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In a mean-field-theory treatment the ground state of a graphene bilayer spontaneously breaks inversion
symmetry for arbitrarily weak electron-electron interactions when trigonal-warping terms in the band structure
are ignored. We report on a perturbative renormalization-group calculation, which assesses the robustness of
this instability, comparing with the closely related case of the charge-density-wave instability incorrectly
predicted by mean-field theory in a one-dimensional electron gas. We conclude that spontaneous inversion
symmetry breaking in graphene is not suppressed by quantum fluctuations but that, because of trigonal warp-
ing, it may occur only in high quality suspended bilayers.

DOI: 10.1103/PhysRevB.81.041402 PACS number�s�: 71.10.Hf, 71.10.Pm

Electrons most often organize into Fermi-liquid states in
which interactions play an inessential role. A well-known
exception is the case of one-dimensional �1D� electron sys-
tems �1DESs�. In 1D, the electron Fermi surface consists of
points, and divergences associated with low-energy particle-
hole excitations abound when electron-electron interactions
are described perturbatively. In higher space dimensions, the
corresponding divergences occur only when Fermi lines or
surfaces satisfy idealized nesting conditions. In this article
we discuss electron-electron interactions in two-dimensional
�2D� graphene bilayer systems, which behave in many ways
as if they were one dimensional because they have Fermi
points instead of Fermi lines and because their particle-hole
energies have a quadratic dispersion which compensates for
the difference between 1D and 2D phase space.

Recent progress in the isolation of nearly perfect single
and multilayer graphene sheets1–4 has opened up a new topic
in two-dimensional electron systems �2DESs� physics. There
is to date little unambiguous experimental evidence that
electron-electron interactions play an essential role in the
graphene family of 2DESs. However, as pointed out by Min
et al.5 graphene bilayers near neutrality should be particu-
larly susceptible to interaction effects because of their pecu-
liar massive-chiral6 band Hamiltonian, which has an energy
splitting between valence and conduction bands that vanishes
at k=0 and grows quadratically with k= �k�,

HB = − �
k���

�2k2

2m� ck��
† �cos�J�k�����

x + sin�J�k�����
y �ck�.

�1�

In Eq. �1� the �is are Pauli matrices and the Greek labels
refer to the two bilayer graphene sublattice sites, one in each
layer, which do not have a neighbor in the opposite graphene
layer �see Fig. 1.� The other two sublattice site energies are
repelled from the Fermi level by interlayer hopping and ir-
relevant at low energies. It is frequently useful to view quan-
tum two-level layer degree of freedom as a pseudospin. The
J=2 pseudospin chirality of bilayer graphene contrasts with
the J=1 chirality1,7 of single-layer graphene and is a conse-
quence of the two-step process in which electrons hop be-

tween low-energy sites via the high-energy sites. The
massive-chiral band-structure model applies at energies
smaller than the interlayer hopping scale4 �1�0.3 eV but
larger than the trigonal-warping scale4 �3�1 /�0�0.03 eV
below which direct hopping between low-energy sites plays
an essential role. The body of this Rapid Communication
concerns the role of interactions in the massive-chiral model;
we return at the end to explain the important role played by
trigonal warping.

Similarities and differences between graphene bilayers
and 1DES are most easily explained by temporarily neglect-
ing the spin, and in the case of graphene also the additional
valley degree of freedom. As illustrated in Fig. 1 in both

(a) a

A(B')

A'

B'

A'

A(B')

B
A

(b) a (c) a

FIG. 1. �Color online� �a� The massive-chiral fermion model
describes the low-energy sites in a AB-stacked graphene bilayer,
those atom sites �top layer B sites and bottom layer A� sites� which
do not have a neighbor in the opposite layer. �b� The conduction and
valence bands of a graphene bilayer touch at the Brillouin-zone
corner wave vectors, taken as zero momentum in continuum model
theories, and separate quadratically with increasing wave vector. �c�
In a 1DES left and right-going electrons cross the Fermi energy at a
single point; The momentum of right-going �left-going� electrons is
plotted relative to kF �−kF� where kF is the Fermi wave vector.
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cases the Fermi sea is pointlike and there is a gap between
occupied and empty free-particle states which grows with
wave vector, linearly in the 1DES case. These circumstances
are known to support a mean-field broken-symmetry state in
which phase coherence is established between conduction
and valence-band states for arbitrarily weak repulsive inter-
actions. In the case of a 1DES, the broken-symmetry state
corresponds physically to a charge-density-wave �CDW�
state, while in the case of bilayer graphene5 it corresponds to
state in which charge is spontaneously transferred between
layers. This mean-field-theory prediction is famously incor-
rect in the 1DES case, and the origin of the failure can be
elegantly identified8,9 using a perturbative renormalization-
group �PRG� approach. We show below that when applied to
bilayer graphene, the same considerations lead to a different
conclusion.

