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The experimental realization of Majorana fermions presents an important problem due to their non-Abelian
nature and potential exploitation for topological quantum computation. Very recently Sau et al. �Phys. Rev.
Lett. 104, 040502 �2010�� demonstrated that a topological superconducting phase supporting Majorana fermi-
ons can be realized using surprisingly conventional building blocks: a semiconductor quantum well coupled to
an s-wave superconductor and a ferromagnetic insulator. Here we propose an alternative setup, wherein a
topological superconducting phase is driven by applying an in-plane magnetic field to a �110�-grown semicon-
ductor coupled only to an s-wave superconductor. This device offers a number of advantages, notably a simpler
architecture and the ability to tune across a quantum phase transition into the topological superconducting state
while still largely avoiding unwanted orbital effects. Experimental feasibility of both setups is discussed in
some detail.
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I. INTRODUCTION

The problem of realizing and manipulating Majorana fer-
mions in condensed-matter systems is currently a topic of
great theoretical and experimental interest. Roughly, Majo-
rana fermions constitute “half” of a usual fermion. That is,
creating an ordinary fermion f requires superposing two Ma-
jorana modes �1,2—which can be separated by arbitrary
distances—via f =�1+ i�2. The presence of 2n well-separated
Majorana bound states thus allows for the construction of n
ordinary fermions, producing �ideally� a manifold of 2n de-
generate states. Braiding Majorana fermions around one an-
other produces not just a phase factor, as in the case of con-
ventional bosons or fermions, but rather transforms the state
nontrivially inside of this degenerate manifold: their ex-
change statistics is non-Abelian.1,2 Quantum information en-
coded in this subspace can thus be manipulated by such
braiding operations, providing a method for decoherence-
free topological quantum computation.3,4 �It should be noted,
however, that universal quantum computation with Majorana
fermions requires additional ingredients beyond braiding.4,5�
Majorana fermions are therefore clearly of great fundamental
as well as practical interest.

At present, there is certainly no dearth of proposals for
realizing Majorana fermions. Settings as diverse as fractional
quantum Hall systems1 at filling �=5 /2, strontium
ruthenate thin films,6 cold atomic gases,7–10 superfluid
He-3,11 the surface of a topological insulator,12,13 semicon-
ductor heterostructures,14 and noncentrosymmetric
superconductors15,16 have all been theoretically predicted to
host Majorana bound states under suitable conditions. Nev-
ertheless, their unambiguous detection remains an outstand-
ing problem, although there has been recent progress in this
direction in quantum Hall systems.17,18

Part of the experimental challenge stems from the fact
that stabilizing topological phases supporting Majorana fer-
mions can involve significant engineering obstacles and/or
extreme conditions such as ultralow temperatures, ultraclean
samples, and high magnetic fields in the case of the �=5 /2
fractional quantum Hall effect. The proposal by Fu and

Kane12 noted above for realizing a topological superconduct-
ing state by depositing a conventional s-wave supercon-
ductor on a three-dimensional topological insulator surface
appears quite promising in this regard. This setting should in
principle allow for a rather robust topological superconduct-
ing phase to be created without such extreme conditions,
although experiments demonstrating this await development.
Moreover, Fu and Kane proposed methods in such a setup
for creating and manipulating Majorana fermions for quan-
tum computation. The more recent solid-state proposals
noted above involving semiconductor heterostructures14 and
noncentrosymmetric superconductors15,16 utilize clever ways
of creating an environment similar to the surface of a topo-
logical insulator �i.e., eliminating a sort of fermion-doubling
problem19� in order to generate topological phases support-
ing Majorana modes.

The present work is inspired by the semiconductor pro-
posal of Sau et al.,14 so we briefly elaborate on it here. These
authors demonstrated that a semiconductor with Rashba
spin-orbit coupling, sandwiched between an s-wave super-
conductor and a ferromagnetic insulator as in Fig. 1�a�, can
realize a topological superconducting phase supporting Ma-
jorana modes. The basic principle here is that the ferromag-
netic insulator produces a Zeeman field perpendicular to the
semiconductor, which separates the two spin-orbit-split
bands by a finite gap. If the Fermi level lies inside of this
gap, a weak superconducting pair field generated via the
proximity effect drives the semiconductor into a topological
superconducting state that smoothly connects to a spinless
px+ ipy superconductor. Sau et al. also discussed how such a
device can be exploited along the lines of the Fu-Kane pro-
posal for topological quantum computation. The remarkable
aspect of this proposal is the conventional ingredients it
employs—semiconductors benefit from many more decades
of study compared to the relatively nascent topological
insulators—making this a promising experimental direction.

