatic traps have already been constructed and
operated by Glasson et al** Building on the experience
gained in their work, we have improved the design in two
ways: (1) the size is made smaller and the electrons are better
confined, and (2) the central electrode protrudes from the
bottom with a pyramidal shape in order to increase the con-
finement and the coupling with the electrons (in Fig. 2, right
panel), thus enhancing the detection sensitivity.

III. EXPERIMENTAL PROCEDURE
A. Electron seeding and monitoring

We seed electrons by igniting a corona discharge in a
small chamber separated from the rest of the cell by a me-
tallic grid with mesh of a few tens of microns. Before the
discharge, the cell is heated to a temperature ~1.1 K at
which the vapor pressure becomes high enough. A high va-
por pressure is required both to ignite the discharge and to
thermalize the electrons so that their energy is lower than the
energy barrier of 1 eV needed to penetrate into the liquid.
The discharge is ignited by applying ~-500 V to a wire
terminated in the middle of the discharge chamber. The typi-
cal discharge current is ~0.1-0.2 wA. The presence of elec-
trons is detected by applying an ac voltage U,,.~ 100 wV at
a frequency of 100 kHz to the right reservoir electrode and
monitoring the electromotive force induced on the left elec-
trode with a lock-in amplifier. When electrons appear on the
surface, the signal changes by 1-20X 107 V rms.

After the electrons have been generated and have scat-
tered over the cell, a negative potential is applied to the
guard electrode while a positive potential is applied to the
reservoir (the potential difference is typically between O and
+1 V during the discharge). These confining potentials lo-
calize the electrons primarily over the reservoir and the ring-
shaped trap.

At low temperature, the electrons over the thin Van der
Waals film become localized while electrons over the reser-
voir and the trap ring, floating much further away from the
solid substrate, remain mobile. The thickness of the helium
film covering the reservoir and the trap depends somewhat
on the amount of helium in the cell. As the level of helium
decreases, the film thickness also decreases. When the he-
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lium level drops to ~5 mm below the sample surface, only
a Van der Waals film remains at the center of the reservoir. In
a cell with a small volume, it is rather difficult to precisely
meter the liquid level as significant amounts of helium can
remain trapped in the fill line by surface tension and fountain
pressure. To alleviate this problem we have increased the
volume of the cell below the sample. We determine the
amount required to fill the cell up to the chip level by mea-
suring the capacitance (~1 pF) between two pads on the
chip as a function of the volume of helium condensed into
the cell. When helium liquid starts covering the chip, the
capacitance increases. We then empty the cell and refill it
with a quantity of gas corresponding to that just before the
capacitance increase.

B. Single-electron transistor readout

The SET located at the bottom of the trap operates as a
sensitive electrometer and quantum amplifier*** to detect
the presence of electrons in the trap and, possibly, their quan-
tum state. This SET is current biased close to the Josephson
quasiparticle peak.

We record the Coulomb blockade oscillations obtained by
sweeping the reservoir potential. The voltage across the SET,
Vs, is modulated according to the total charge on its island,
which reads

‘11=2 CiUi+EQO,j~ (3)
i J

The first sum is over all the conductors in the system with
capacitance to the island C; and potential U,. The second sum
runs on the charges induced on the island by free charges in
the system, such as charges or dipoles in the substrate and
other electrons over helium.

Voltage V(q;) across the SET is a periodic function of
charge ¢; with period e, the electron charge. However, it also
depends on the bias current and the electronic configuration
in the cell, and varies from run to run. We determine the
functional dependence of Vi(g;) on g; experimentally by
sweeping the potential U, of one of the electrodes, usually
the one that is swept in subsequent measurements. We then
select a portion of the sweep during which the background
charge distribution did not change so that several cycles of
the function V(g;)=V(U,) can be superimposed by trans-
forming U, modulo P, where P is an appropriately chosen
period. After the modulo transformation the selected piece of
data is averaged and interpolated by a smoothing spline func-
tion spl(U,). The rest of the data is fit piecewise with the
function A spl(U,+¢P), where the amplitude A and the phase
q are fitting parameters. The amplitude is also taken as a free
fitting parameter because the observed peak amplitude V(U,)
varies slightly with U,.