The reliability of the mean-field-theory prediction5 of a
weak-interaction instability in bilayer graphene can be sys-
tematically assessed using PRG.8 We outline the main steps
in the application of PRG to bilayer graphene, pointing out
essential differences compared to the 1DES case. We assume
short-range interactions10 between electrons in the same �S�
and different �D� layers.

The PRG analysis centers on the four-point scattering
function defined in terms of Feynman diagrams in Fig. 2.
Since the Pauli exclusion principle implies that �in the spin-
less valleyless case� no pair of electrons can share the same
2D position unless they are in opposite layers, intralayer in-
teractions cannot influence the particles; there is therefore
only one type of interaction generated by the RG flow, inter-
actions between electrons in opposite layers with the renor-
malized coupling parameter �D. The direct and exchange
first-order processes in Fig. 2 have the values VD �bare cou-
pling parameter� and 0, respectively.

The PRG analysis determines how VD is renormalized in a
RG procedure in which high-energy degrees of freedom are
integrated out and the fermion fields of the low-energy de-
grees of freedom are rescaled to leave the free-particle action
invariant. The effective interaction �D is altered by coupling
between low and high-energy degrees of freedom. At one-
loop level this interaction is described8 by the three higher
order diagrams labeled ZS, ZS�, and BCS in Fig. 2. The

internal loops in these diagrams are summed over the high-
energy labels. In the case of 1DES the ZS loop vanishes and
the ZS� and BCS diagrams cancel, implying that the interac-
tion strengths do not flow to large values and that neither the
CDW repulsive interaction nor the BCS attractive interaction
instabilities predicted by mean-field theory survive the quan-
tum fluctuations they neglect. The key message of this Rapid
Communication is summarized by two observations about
the properties of these one-loop diagrams in the bilayer
graphene case: �i� the particle-particle �BCS� and particle-
hole �ZS and ZS�� loops have the same logarithmic diver-
gences as in the 1DES case in spite of the larger space di-
mension and �ii� the ZS loop, which vanishes in the 1DES
case, is finite in the bilayer graphene case and the BCS loop
vanishes instead. Both of these changes are due to a layer
pseudospin triplet contribution to the single-particle Green’s
function as we explain below. The net result is that interac-
tions flow to strong coupling even more strongly than in the
mean-field approximation. The following paragraphs outline
key steps in the calculations which support these conclu-
sions.

An elementary calculation shows that the single-particle
Matsubara Green’s function corresponding to the Hamil-
tonian in Eq. �1� is

G�k,i�n� = � Gs�k,i�n� − Gt�k,i�n�e−iJ�k

− Gt�k,i�n�eiJ�k Gs�k,i�n� 	 �2�

where ��k=�k=�k2 /2m� and

Gs,t�k,i�n� 

1

2
� 1

i�n − �k
	

1

i�n + �k
	 . �3�

The pseudospin-singlet component of the Green’s function
Gs, which is diagonal in layer index, changes sign under
frequency inversion whereas the triplet component Gt, which
is off-diagonal, is invariant.

The loop diagrams are evaluated by summing the product
of two Green’s functions �corresponding to the two arms of
the Feynman diagram loops� over momentum and frequency.
The frequency sums are standard and yield �
= �kBT�−1�,

1


�2�
�n

Gs,t
2 �i�n� = �

tanh�
�k/2�
4�k

→
T→0

�
1

4�k
,

1


�2�
�n

Gs�i�n�Gt�i�n� →
T→0

0, �4�

where k is the momentum label shared by the Green’s func-
tions. Note that the singlet-triplet product sum vanishes in
the low-temperature limit in which we are interested. Each
loop diagram is multiplied by appropriate interaction con-
stants �discussed below� and then integrated over high-
energy-momentum labels up to the massive-chiral fermion
model’s ultraviolet cutoff �:

�
�/sk�

d2k

�2��2

tanh�
�k/2�
4�k

→
T→0

1

2
�0 ln�s� , �5�

where �0=m� /2��2 is the graphene bilayer density of states.
Because �k�k2, this integral grows logarithmically when the
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FIG. 2. �Color online� �a� The renormalized interaction �D. �b�
and �c� The direct and exchange bare interactions. �d�–�f� They are
the one-loop diagrams labeled ZS, ZS�, and BCS, respectively. The
external and internal Green’s function labels refer to layer in the
case of graphene and to chirality in 1DES’ case.