The main question addressed in this paper is largely a
practical one—can this proposed setup be further simplified
and made more tunable, thus �hopefully� streamlining the
route toward experimental realization of a topological super-
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conducting phase in semiconductor devices? To this end,
there are two obvious modifications that one might try. First,
replacing the ferromagnetic insulator with an external mag-
netic field applied perpendicular to the semiconductor cer-
tainly simplifies the setup but unfortunately induces undesir-
able orbital effects which change the problem significantly
and likely spoil the topological phase. The second obvious
modification, then, would be applying an in-plane magnetic
field. While this sidesteps the problem of unwanted orbital
effects, unfortunately in-plane fields do not open a gap be-
tween the spin-orbit-split bands in a Rashba-coupled semi-
conductor. Physically, opening a gap requires a component of
the Zeeman field perpendicular to the plane in which the
electron spins orient; with Rashba coupling this always co-
incides with the semiconductor plane. �See Sec. III for a
more in-depth discussion.�

Our main result is that a topological superconducting state
supporting Majorana fermions can be generated by in-plane
magnetic fields if one alternatively considers a semiconduc-
tor grown along the �110� direction with both Rashba and
Dresselhaus coupling �see Fig. 1�b��. What makes this pos-
sible in �110� semiconductors is the form of Dresselhaus cou-
pling specific to this growth direction, which favors aligning
the spins normal to the semiconductor plane. When Rashba
coupling is also present, the two spin-orbit terms conspire to
rotate the plane in which the spins orient away from the
semiconductor plane. In-plane magnetic fields then do open a
finite gap between the bands. Under realistic conditions
which we detail below, the proximity effect can then drive
the system into a topological superconducting phase support-
ing Majorana modes, just as in the proposal from Ref. 14.

This alternative setup offers a number of practical advan-
tages. It eliminates the need for a good interface between the
ferromagnetic insulator, reducing considerably the experi-
mental challenge of fabricating the device while still largely
eliminating undesired orbital effects. Furthermore, explicitly
controlling the Zeeman field in the semiconductor is clearly
advantageous, enabling one to readily sweep across a quan-

tum phase transition into the topological superconducting
state and thus unambiguously identify the topological phase
experimentally. We propose that InSb quantum wells, which
enjoy sizable Dresselhaus coupling and a large g factor, may
provide an ideal candidate for the semiconductor in such a
device. While not without experimental challenges �dis-
cussed in some detail below�, we contend that this setup
provides perhaps the simplest, most tunable semiconductor
realization of a topological superconducting phase, so we
hope that it will be pursued experimentally.

The rest of the paper is organized as follows. In Sec. II we
provide a pedagogical overview of the proposal from Ref.
14, highlighting the connection to a spinless px+ ipy super-
conductor, which makes the existence of Majorana modes in
this setup more intuitively apparent. We also discuss in some
detail the stability of the topological superconducting phase
as well as several experimental considerations. In Sec. III we
introduce our proposal for �110� semiconductor quantum
wells. We show that such a quantum well can be driven into
a topological superconducting state by application of an in-
plane magnetic field and explore the stability of this phase.
Experimental issues related to this proposal are also ad-
dressed. Finally, we summarize the results and discuss sev-
eral future directions in Sec. IV.

II. OVERVIEW OF SAU-LUTCHYN-TEWARI-DAS SARMA
PROPOSAL

To set the stage for our proposal, we begin by
pedagogically reviewing the recent idea by Sau et al.14

for creating Majorana fermions in a ferromagnetic
insulator/semiconductor/s-wave superconductor hybrid sys-
tem �see Fig. 1�a��. These authors originally proved the ex-
istence of Majorana modes in this setup by explicitly solving
the Bogoliubov-de Gennes Hamiltonian with a vortex in the
superconducting order parameter. An index theorem support-
ing this result was subsequently proven.20 We will alterna-
tively follow the approach employed in Ref. 21 �see also
Ref. 9� and highlight the connection between the semicon-
ductor Hamiltonian �in a certain limit� and a spinless
px+ ipy superconductor. The advantage of this perspective is
that the topological character of the proximity-induced su-
perconducting state of interest becomes immediately appar-
ent along with the existence of a Majorana bound state at
vortex cores. In this way, one circumvents the cumbersome
problem of solving the Bogoliubov-de Gennes equation for
these modes. The stability of the superconducting phase,
which we will also discuss in some detail below, becomes
more intuitive from this viewpoint as well.

A. Connection to a spinless px+ ipy superconductor

Consider first an isolated zinc-blende semiconductor
quantum well grown along the �100� direction for concrete-
ness. Assuming layer �but not bulk� inversion asymmetry and
retaining terms up to quadratic order in momentum,22 the
relevant Hamiltonian reads

H0 =� d2r�†�−
�2

2m
− � − i���x�y − �y�x��� , �1�

where m is the effective mass, � is the chemical potential, �
is the Rashba spin-orbit23 coupling strength, and � j are Pauli

(b)
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Quantum well
with Rashba

FM insulatorM
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(110) Quantum well with
Rashba & Dresselhaus

B

s−wave SC

FIG. 1. �a� Setup proposed by Sau et al. �Ref. 14� for realizing
a topological superconducting phase supporting Majorana fermions
in a semiconductor quantum well with Rashba spin-orbit coupling.
The s-wave superconductor generates the pairing field in the well
via the proximity effect while the ferromagnetic insulator induces
the Zeeman field required to drive the topological phase. �b� Alter-
native setup proposed here. We show that a �110�-grown quantum
well with both Rashba and Dresselhaus spin-orbit coupling can be
driven into a topological superconducting state by applying an in-
plane magnetic field. The advantages of this setup are that the Zee-
man field is tunable, orbital effects are expected to be minimal, and
the device is simpler since it does not require a good interface with
a ferromagnetic insulator.
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matrices that act on the spin degree of freedom in �. �We set
�=1 throughout.� The Rashba terms above can be viewed as
an effective magnetic field that aligns the spins in the quan-
tum well plane, normal to their momentum. Equation �1�
admits two spin-orbit-split bands that appear “Dirac-like” at
sufficiently small momenta where the �2 /2m kinetic term
can be neglected. The emergence of Majorana modes can
ultimately be traced to this simple fact.