The phase g is the charge, expressed as a fraction of e,
induced on the SET island by free charges in the system. The
expected value can be estimated using the reciprocity prin-
ciple: it is equal to that induced at the location of an electron
when the SET island is biased with unit potential and all the
other conductors in the system are grounded. We have cal-
culated this potential numerically, using the actual 3D geom-
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FIG. 4. (Color online) Reduced charge on the SET island in
terms of the potential of the reservoir electrode for several sweeps
of V.. The SET potential is +0.6 V while the guard electrode
potential is 0. The inset shows the steps of the staircase for low
occupation numbers down to zero, corrected for the baseline drift
occurring between the different sweeps of V.

etry of the trap inferred from SEM photographs, to obtain a
value for the charge ¢ of 0.5e.

To reduce the noise due to fluctuations of the dc voltage
across the SET, we apply a low-frequency (80-150 Hz)
modulation with amplitude ~100 wV to the guard electrode.
The amplitude of the detected signal is proportional to the
derivative of the periodic function Vi(q,).

C. Trapping electrons

After electrons are seeded, we let the system cool down
from 1 K and proceed to load the trap with a given number
of them. Typically, at this stage, the guard electrode is biased
to a negative potential, between —0.1 and —0.5 V, and the
SET is biased to a positive potential between 0 and 0.5 V.
First, we fill the trap with electrons by lowering the voltage
applied to the reservoir electrodes. The electrons are repelled
toward the trap. The values of the electrode potentials are
determined by trial and error. Usually, at least one of the
reservoir electrodes stays positive with respect to the guard
although we found that we can keep the electrons even with
both electrodes more negative than the guard. Often, the
charging potentials have to be lowered in the course of the
experiment as the electron reservoir gradually gets depleted.

After the trap is charged, we start sweeping the potential
of the right reservoir electrode V.. When V. is low, the
barrier is high and the ring remains full of electrons. Sweep-
ing up this voltage reduces the barrier height. When the bar-
rier becomes low enough, electrons start leaving the ring.
This escape suddenly changes the charge on the SET island.
The SET island charge variation manifests itself as a phase
jump in the Coulomb blockade oscillations (see Fig. 5, in
which the arrow points to the phase jump). Referring to the
traces in Fig. 4, the SET detects a sudden change in the
charge at V,,~0.48 V. Since the SET measures charge
modulo e, we cannot determine directly the absolute value of
the total charge but we know that the trap flooded with elec-
trons has started to empty.

045406-5



ROUSSEAU et al.

AW

UV, [mV]

0.48 0.50 0.52
VI'CS [V]

FIG. 5. (Color online) Variation in the SET output signal U
when the reservoir voltage, V., is swept. The Coulomb blockade
oscillation is interrupted by a change of the charge in the SET
island at ~0.5 V as marked by the arrow.

In this initial phase, electrons leave the trap in such a way
that individual escapes cannot be resolved. But, as V. is
raised further and the barrier height decreases, clear steplike
jumps become visible. Each electron leaving the trap
changes the induced charge on the SET island. The corre-
sponding jump of the SET island charge, AQ, is plotted in
Fig. 4 against V. Its amplitude depends on the number of
the electrons left in the trap and amounts to ~0.4e when few
electrons only are left. This value compares well with that
obtained from finite-element calculations of the electrostatic
field using the known trap geometry, ~0.5¢: this good agree-
ment confirms that electrons escape from the trap one at a
time. At 0.93 V in Fig. 4 the last electron leaves the trap.
Between 0.82 and 0.93 V, only one electron is left in the trap.
The previous step to the left corresponds to two electrons in
the trap, and so on.