ZHANG et al. PHYSICAL REVIEW B 81, 041402�R� �2010�

RAPID COMMUNICATIONS

041402-2



high-energy cutoff is scaled down by a factor of s in the RG
transformation, exactly like the familiar 1DES case. This
rather surprising property of bilayer graphene is directly re-
lated to its unusual band structure with Fermi points rather
than Fermi lines and quadratic rather than linear dispersion.

The key differences between bilayer graphene and the
1DES appear upon identifying the coupling factors which are
attached to the loop diagrams. The external legs in the scat-
tering function Feynman diagrams �Fig. 2� are labeled by
layer index �T=top layer and B=bottom layer� in bilayer
graphene. The corresponding labels for the 1DES are chiral-
ity �R=right going and L=left going�; we call these interac-
tion labels when we refer to the two cases generically. Since
only opposite layer interactions are relevant, all scattering
functions have two incoming particles with opposite layer
labels and two outgoing particles with opposite layer labels.

In the ZS loop, at the upper vertex the incoming and
outgoing T particles induce a B particle-hole pair in the loop
while the incoming and outgoing B particles at the lower
vertex induce a T particle-hole pair. Since the particle-hole
pairs must annihilate each other, there is a contribution only
if the single-particle Green’s function is off-diagonal in in-
teraction labels. This loop can be thought of as screening VD;
the sign of the screening contribution is opposite to normal,
enhancing the bare interlayer interaction, because the polar-
ization loop involves layer pseudospin triplet propagation
�see Eq. �4��. This contribution is absent in the 1DES case
because propagation is always diagonal in interaction labels.

The ZS� channel corresponds to repeated interaction be-
tween a T particle and a B hole. This loop diagram involves
only particle propagation that is diagonal in interaction labels
and its evaluation in the graphene bilayer case therefore
closely follows the 1DES calculation. This is the channel
responsible for the 1DES mean-field CDW instability in
which coherence is established between R and L particles. In
both graphene bilayer and 1DES cases it has the effect of
enhancing repulsive interactions.

The BCS loop corresponds to repeated interaction be-
tween the two incoming particles. In the 1DES case the con-
tribution from this loop which enhances attractive interac-
tions, cancels the ZS� contribution, leading to marginal
interactions and Luttinger liquid behavior. In the graphene
bilayer case however, there is an additional BCS loop con-
tribution in which the incoming T and B particles both
change interaction labels before the second interaction. This
contribution is possible because of the triplet component of
the particle propagation and, in light of Eq. �4�, gives a BCS
loop contribution with a sign opposite to the conventional
one. Summing both terms, it follows that the BCS loop con-
tribution is absent in the graphene bilayer case. These results
are summarized in Table I and imply that at one-loop level

�D �
VD

1 − VD�0 ln�s�
. �6�

The interaction strength diverges when VD�0=1 / ln�s�, at
half11 the mean-field-theory critical interaction strength. Tak-
ing guidance from the mean-field theory,5 the strong-
coupling state is likely a pseudospin ferromagnet which has

an energy gap and spontaneous charge transfer between lay-
ers.

A number of real-world complications have to be recog-
nized in assessing the experimental implications of these re-
sults. First of all, electrons in real graphene bilayers carry
spin and valley as well as layer pseudospin. This substan-
tially complicates the PRG analysis since many different
types of interactions are generated by the RG flow. One sim-
plification is that interactions conserve spin, and both layer
and valley pseudospin, at each vertex. Interactions are how-
ever dependent on whether the interacting particles are in the
same �S� or in different �D� layers. The fermion propagators
conserve both spin and valley pseudospin but not the layer
pseudospin as shown in Eq. �2�. It is immediately clear then
that the incoming and outgoing total spin must be preserved
for real spin and for the valley pseudospin, and the same
conclusion applies for the layer pseudospin after a more
elaborate consideration. From Eq. �2� we see that a phase
factor e	2i�q is gained when the propagator transfers elec-
trons between layer indices with the + applying for top to
bottom evolution and the − for bottom to top. Unless these
transfers enter an equal number of times, the integrand in a
Feynman diagram will contain a net phase factor related to
chirality and vanish under momentum integration. The total
layer pseudospin is therefore also conserved in collisions.