Coupling the semiconductor to a ferromagnetic insulator
whose magnetization points perpendicular to the two-
dimensional layer is assumed to induce a Zeeman interaction

HZ =� d2r�†�Vz�
z�� �2�

but negligible orbital coupling. Orbital effects will presum-
ably be unimportant in the case where, for instance, Vz arises
primarily from exchange interactions rather than direct cou-
pling of the spins to the field emanating from the ferromag-
netic moments. With this coupling, the spin-orbit-split bands
no longer cross and resemble a gapped Dirac point at small
momenta. Crucially, when ���	 �Vz� the electrons in the
quantum well then occupy only the lower band and exhibit a
single Fermi surface. We focus on this regime for the remain-
der of this section.

What differentiates the present problem from a conven-
tional single band �without spin-orbit coupling� is the struc-
ture of the wave functions inherited from the Dirac-like
physics encoded in H0 at small momenta. To see this, it is
illuminating to first diagonalize H0+HZ by writing

��k� = 
−�k��−�k� + 
+�k��+�k� , �3�

where �� annihilate states in the upper/lower bands and 
�

are the corresponding normalized wave functions,


+�k� = 	A↑�k�

A↓�k�
ikx − ky

k

 , �4�


−�k� = 	B↑�k�
ikx + ky

k

B↓�k�

 . �5�

The expressions for A↑,↓ and B↑,↓ are not particularly enlight-
ening but for later we note the following useful combina-
tions:

fp�k� � A↑A↓ = B↑B↓ =
− �k

2�Vz
2 + �2k2

, �6�

fs�k� � A↑B↓ − B↑A↓ =
Vz

�Vz
2 + �2k2

. �7�

In terms of ��, the Hamiltonian becomes

H0 + HZ =� d2k��+�k��+
†�k��+�k� + �−�k��−

†�k��−�k��

�8�

with energies

���k� =
k2

2m
− � � �Vz

2 + �2k2. �9�

Now, when the semiconductor additionally comes into
contact with an s-wave superconductor, a pairing term will
be generated via the proximity effect so that the full Hamil-
tonian describing the quantum well becomes

H = H0 + HZ + HSC �10�

with

HSC =� d2r��↑
†�↓

† + H.c.� . �11�

�We note that H is a continuum version of the lattice model
discussed in Ref. 10 in the context of topological superfluids
of cold fermionic atoms.� Rewriting HSC in terms of �� and
using the wave functions in Eqs. �4� and �5� yields

HSC =� d2k�+−�k��+
†�k��−

†�− k� + −−�k��−
†�k��−

†�− k�

+ ++�k��+
†�k��+

†�− k� + H.c.� �12�

with

+−�k� = fs�k� , �13�

++�k� = fp�k� ky + ikx

k
� , �14�

−−�k� = fp�k� ky − ikx

k
� . �15�

The proximity effect thus generates not only interband
s-wave pairing encoded in the first term, but also intraband
px� ipy pairing with opposite chirality for the upper/lower
bands. This is exactly analogous to spin-orbit-coupled super-
conductors, where the pairing consists of spin-singlet and
spin-triplet components due to nonconservation of spin.24

We can now immediately understand the appearance of a
topological superconducting phase in this system. Consider
 much smaller than the spacing �Vz−�� to the upper band.
In this case the upper band plays essentially no role and can
simply be projected away by sending �+→0 above. The
problem then maps onto that of spinless fermions with
px+ ipy pairing, which is the canonical example of a topo-
logical superconductor supporting a single Majorana bound
state at vortex cores.1,2 �The dispersion �−�k� is, however,
somewhat unconventional. But one can easily verify that the
dispersion can be smoothly deformed into a conventional
k2 /2m−� form, with ��0, without closing a gap.� Thus, in
this limit introducing a vortex in the order parameter  must
produce a single Majorana bound state in this semiconductor
context as well.

We emphasize that in the more general case where  is
not negligible compared to �Vz−��, the mapping to a spinless
px+ ipy superconductor is no longer legitimate. Nevertheless,
since the presence of a Majorana fermion has a topological
origin, it cannot disappear as long as the bulk excitation gap
remains finite. We will make extensive use of this fact in the
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remainder of the paper. Here we simply observe that the
topological superconducting state and Majorana modes will
persist even when one incorporates both bands—which we
do hereafter—provided the pairing  is sufficiently small
that the gap does not close, as found explicitly by studying
the full unprojected Hamiltonian with a vortex in Ref. 14.

It is also important to stress that when  greatly exceeds
Vz, it is the Zeeman field that essentially plays no role. A
topological superconducting state is no longer expected in
this limit since one is not present when Vz=0. Thus as 
increases, the system undergoes a quantum phase transition
from a topological to an ordinary superconducting state, as
discussed by Sau et al.14 and Sato et al.10 in the cold atoms
context. The transition is driven by the onset of interband
s-wave pairing near zero momentum.

B. Stability of the topological superconducting phase

The stability of the topological superconducting state was
briefly discussed in Ref. 14 as well as Ref. 10 in the cold
atoms setting. Here we address this issue in more detail, with
the aim of providing further intuition as well as guidance for
experiments. Given the competition between ordinary and
topological superconducting order inherent in the problem, it
is useful to explore, for instance, how the chemical potential,
spin-orbit strength, proximity-induced pair field, and Zeeman
field should be chosen so as to maximize the bulk excitation
gap in the topological phase of interest. Furthermore, what
limits the size of this gap and how does it decay as these
parameters are tuned away from the point of maximum sta-
bility? And how are other important factors such as the den-
sity impacted by the choice of these parameters?