The length of these steps reflects the change in electro-
chemical potential that leads to the removal (escape) of one
electron. As shown in the inset, this quantity is well deter-
mined experimentally. The variation in V. between the
jumps depends on the Coulomb repulsion between the elec-
trons. Stair length and height increase when the number of
electrons in the trap decrease. Length increase means a larger
reduction in the barrier to extract one electron (electron-
electron interactions decrease). Height increase means that
the leaving electron induces a larger charge on the island,
i.e., the leaving electron is closer to the center of the island.

These results are similar to the results obtained at the
Royal Holloway in London.* The main difference lies in
significantly better defined steps due to improved coupling
with the pyramidal SET and to the smaller size of the trap,
leading to stronger repulsion between the electrons. The po-
sitions of the steps are also more stable in our experiments,
as seen in the inset of Fig. 4, and amenable to precise quan-
titative analysis.

IV. EXPERIMENTAL ADDITION SPECTRA

In the following, we shift our attention from SET-phase
variation signals to addition spectra, which are inherently
more reproducible for the following reason. For a given set
of external parameter values, such as the potentials applied
to different electrodes, the potential for which one electron
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FIG. 6. (Color online) SET-phase variation for the values of the
potential on the SET, Vg, of 0.3, 0.5, and 0.8 V from left to right.
The dots mark the escape of the last electron from the trap.

leaves the trap can be shifted due to modifications in the
distribution of trapped charges in the substrate. This spurious
effect is more likely to occur shortly after a new corona
discharge, which requires a “high” temperature (1-1.2 K)
and involves a high voltage. As addition spectra are the dif-
ference between V. (N-1) and V,(N), namely, Au(N)
=V,es(N) =V (N—1), potential drifts are removed.

The contact potential between niobium and aluminum in
the cell modifies the applied value of V. and has to be
accounted for. This potential is determined in the experimen-
tal setup as follows. We read in Fig. 6 the value of the res-
ervoir potential for which the last electron leaves the trap for
different potentials applied to the SET (i.e., different sizes of
the trap). These values are plotted against Vggy in Fig. 7. The
experimental points fall on a straight line that cuts the x axis
for V,,,=—0.206 =0.005 V. This value represents, to a weak
correction due to the image charge of the remaining electron,
the contact potential between niobium and aluminum. It must
be taken into account to obtain the true value of the potential
that acts on the electrons.

[Vl

0.8 -

VTCS
T

04

0 0.4 0.8
Vser [V

FIG. 7. (Color online) Potential of the reservoir, Vi, at which
the last electron leaves the trap. The intercept with the x axis yields
the effective contact potential between aluminum and niobium,
found to be 0.206 =0.005 V.
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FIG. 8. (Color online) Top: addition spectrum for Vggp=0.5 V
(Vser=0.706 V in the simulations). Squares, ((J), lozenges, (<),
triangles, (A), and circles, (O), are experimental data for different
runs and fall nearly on top of one another. Bottom: addition spec-
trum for Vgpr=0.3 V (Vger=0.506 V in the simulations); squares
are experimental results. Dots, (@), are the results of the MC simu-
lations, linked by straight-line segments to guide the eye. Error bars
on the simulated data represent an estimate of the uncertainty.

The addition spectra themselves are obtained by plotting
the stair length of staircaselike patterns, such as shown in
Fig. 6, in terms of the number of electrons in the island.
Experimentally observed addition spectra are given in Fig. 8
for two trap sizes corresponding to Vgep=0.5 and 0.3 V, re-
spectively. Different potential sweeps following a given co-
rona discharge are shown on the same graph in Fig. 8 (top
panel): the experiment gives quite reproducible results.

V. MONTE CARLO SIMULATIONS

In order to interpret the details of these experimental re-
sults, we have carried out Monte Carlo simulations of the
addition spectra that correspond to the precise shape of the
confining potential well in the experimental trap. These MC
simulations are based on the procedure described by Be-
danov and Peeters.!'* In the low-density limit, which is the
regime attained here, the electrons occupy only a small frac-
tion of the total area of the trap. They are (mostly) distin-
guishable and can be treated as classical particles. This sim-
plification is also made by Peeters and co-workers.!4!5-32

Our trap is not parabolic but its profile can be determined
by finite element calculation based on its known geometry
(see Fig. 3). In doing so, we have attempted to reproduce as
accurately as possible the pyramidal shape of the SET island.
The values of the confining potential profile have been com-
puted for a finite number of nodes and interpolated with
parabolas to arbitrary coordinates r;.