When one spin degree of freedom is considered, as in the
1DES case, three types of interactions have to be recognized,
�S, �D, and �X. �S couples electrons with the same flavor
and �D electrons with different flavors, while �X is the ex-
change counterpart of �D. The bare value of the exchange
part of �D �the direct part of �X� is of course zero since the
Coulomb interaction is flavor independent, but higher order
contributions are nonzero if triplet electron propagation is
allowed. Correspondingly, when both spin and valley de-
grees of freedom are acknowledged the interaction param-
eters are �SSD, �SDS, �SDD, �DSS, �DSD, �DDS, �DDD, �XSD,
�XDS, and �XDD, considering Pauli exclusion principle and
the fermionic antisymmetry between outgoing particles. The
labels refer from left to right to layer, real spin and valley.
The flow of the renormalized interactions is illustrated in
Fig. 3 and they diverge near VD�0�0.6 / ln�s�. The instability
tendency is therefore somewhat enhanced by the spin and the
valley degrees of freedom.

Next we must recognize that the massive-chiral fermion
model applies only between trigonal-warping and interlayer
hopping energy scales. Appropriate values for ln�s� in the
RG flows are therefore at most around ln�s�max=ln�kH /kL�
� ln��0 /�3��2.3, using accepted values for the hopping
parameters.1,4 We estimate the strength of the bare scattering
amplitudes in vacuum by evaluating the 2D Coulomb scat-

TABLE I. Summary of contrasting the contributions �in units of
the related density of states� of the three one-loop diagrams in
1DES and graphene bilayer cases

Diagrams ZS ZS� BCS One-loop

1DES 0 u2 ln�s� −u2 ln�s� 0

Graphene bilayer 1
2�D

2 ln�s� 1
2�D

2 ln�s� 0 �D
2 ln�s�
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tering potential at the high-energy cutoff wave vector
�0VS��m� /2��2��2�e2 /kH�=�ee /2, where �ee=e2 /�vF
�2.2 is graphene’s fine-structure constant. The value used
for VD is reduced by a factor of e−kHd compared to VS to
account for the layer separation d=3.35 Å. According to
these estimates the bare value of �0VD exceeds the stability
limit of �0.6 / ln�s�max�0.25 by approximately a factor of
four. For graphene layers on the surface of a substrate with
dielectric constant �, interactions are reduced by a factor of

���+1� /2. In the case of SiO2 substrates ��4, the instabil-
ity still occurs but the interaction strength exceeds the stabil-
ity limit by a much narrower margin.

Lastly we expect that additional screening effects from
graphene � orbitals, which are normally neglected in con-
tinuum model calculations, will reduce interaction strengths
at wave vectors near kH somewhat and favor stable bilayers.

Gaps do appear in bilayer graphene even when electron-
electron interactions are neglected, provided that an external
potential difference V is applied between the layers. The po-
tential adds a single-particle term −V�z /2 to the single-
particle Hamiltonian, breaks inversion symmetry, and trans-
fers charge12–15 between layers. This interesting property is
the basis of one strategy currently being explored16,17 in the
effort to make useful electronic devices out of graphene
2DESs. Even if gaps do not appear spontaneously in real
bilayer graphene samples, it is clear from the present work
that interesting many-body physics beyond that captured by
commonly used electronic-structure-theory approximations
�local-density approximation or generalized gradient ap-
proximations, for example�, must play at least a quantitative
role in determining gap grown with V. As graphene bilayer
sample quality improves, we expect that it will be possible to
explore this physics experimentally with angle resolved pho-
toemission spectroscopy, tunneling, and transport probes. At
this point, we would like to note that three complementary
preprints,18–20 which cover closely related material, have ap-
peared recently.
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FIG. 3. �Color online� This illustration plots the inverse interac-
tion strength ��0��eff�−1 versus the scaling parameter ln�s� /�eff. �eff

is the effective dielectric constant of the graphene bilayer and
�=�vacuum /�eff. Interlayer interaction parameters �DSS �green� and
�XSD ,�XDS ,�XDD �cyan� flow to large values most quickly. Accord-
ing to this estimate the normal state becomes unstable for
VD�0.6 / ln�s�.
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