Solving the full Bogoliubov-de Gennes Hamiltonian as-
suming uniform  yields energies that satisfy

E�
2 = 4�++�2 + +−

2 +
�+

2 + �−
2

2
� ��+ − �−��+−

2 +
��+ + �−�2

4
.

�16�

We are interested in the lower branch E−�k�, in particular, its
value at zero momentum and near the Fermi surface. The
minimum of these determines the bulk superconducting gap,
Eg�G� �

Vz
, m�2

Vz
, 

Vz
�.

To make the topological superconducting state as robust
as possible, one clearly would like to maximize the p-wave
pairing at the Fermi momentum,

kF = �2m�m�2 + � + �Vz
2 + m�2�m�2 + 2��� . �17�

Doing so requires m�2 /Vz�1. In this limit we have
�++�kF��� /2 while the s-wave pairing at the Fermi mo-
mentum is negligible, +−�kF��0. We thus obtain

E−�kF� �  , �18�

which increases monotonically with . At zero momentum,
however, we have

E−�k = 0� = �Vz − �2 + �2� . �19�

This initially decreases with  as interband s-wave pairing

begins to set in and vanishes when =�Vz
2−�2 signaling the

destruction of the topological superconducting state.10,14 It
follows that for a given Vz, the topological superconductor is
most robust when m�2 /Vz�1, �=0, and =Vz /2; here the
bulk excitation gap is maximized and given by Eg=Vz /2.

As will become clear below, for practical purposes it is
also useful to explore the limit where Vz is much larger than
both  and m�2. Here the gap is determined solely by the
p-wave pair field near the Fermi surface �except for � very
close to Vz, where it follows from Eq. �19��. This pairing will
certainly be reduced compared to the m�2 /Vz�1 limit be-
cause the lower band behaves like a conventional quadrati-
cally dispersing band in the limit m�2 /Vz→0. To leading
order in m�2 /Vz and  /Vz, the gap is given by

Eg ��2m�2

Vz
1 +

�

Vz
� . �20�

There are two noteworthy features of this expression. First,
although the gap indeed vanishes as m�2 /Vz→0, it does so
very slowly; Vz can exceed m�2 by more than an order of
magnitude and still yield a gap that is a sizable fraction of
the bare proximity-induced . Second, in this limit the gap
can be enhanced by raising � near the bottom of the upper
band.

These results are graphically summarized in Fig. 2, which
displays the gap Eg normalized by . Figure 2�a� assumes
�=0 and illustrates the dependence on m�2 /Vz and  /Vz;
Fig. 2�b� assumes m�2 /Vz=0.1 and illustrates the depen-
dence on  /Vz and � /Vz. Note that despite the relatively
small value of m�2 /Vz chosen here, the gap remains a sizable
fraction of  over much of the topological superconductor
regime.

C. Experimental considerations

The quantity m�2 comprises a crucial energy scale regard-
ing experimental design. Ideally, this should be as large as
possible for at least two reasons. First, the scale of m�2

limits how large a Zeeman splitting Vz is desirable. If
m�2 /Vz becomes too small, then as discussed above the ef-
fective p-wave pairing at the Fermi surface will eventually
be strongly suppressed compared to  along with the bulk
excitation gap. At the same time, having a large Vz is advan-
tageous in that the topological superconductor can then exist
over a broad range of densities. This leads us to the second
reason why large m�2 is desired: this quantity strongly im-
pacts the density in the topological superconductor regime,

n =
�m��2

2�
�1 +

�

m�2 +�1 +  Vz

m�2�2

+
2�

m�2� . �21�

One should keep in mind that if the density is too small,
disorder may dominate the physics.25,26

Experimental values for the Rashba coupling � depend
strongly on the properties of the quantum well under consid-
eration and, importantly, are tunable in gated systems27

�see also Ref. 28�. In GaAs quantum wells, for instance,
��0.005 eV Å �Ref. 29� and ��0.00075 eV Å �Ref. 30�
have been measured. Using the effective mass m=0.067me

JASON ALICEA PHYSICAL REVIEW B 81, 125318 �2010�

125318-4



�me is the bare electron mass�, these correspond to very small
energy scales m�2�3 mK for the former and a scale an
order of magnitude smaller for the latter. In the limit
m�2 /Vz�1, Eq. �21� yields a density for the topological su-
perconductor regime of n�107 cm−2 and �106 cm−2, re-
spectively. Disorder likely dominates at such low densities.
Employing Zeeman fields Vz which are much larger than
m�2 can enhance these densities by one or two orders of
magnitude without too dramatically reducing the gap �the
density increases much faster with Vz than the gap de-
creases�, though this may still be insufficient to overcome
disorder effects.