In order to check our computational procedure, we have
reproduced Bedanov and Peeters’'* results for a parabolic
trap defined analytically. We discretized the parabolic poten-
tial with the same number of nodes as for the actual potential
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FIG. 9. (Color online) Increase in the free energy of the cluster
with electron number in a parabolic trap, in volt: (A), our results
based on a discrete parabolic profile; solid line, Kong ef al.’s results
(Ref. 46). The relative difference in percent between the two calcu-
lations is plotted at the top, (@), referred to the vertical scale on the
right.

determination for our cell. We then performed the same MC
simulations to find the energy and the configuration of a
known number of electrons in the trap. Our results, shown in
Fig. 9, fall very well in line with the published results, those
of Ref. 14 and the more recent results of Kong et al.*® The
small systematic difference of ~0.75% seen in Fig. 9 might
possibly be due to the discretization of the confinement po-
tential. Our simulations of the addition spectra are also in

very good agreement with those of Peeters and
co-workers,'#1332 a5 shown in Fig. 10.
Finally, we compare electronic configurations. The

ground state of the configuration with 31 electrons is one of
the most difficult to find due to the closeness of the first
metastable state (the difference is only 0.004%). The result,
shown in Fig. 11, is once again in agreement with Peeters
and co-workers.!*1332 We thus are quite confident that our
MC simulations lead to the true ground-state configurations
and to a precise evaluation of their energies.

T T T T 5%
8 (NP NEN o e — 0
IR T RN 0®o00 \./ \.,’°
— - -5%
— 6 [ 7
>
e L . B
= ha
S R VAN 2
™ A \ N
< L ad \‘/ N\a-a, /A\ /A -
A A Ao AAL A
2 = -
0 | | | | |
0 5 10 15 20 25 30

FIG. 10. (Color online) Computed addition spectra in this work
and that of Bedanov and Peeters (Ref. 14), confirmed by Kong et al.
(Ref. 46), (A), at the bottom. The relative difference in percent
between these calculations is plotted at the top, (@), referred to the
vertical scale on the right.
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FIG. 11. (Color online) Wigner molecule in a parabolic trap with
31 electrons. Lines represent potential contours; the minimum of
the parabola is centered on (0,0). Stars represent the electrons. The
ground-state configuration is the configuration (5,11,15) as in Kong
et al. (Ref. 46).

We now turn to the case of addition spectra in the actual
(nonparabolic) trapping potential, for which we need the
electron energy. This energy has two parts: an electrostatic
part and the repulsion due to the Coulomb interaction. The
electrostatic part can be attractive if electrons are in the trap
or repulsive if the electrons are on the other side of the bar-
rier (see Fig. 3). The electron energy reads in the classical
limit, discarding the kinetic-energy term in Eq. (1):

N > N
1
E(Ns Vres) == 2 eV(ri) + Z 2 . (4)
i=1 477'50j<i |1'i - l'j|

The electrostatic energy where eV(r;) at r;, which is the ith
electron location, is that obtained by the finite element cal-
culation. The second term in Eq. (4) represents the Coulomb
interaction energy between electrons, which is only around
10% of the total energy; the bulk part of the energy comes
from the trapping potential.

An electron leaves the trap when its energy overcomes the
confining energy barrier 6, which is the energy difference
between the minimum and the energy at the barrier (see Fig.
3). That is, a given configuration is stable as long as the
average energy per electron remains lower than &: Ejy
=E(N,V,,)/N= . Here, it is assumed that the electrons in
the island have identical energies.

We first compute the evolution of the confining potential
6 in terms of the potential applied to the reservoir. The con-
tact potential must be taken into account: when the potentials
applied to the SET electrode and to the reservoir electrode
are Vger and V., the potentials used in the simulations are
Vser+0.206 V on the SET electrode and V. is left un-
changed on the reservoir electrode. For N electrons in the
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[Vl
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FIG. 12. (Color online) Solid line: confining potential & in terms
of the potential applied on the reservoir electrode V.. Dots are
Monte Carlo simulations of the average energy per electron for one,
three, and five electrons in the trap. Dash-dash lines are linear ex-
trapolations of the Monte Carlo results as explained in the text. The
crossing point between & and this average energy gives the potential
for which an electron leaves the trap.

trap, we compute the total energy for different values of the
reservoir potential. When the barrier is too low—i.e., when
the reservoir potential is too close to the threshold when the
electron is about to escape—the Monte Carlo simulations fail
to find the ground state. The starting temperature in the simu-
lations is too high and allows electrons to escape readily over
the barrier. Using a lower starting temperature to circumvent
the problem does not lead to the real ground state of the
configuration.

To resolve this issue we calculated the energy for values
of the reservoir potential slightly lower than the escape
threshold, for which the simulations did find the ground
state, and extrapolated the results linearly to higher values of
this potential. This procedure is illustrated in Fig. 12, which
shows the evolution of the confining potential and the aver-
age energy per electron for N=1, 3, and 5 in terms of the
reservoir voltage. An electron leaves the trap when these
curves intersect.

The comparison between the outcome of these calcula-
tions and the experimental results for, respectively, Vggr
=0.5 and 0.3 V is shown in Fig. 8. The size and the shape of
the trap depend on Vgt and the results are significantly dif-
ferent. The scatter on the experimental points is less than the
uncertainty on the simulations. The observed addition spectra
are quite reproducible as long as the cell is kept cold, below
1 K. When it becomes necessary to replenish the electron
reservoir, the temperature is raised and a new corona dis-
charge is ignited. Then the distribution of stray charges
changes and the addition spectra fine structure, which is
quite sensitive to the potential profile, also changes. The dif-
ferences between the calculated and observed spectra may be
in part due to this uncontrolled influence of random surface
charges.

A recurrent feature of the observed spectra is a peak for
N=6 followed by a trough for N=7. Referring to the work of
Giclii et al.,® this indicates that electrons order in shells and
not on a triangular lattice, which would give a peak at N
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=7. The corresponding trap frequency is ~60 GHz and the
electronic density 7=0.017. These observations fit well into
the phase diagram shown in Fig. 1 according to which, at an
electron temperature of ~200 mK, the cluster is radially ori-
ented (formation of shells) but not orientationally oriented.

For very few electrons (N=3), the Monte Carlo simula-
tion yields a significantly larger addition energy than what is
observed. Even for N>3, the calculated addition energies
usually cap the experimental ones. This observation probably
means that the Wigner island lies in an excited configuration.
Its energy is higher than that of the ground state; a lesser
decrease in the barrier is required to extract one electron. On
the contrary, higher values than the calculated ones remain
unexplained (e.g., N=5 for the top panel in Fig. 8). The
extraneous source of noise energy that seems to be present in
the experiment possibly comes from the tight coupling with
the SET. We have evidence that the SET back action affects
the temperature of the electrons in the island in a way that
depends on the SET bias current, either heating or cooling
with respect to the bath temperature. This effect is under
study.

It is known from the moving pictures of vortex line con-
figuration in a superfluid rotating bucket by Williams and
Packard?® that the vortices tend to jump around randomly. In
order to damp the vortex motions so that they could be pho-
tographed, the authors of Ref. 23 added He impurities to the
*He superfluid to bring in some dissipation. In our Wigner
islands, no such dampener is introduced. Due to the ex-
tremely high mobility of electrons over helium, it is quite

PHYSICAL REVIEW B 79, 045406 (2009)

likely that the electronic configuration is also extremely un-
steady.