Due to their stronger spin-orbit coupling, quantum wells
featuring heavier elements such as In and Sb appear more
promising. A substantially larger ��0.06 eV Å has been
measured31 in InAs quantum wells with effective mass
m�0.04me, yielding a much greater energy scale
m�2�0.2 K. The corresponding density in the m�2 /Vz�1
limit is now n�108 cm−2. While still small, a large Zeeman
field corresponding to m�2 /Vz=0.01 raises the density to a
more reasonable value of n�1010 cm−2. As another ex-
ample, the Rashba coupling in InGaAs quantum wells with

m�0.05me was tuned over the range ��0.05–0.1 eV Å
with a gate,27 resulting in a range of energy scales
m�2�0.2–0.8 K. The densities here are even more promis-
ing, with n�108–109 cm−2 in the limit m�2 /Vz�1; again,
these can be enhanced significantly by considering Vz large
compared to m�2.

To conclude this section, we comment briefly on the setup
proposed by Sau et al., wherein the Zeeman field arises from
a proximate ferromagnetic insulator. In principle, the Rashba
coupling and chemical potential should be separately tunable
in either case by applying a gate voltage and adjusting the
Fermi level in the s-wave superconductor. The strength of
the Zeeman field, however, will largely be dictated by ex-
perimental factors such as the choice of materials and inter-
face properties. Unless the value of m�2 can be greatly en-
hanced compared to the values quoted above, it may be
advantageous to consider Zeeman fields which are much
larger than this energy scale, in order to raise the density at
the expense of suppressing the bulk excitation gap some-
what. A good interface between the ferromagnetic insulator
and the quantum well will be necessary to achieve a large Vz,
which poses a significant engineering challenge. Neverthe-
less, since semiconductor technology is so well advanced, it
is certainly worth pursuing topological phases in this setting,
especially if alternative setups minimizing these challenges
can be found. Providing one such alternative is the goal of
the next section.

III. PROPOSED SETUP FOR (110) QUANTUM WELLS

We now ask whether one can make the setup proposed by
Sau et al. simpler and more tunable by replacing the ferro-
magnetic insulator responsible for the Zeeman field with an
experimentally controllable parameter. As mentioned in the
introduction, the most naive possible way to achieve this
would be to do away with the magnetic insulator and instead
simply apply an external magnetic field perpendicular to the
semiconductor. In fact, this possibility was pursued earlier in
Refs. 15 and 21. It is far from obvious, however, that the
Zeeman field dominates over orbital effects here, which was
a key ingredient in the proposal by Sau et al. Thus, these
references focused on the regime where the Zeeman field
was smaller than , which is insufficient to drive the topo-
logical superconducting phase. �We note, however, that a
proximity-induced spin-triplet order parameter, if large
enough, was found to stabilize a topological state.15,32� An
obvious alternative would be applying a parallel magnetic
field, along the quantum well plane, since this �largely� rids
of the unwanted orbital effects. This too is insufficient since
replacing Vz�

z with Vy�
y in Eq. �2� does not gap out the

bands at k=0 but only shifts the crossing to finite momen-
tum.

A. Topological superconducting phase in a (110) quantum well

We will show that if one alternatively considers a zinc-
blende quantum well grown along the �110� direction, a to-
pological superconducting state can be driven by application
of a parallel magnetic field. What makes this possible in
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FIG. 2. �Color online� Excitation gap Eg normalized by  in the
proximity-induced superconducting state of a Rashba-coupled
quantum well adjacent to a ferromagnetic insulator. In �a�, the
chemical potential is chosen to be �=0. For  /Vz	1 the system
realizes a topological superconducting phase supporting a single
Majorana mode at a vortex core while for  /Vz�1 an ordinary
superconducting state emerges. In the topological phase, the gap is
maximized when  /Vz=1 /2 and m�2 /Vz�1, where it is given by
Eg=Vz /2. In contrast, the gap vanishes as m�2 /Vz→0 because the
effective p-wave pair field at the Fermi momentum vanishes in this
limit. In �b�, we have taken m�2 /Vz=0.1 to illustrate that Vz can
exceed m�2 by more than an order of magnitude and still yield a
sizable gap in the topological superconducting phase.
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�110� quantum wells is their different symmetry compared to
�100� quantum wells. Assuming layer inversion symmetry is
preserved, the most general Hamiltonian for the well up to
quadratic order in momentum22 is

H0 =� d2r�†�−  �x
2

2mx
+

�y
2

2my
� − � − i��x�

z�� . �22�

Here we allow for anisotropic effective masses mx,y due to a
lack of in-plane rotation symmetry and � is the Dresselhaus
spin-orbit33 coupling strength. Crucially, the Dresselhaus
term favors alignment of the spins normal to the plane, in
contrast to the Rashba coupling in Eq. �1� which aligns spins
within the plane. Although we did not incorporate Dressel-
haus terms in the previous section, we note that in a �100�
quantum well they, too, favor alignment of spins within the
plane.

As an aside, we note that the above Hamiltonian has been
of interest in the spintronics community because it preserves
the Sz component of spin as a good quantum number, result-
ing in long lifetimes for spins aligned normal to the quantum
well.34 �H0 also exhibits a “hidden” SU�2� symmetry35

which furthered interest in this model but this is not a micro-
scopic symmetry and will play no role here.� We are unin-
terested in spin lifetimes, however, and wish to explicitly
break layer inversion symmetry by imbalancing the quantum
well using a gate voltage and/or chemical means. The
Hamiltonian for the �110� quantum well then becomes
H�110�=H0+HR, where

HR =� d2r�†�− i��x�
x�y − �y�

y�x��� �23�

represents the induced Rashba spin-orbit coupling terms up
to linear order in momentum. While one would naively
expect �x=�y here, band-structure effects will generically
lead to unequal coefficients, again due to lack of rotation
symmetry. We can recast the quantum well Hamiltonian
into a more useful form by rescaling coordinates so that
�x→ �mx /my�1/4�x and �y→ �my /mx�1/4�y. We then obtain

H�110� =� d2r�†

��−
�2

2m�

− � − i�D�x�
z − i�R��x�y − ��y�x��� .

�24�

The effective mass is m�=�mxmy and the spin-orbit param-
eters are �D=��mx /my�1/4, �R=�x�my /mx�1/4, and
�= ��y /�x��mx /my.

With both Dresselhaus and Rashba terms present, the
spins will no longer align normal to the quantum well but
rather lie within the plane perpendicular to the vector
�Dŷ+��Rẑ. Consider for the moment the important special
case �=0 and �D=�R. In this limit, H�110� becomes essen-
tially identical to Eq. �1�, with the important difference that
here the spins point in the �x ,z� plane rather than the �x ,y�
plane. It follows that a field applied along the y direction,

HZ =� d2r�†�Vy�
y�� �25�

with Vy =g�BBy /2, then plays exactly the same role as the
Zeeman term Vz in Sau et al.’s proposal14 discussed in the
preceding section—the bands no longer cross at zero mo-
mentum and only the lower band is occupied when
���	 �Vy�. In this regime, when the system comes into con-
tact with an s-wave superconductor, the proximity effect gen-
erates a topological superconducting state supporting Majo-
rana fermions at vortex cores, provided the induced pairing
in the well is not too large.14

The full problem we wish to study, then, corresponds to a
�110� quantum well with both Dresselhaus and Rashba cou-
pling, subjected to a parallel magnetic field and contacted to
an s-wave superconductor. The complete Hamiltonian is

H = H�110� + HZ + HSC, �26�

with HSC the same as in Eq. �11�. Of course in a real system
� will be nonzero, and likely of order unity, and �R generally
differs from �D. The question we must answer then is how
far the topological superconducting phase survives as we in-
crease � from zero and change the ratio �R /�D from unity.
Certainly our proposal will be viable only if this state sur-
vives relatively large changes in these parameters.

B. Stability of the topological superconducting phase in (110)
quantum wells

To begin addressing this issue, it is useful to proceed as in
the previous section and express the Hamiltonian in terms of
operators ��

† �k� which add electrons to the upper/lower
bands,

H =� d2k��̃+�k��+
†�k��+�k� + �̃−�k��−

†�k��−�k��

+ �̃+−�k��+
†�k��−

†�− k� + ̃−−�k��−
†�k��−

†�− k�

+ ̃++�k��+
†�k��+

†�− k� + H.c.� . �27�

The energies �̃� are given by

�̃��k� =
k2

2m
− � � ��̃�k� ,

��̃�k� = ��Vy − ��Rkx�2 + ��Dkx�2 + ��Rky�2 �28�

while the interband s- and intraband p-wave pair fields now
satisfy

�̃+−�k��2 =
2

2
�1 −

��D
2 + �2�R

2�kx
2 + �R

2ky
2 − Vy

2

��̃�k���̃�− k�
� ,

�̃++�k��2 = �̃−−�k��2 =
2

8
�1 +

��D
2 + �2�R

2�kx
2 + �R

2ky
2 − Vy

2

��̃�k���̃�− k�
� .

�29�

Increasing � from zero to of order unity affects the above
pair fields rather weakly. The dominant effect of �, which
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can be seen from Eq. �28�, is to lift the kx→−kx symmetry of
the =0 bands. Physically, this symmetry breaking arises
because when ��0 the spins lie within a plane that is not
perpendicular to the magnetic field. This, in turn, suppresses
superconductivity since states with k and −k will generally
have different energy. While in this case the Bogoliubov-de
Gennes equation no longer admits a simple analytic solution,
one can numerically compute the bulk energy gap for the

uniform superconducting state, Eg�G� �
Vy

,
m�D

2

Vy
, 

Vy
,

�R

�D
,��, to

explore the stability of the topological superconducting
phase.

Consider first the illustrative case with �=0, m�D
2 /Vy =2,

and  /Vy =0.66. The corresponding gap as a function of
�R /�D and � appears in Fig. 3�a�. At �R /�D=1 and �=0,
where our proposal maps onto that of Sau et al., the gap is
Eg�0.52, somewhat reduced from its maximum value
since we have taken  /Vy �1 /2. Remarkably, as the figure
demonstrates this gap persists unaltered even beyond �=1,
provided the scale of Rashba coupling �R /�D is suitably re-
duced. Throughout this region, the lowest-energy excitation
is created at zero momentum, where the energy gap is simply
Eg=Vy −. This clearly demonstrates the robustness of the
topological superconducting state well away from the
Rashba-only model considered by Sau et al. and supports the
feasibility of our modified proposal in �110� quantum wells.

Let us understand the behavior of the gap displayed in
Fig. 3�a� in more detail. As described above, the plane in
which the spins reside is tilted away from the �x ,z� plane by
an angle �=cos−1�1 /�1+ ���R /�D�2�. Nonzero � gives rise to
the anisotropy under kx→−kx, which again tends to suppress
superconductivity. One can see here that reducing �R /�D
therefore can compensate for an increase in �, leading to the
rather robust topological superconducting phase evident in
the figure.