VI. CONCLUSION

We have studied the confinement of a small number of
electrons in a trap over a liquid-helium film. Stable configu-
rations down to a single electron can be obtained reproduc-
ibly and their energy recorded with an SET readout. The
experimental addition spectra compare well with those ob-
tained in Monte Carlo simulations in a trapping potential
directly derived from the cell geometry. Charges trapped in
the dielectric parts of the sample only weakly modify the
potential profile. The good agreement between actual experi-
ments and MC simulations (1) confirms the validity of the
model (and assumptions) used in the simulation, (2) shows
that no uncontrolled, or unforeseen, feature plays a signifi-
cant role in the physical system, and (3) opens the way, once
the problem of repeatability of addition spectra after corona
discharges is solved, to more detailed studies of these Wigner
islands, and, in particular, of orientational ordering.

ACKNOWLEDGMENTS

This work was supported in part by Fonds National de la
Science Grant No. ACI 2002-2140. It was started as a col-
laboration with the Royal Holloway College in the frame-
work of the European Network Contract No. HPRN-CT-
2000 00157.

*Present address: Laboratoire EM2C-CNRS-Ecole Centrale Paris
92295 Chatenay-Malabry, France; em.rousseau @ gmail.com

TPresent address: Chemistry Dept., North Carolina State Univ., Ra-
leigh, NC 27695, USA.

#Present address: Science Faculty, American Community Schools of
Athens, 129 Aghias Paraskevis, 152 34 Halandri, Athens, Greece.
'E. Wigner, Phys. Rev. 46, 1002 (1934).
2C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
3V. Shikin, Sov. Phys. Usp. 32, 452 (1989).
4B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).
5X. Waintal, Phys. Rev. B 73, 075417 (2006).

%A. Ghosal, A. D. Gigli, C. J. Umrigar, D. Ullmo, and H. U.
Baranger, Phys. Rev. B 76, 085341 (2007).

’D. Stauffer and A. Fetter, Phys. Rev. 168, 156 (1968).

8L. J. Campbell and R. M. Ziff, Phys. Rev. B 20, 1886 (1979).

9 A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

10D, Cribier, B. Jacrot, L. M. Rao, and B. Farnoux, Phys. Lett. 9,
106 (1964).

1'U. Essmann and H. Trauble, Phys. Lett. 24A, 526 (1967).

12Y. E. Lozovik and V. L. Yudson, JETP Lett. 22, 11 (1975).

I3M. Shayegan, in Topological Aspects of Low Dimensional Sys-
tems, edited by A. Comtet, T. Jolicoeur, S. Ouvry, and F. David
(Springer-Verlag, Berlin, 1999), p. 1, Les Houches Summer
School Session LXIX.

14y, M. Bedanov and F. M. Peeters, Phys. Rev. B 49, 2667 (1994).

5V, A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700

(1995).

16A. A. Koulakov and B. I. Shklovskii, Phys. Rev. B 57, 2352
(1998).

7R. Egger, W. Hiusler, C. H. Mak, and H. Grabert, Phys. Rev.
Lett. 82, 3320 (1999).

18 A. V. Filinov, M. Bonitz, and Y. E. Lozovik, Phys. Rev. Lett. 86,
3851 (2001); M. Bonitz et al., Phys. Plasmas 15, 055704
(2008).

19 A. Harju, S. Siljamiki, and R. M. Nieminen, Phys. Rev. B 65,
075309 (2002).

205, M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283
(2002).

2IM. Saint Jean, C. Even, and C. Guthmann, Europhys. Lett. 55,
45 (2001).

221. V. Grigorieva, W. Escoffier, J. Richardson, L. Y. Vinnikov, S.
Dubonos, and V. Oboznov, Phys. Rev. Lett. 96, 077005 (2006).

2G. A. Williams and R. E. Packard, Phys. Rev. Lett. 33, 280
(1974).

24U. Parts, M. H. Ruutu, H. Koiwniemi, Yu. M. Bunkov, V. Dmi-
triev, V. M. Fogelstrom, M. Huebner, Y. Kondo, N. B. Kopnin,
J. S. Korhonen, M. Krusius, O. V. Lounasmaa, 1. Soininen, and
G. E. Volovik, Europhys. Lett. 31, 449 (1995).