On the other hand, at fixed �R /�D which is sufficiently
large ��0.3 in the figure�, increasing � eventually results in
the minimum-energy excitation occurring at ky =0 and kx
near the Fermi momentum. Further increasing � then shrinks
the gap and eventually opens pockets of gapless excitations,
destroying the topological superconductor. Conversely, if
�R /�D is sufficiently small ��1 /3 in the figure�, the gap
becomes independent of �. In this region the minimum-
energy excitations are created at kx=0 and ky near the Fermi
momentum. As �R /�D→0, the lower band transitions from a
gapped topological px+ ipy superconductor to a gapless nodal
px superconductor. This follows from Eq. �29�, which in the

limit �R=0 yields a pair field ̃−−=�Dkx / �2�Vy
2+�D

2 kx
2� that

vanishes along the line kx=0. While a gapless px supercon-
ducting phase is not our primary focus, we note that realizing
such a state in a �110� quantum well with negligible Rashba
coupling would be interesting in its own right.

To gain a more complete picture of the topological super-
conductor’s stability in the physically relevant regime, we
further illustrate the behavior of the bulk excitation gap in
Figs. 3�b� and 3�c�, fixing for concreteness �=1 and
m�D

2 /Vy =2. Figure 3�b� plots the dependence of the gap on
 /Vy and �R /�D when �=0 while Fig. 3�c� displays the gap
as a function of �R /�D and � /Vy when  /Vy =0.66.

C. Experimental considerations for (110) quantum wells

The main drawback of our proposal compared to the
Rashba-only model discussed by Sau et al. can be seen in
Fig. 3�b�. In the previous section, we discussed that it may be
desirable to intentionally suppress the gap for the topological
superconducting state by considering Zeeman splittings
which greatly exceed the Rashba energy scale m�2, in order
to achieve higher densities and thereby reduce disorder ef-
fects. Here, however, this is possible to a lesser extent since
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FIG. 3. �Color online� Excitation gap Eg normalized by  in the
proximity-induced superconducting state of a �110� quantum well,
with both Rashba and Dresselhaus spin-orbit coupling, in a parallel
magnetic field. In �a� we set �=0, m�D

2 /Vy =2, and  /Vy =0.66, and
illustrate the dependence of the gap on the Rashba coupling aniso-
tropy � as well as �R /�D. When �=0 and �R /�D=1, the problem
maps onto the Rashba-only model considered by Sau et al. �Ref.
14�. Remarkably, the gap survives unaltered here even in the physi-
cally relevant case with � of order one, provided the Rashba cou-
pling is reduced. In �b� and �c�, we focus on the realistic case with
�=1 to illustrate the stability of the topological phase in more de-
tail. We take �=0 and m�D

2 /Vy =2 in �b� and allow  /Vy as well as
�R /�D to vary. In �c�, we fix  /Vy =0.66 and m�D

2 /Vy =2, allowing
� /Vy and �R /�D to vary.

MAJORANA FERMIONS IN A TUNABLE SEMICONDUCTOR… PHYSICAL REVIEW B 81, 125318 �2010�

125318-7



the desired strength of Vy is limited by the induced pairing
field . If  /Vy becomes too small, then the system enters
the gapless regime as shown in Fig. 3�b�.

Nevertheless, our proposal has a number of virtues, such
as its tunability. As in the proposal of Sau et al.,14 the
strength of Rashba coupling can be controlled by applying a
gate voltage27 and the chemical potential in the semiconduc-
tor can be independently tuned by changing the Fermi level
in the proximate s-wave superconductor. In our case the pa-
rameter ���mx /my can be controlled to some extent by ap-
plying pressure to modify the mass ratio mx /my, although
this is not essential. More importantly, one has additional
control over the Zeeman field, which is generated by an ex-
ternally applied in-plane magnetic field that largely avoids
unwanted orbital effects. Such control enables one to readily
tune the system across the quantum phase transition separat-
ing the ordinary and topological superconducting phases �see
Fig. 3�b��. This feature not only opens up the opportunity to
study this quantum phase transition experimentally but also
provides an unambiguous diagnostic for identifying the to-
pological phase. For example, the value of the critical current
in the quantum well should exhibit a singularity at the phase
transition, which would provide one signature for the onset
of the topological superconducting state. We also emphasize
that realizing the required Zeeman splitting through an ap-
plied field is technologically far simpler than coupling the
quantum well to a ferromagnetic insulator.

Since the extent to which one can enhance the density in
the topological superconducting phase by applying large
Zeeman fields is limited here, it is crucial to employ materi-
als with appreciable Dresselhaus coupling. We suggest that
InSb quantum wells may be suitable for this purpose. Bulk
InSb enjoys quite large Dresselhaus spin-orbit interactions of
strength 760 eV Å3 �for comparison, the value in bulk GaAs
is 28 eV Å3; see Ref. 36�. For a quantum well of width w,
one can crudely estimate the Dresselhaus coupling to be
�D�760 eV Å3 /w2; assuming w=50 Å, this yields a siz-
able �D�0.3 eV Å. Bulk InSb also exhibits a spin-orbit en-
hanced g factor of roughly 50 �though confinement effects
can substantially diminish this value in a quantum well36�.
The large g factor has important benefits. For one, it ensures
that Zeeman energies Vy of order a kelvin, which we pre-
sume is the relevant scale for , can be achieved with fields
substantially smaller than a tesla. The ability to produce Zee-
man energies of this scale with relatively small fields should
open up a broad window where Vy exceeds  but the applied
field is smaller than the critical field for the proximate
s-wave superconductor �which can easily exceed 1 T�. Both
conditions are required for realizing the topological super-
conducting state in our proposed setup. A related benefit is
that the Zeeman field felt by the semiconductor will be sig-
nificantly larger than in the s-wave superconductor since the
g factor for the latter should be much smaller. This further
suggests that s-wave superconductivity should therefore be
disturbed relatively little by the required in-plane fields.

IV. DISCUSSION

Among the proposals noted in the introduction, the pros-
pect for realizing Majorana fermions in a semiconductor

sandwiched between a ferromagnetic insulator and s-wave
superconductor stands out in part because it involves rather
conventional ingredients �semiconductor technology is ex-
traordinarily well developed�. Nevertheless, this setup is not
without experimental challenges, as we attempted to high-
light in Sec. II above. For instance, a good interface between
a ferromagnetic insulator and the semiconductor is essential,
which poses an important engineering problem.

The main goal of this paper was to simplify this setup
even further, with the hope of hastening the experimental
realization of Majorana fermions in semiconductor devices.
We showed that a topological superconducting state can be
driven by applying a �relatively weak� in-plane magnetic
field to a �110� semiconductor quantum well coupled only to
an s-wave superconductor. The key to realizing the topologi-
cal phase here was an interplay between Dresselhaus and
Rashba couplings; together, they cause the spins to orient
within a plane which tilts away from the quantum well. An
in-plane magnetic field then plays the same role as the fer-
romagnetic insulator or an applied perpendicular magnetic
field plays in the Rashba-only models considered in Refs. 14,
15, and 21 but importantly without the detrimental orbital
effects of the perpendicular field. This setup has the virtue of
simplicity—eliminating the need for a proximate ferromag-
netic insulator—as well as tunability. Having control over
the Zeeman field allows one to, for instance, readily sweep
across the quantum phase transition from the ordinary to the
topological superconducting state. Apart from fundamental
interest, this phase transition can serve as a diagnostic for
unambiguously identifying the topological phase experimen-
tally �e.g., through critical current measurements�. As a more
direct probe of Majorana fermions, a particularly simple pro-
posal for their detection on the surface of a topological insu-
lator was recently put forth by Law et al.37 This idea relies
on “Majorana induced resonant Andreev reflection” at a chi-
ral edge. In a topological insulator, such an edge exists be-
tween a proximity-induced superconducting region and a
ferromagnet-induced gapped region of the surface. In our
setup, this effect can be realized even more simply since the
semiconductor will exhibit a chiral Majorana edge at its
boundary, without the need for a ferromagnet. Finally, since
only one side of the semiconductor need to be contacted to
the s-wave superconductor, in principle, this leaves open the
opportunity to probe the quantum well directly from the
other.

The main disadvantage of our proposal is that if the Zee-
man field in the semiconductor becomes too large compared
to the proximity-induced pair field , the topological phase
gets destroyed �see Fig. 3�b��. By contrast, in the setup pro-
posed by Sau et al., the topological superconductor survives
even when the Zeeman field greatly exceeds both  and
m�2. Indeed, we argued that this regime is where experimen-
talists may wish to aim, at least initially, if this setup is
pursued. Although the gap in the topological phase is some-
what suppressed in the limit m�2 /Vz�1, large Zeeman fields
allow the density in this phase to be increased by one or two
orders of magnitude, thus reducing disorder effects. �We
should note, however, that the actual size of Zeeman fields
that can be generated by proximity to a ferromagnetic insu-
lator is uncertain at present.� Since one is not afforded this
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luxury in our �110� quantum well setup, it is essential to
employ materials with large Dresselhaus spin-orbit coupling
in order to achieve reasonable densities in the semiconductor.
We argued that fairly narrow InSb quantum wells may be
well suited for this purpose. Apart from exhibiting large spin-
orbit coupling, InSb also enjoys a large g factor, which
should allow for weak fields �much less than 1 T� to drive the
topological phase in the quantum well while disturbing the
proximate s-wave superconductor relatively little.

There are a number of open questions which are worth
exploring to further guide experimental effort in this direc-
tion. As an example, it would be worthwhile to carry out
more accurate modeling, including for instance cubic Rashba
and Dresselhaus terms22 and �especially� disorder, to obtain a
more quantitative phase diagram for either of the setups dis-
cussed here. Exploring the full spectrum of vortex bound
states �beyond just the zero-energy Majorana mode� is an-
other important problem. The associated “minigap” provides
one important factor determining the feasibility of quantum
computation with such devices. We also think it is useful to
explore other means of generating topological superconduct-
ing phases in such semiconductor settings. One intriguing

possibility would be employing nuclear spins to produce a
Zeeman field in the semiconductor.38 More broadly, the pro-
posals considered here can be viewed as examples of a rather
general idea discussed recently19 for eliminating the so-
called fermion-doubling problem that can otherwise destroy
the non-Abelian statistics39 necessary for topological quan-
tum computation. Very likely, we have by no means ex-
hausted the possible settings in which Majorana fermions
can emerge, even within the restricted case of semiconductor
devices. Might hole-doped semiconductors be exploited in
similar ways to generate topological superconducting phases,
for instance, or perhaps heavy-element thin films such as
bismuth?
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