5. Papageorgiou , P. Glasson, K. Harrabi, V. Antonov, E. Collin,
P. Fozooni, P. G. Frayne, M. J. Lea, D. G. Rees, and Y. Mukhar-
sky, Appl. Phys. Lett. 86, 153106 (2005).

26D, Pfannkuche, V. Gudmundsson, and P. A. Maksym, Phys. Rev.

045406-9



ROUSSEAU et al.

B 47, 2244 (1993).

27E. Anisimovas and A. Matulis, J. Phys.: Condens. Matter 10,
601 (1998).

K. Balzer, C. Nélle, M. Bonitz, and A. Filinov, J. Phys.: Conf.
Ser. 35, 209 (2006).

2N. Simonovi¢, Few-Body Syst. 38, 139 (2006).

30Considerably lower critical values for r,, down to four, corre-
sponding to much higher critical densities, have been reported
for clusters with few electrons (Ref. 17). However, these find-
ings seem to be an artifact of the computational scheme and are
not confirmed in subsequent works (Refs. 6, 47, and 48). Thus,
the critical density beyond which quantum fluctuations domi-
nate, destroying the ordered phase of 2D confined structures,
remains of the same order of magnitude as for the open-
geometry situation when the number of particles, N, is large, as
pictured in Fig. 1.

31V, A. Schweigert, F. M. Peeters, and P. S. Deo, Phys. Rev. Lett.
81, 2783 (1998).

32B. Szafran, F. M. Peeters, S. Bednarek, and J. Adamowski, Phys.
Rev. B 69, 125344 (2004).

33S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L.
P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996).

31, Kouwenhoven, D. Austing, and S. Tarucha, Rep. Prog. Phys.
64, 701 (2001).

BSA. D. Giiglii, A. Ghosal, C. J. Umrigar, and H. U. Baranger,
Phys. Rev. B 77, 041301(R) (2008).

36D, S. Fisher, B. I. Halperin, and P. M. Platzman, Phys. Rev. Lett.

PHYSICAL REVIEW B 79, 045406 (2009)

42, 798 (1979).

37M. I. Dykman, P. M. Platzman, and P. Seddighrad, Phys. Rev. B
67, 155402 (2003).

3M. Lea, P. Frayne, and Y. Mukharsky, Fortschr. Phys. 48, 1109
(2000).

3 Two Dimensional Electron Systems on Helium and Other Cryo-
genic Substrates, edited by E. Y. Andrei (Kluwer Academic, Do-
drecht, 1997).

40K. Shirahama and K. Kono, Phys. Rev. Lett. 74, 781 (1995); K.
Shirahama, S. Ito, H. Suto, and K. Kono, J. Low Temp. Phys.
101, 439 (1995).

41E. Rousseau, D. Ponarine, E. Varoquaux, and Y. Muhkarsky, J.
Low Temp. Phys. 148, 193 (2007).

42E. Rousseau, Ph.D. thesis, Université Paris XI (2006); http://
tel.archives-ouvertes.fr/tel-00250371/fr/.

43P, Glasson, G. Papageorgiou, K. Harrabi, V. Antonov, E. Collin,
P. Fozooni, P. G. Frayne, M. J. Lea, Y. Mukharsky, and D. G.
Rees, J. Phys. Chem. Solids 66, 1539 (2005).

4M. Devoret and R. Schoelkopf, Nature (London) 406, 1039
(2000).

4K. Likharev, Nano et Micro Technologies 3, 71 (2003).

4M. Kong, B. Partoens, and F. M. Peeters, Phys. Rev. E 65,
046602 (2002).

47See S. M., Reimann, M. Koskinen, and M. Manninen, Phys. Rev.
B 62, 8108 (2000), and references therein.

48B. Reusch, W. Hiusler, and H. Grabert, Phys. Rev. B 63, 113313
(2001).

045406-10



