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We present a field-theoretic renormalization group analysis of Abanov and Chubukov’s model of the spin
density wave transition in two dimensional metals. We identify the independent field scale and coupling
constant renormalizations in a local field theory and argue that the damping constant of spin density wave
fluctuations tracks the renormalization of the local couplings. The divergences at two-loop order overdetermine
the renormalization constants and are shown to be consistent with our renormalization scheme. We describe the
physical consequences of our renormalization-group equations, including the breakdown of Fermi liquid be-
havior near the “hot spots” on the Fermi surface. In particular, we find that the dynamical critical exponent z
receives corrections to its mean-field value z=2. At higher orders in the loop expansion, we find infrared
singularities similar to those found by Lee �Phys. Rev. B 80, 165102 �2009�� for the problem of a Fermi
surface coupled to a gauge field. A treatment of these singularities implies that an expansion in 1 /N �where N
is the number of fermion flavors� fails for the present problem. We also discuss the renormalization of the
pairing vertex and find an enhancement which scales as logarithm squared of the energy scale. A similar
enhancement is also found for a modulated bond order which is locally an Ising-nematic order.
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I. INTRODUCTION

There is little doubt that the quantum transition involving
the onset of spin density wave �SDW� order in a metal is of
vital importance to the properties of a variety of correlated
electron metals. This is amply illustrated by some recent ex-
perimental studies. In the cuprates, Daou et al.1 argued that
the Fermi surface change associated with such a transition
was the key in understanding the physics of the strange
metal. In the pnictide superconductors, experiments2–4 have
explored the interesting coupling between the onsets of SDW
order and superconductivity. In CeRhIn5 �and other “115”
compounds�, Knebel et al.5 described the suppression of the
SDW order by pressure, and the associated enhancement of
superconductivity.

The theory of Hertz6–8 has formed much of the basis of
the study of the spin density wave transition in the literature.
The central step of this theory is the derivation of an effec-
tive action for the spin density wave order parameter, after
integrating out all the low-energy excitations near the Fermi
surface. A conventional renormalization group �RG� is then
applied to this effective action, and this can be extended to
high order using standard field-theoretic techniques.9 How-
ever, it has long been clear that the full integration of the
Fermi surface excitations is potentially dangerous, because
the Fermi surface structure undergoes a singular renormal-
ization from the SDW fluctuations.

Important advances were subsequently made in the work
of Abanov and Chubukov.10,11 They argued that the Hertz
analysis was essentially correct in spatial dimension d=3,
but that it broke down seriously in d=2. They proposed an
alternative low-energy field theory for d=2, involving the
bosonic SDW order parameter and fermions along arcs of the
Fermi surface; the arcs are located near Fermi surface “hot
spots” which are directly connected by SDW ordering wave
vector. They also presented a RG study of this field theory
and found interesting renormalizations of the Fermi veloci-
ties at the arcs.

This paper will present a reexamination of the model of
Abanov and Chubukov using a field-theoretic RG method.
We will begin in Sec. II by introducing the low-energy field
theory for the SDW transition in two-dimensional metals and
reviewing the Abanov-Chubukov argument for the break-
down of the Hertz theory. Section III will define the indepen-
dent renormalization constants using the structure of the lo-
cal field theory and determine their values using the
divergences in a 1 /N expansion �where N is the number of
fermion flavors� to two loop order. Actually, the two-loop
divergences overdetermine the renormalization constants, but
we will find a consistent solution: this is a significant check
on the consistency of our renormalization procedure. While
our renormalizations of the Fermi velocities agree with those
of Abanov and Chubukov, we find significant differences in
the other renormalizations, and associated physical conse-
quences. At two-loop order, the ratio of the velocities scales
logarithmically to zero �as specified by Eq. �3.40��, and con-
sequently we are able to compute RG-improved results for a
variety of physical observables �which differ from previous
results10,11�:

�a� The non-Fermi liquid behavior at the hot spot is con-
trolled by the fermion self energy given by Eq. �3.44�.

�b� Moving away from the hot spot, we find that Fermi
liquid behavior is restored, but the quasiparticle residue and
the Fermi velocity vary strongly as a function of the momen-
tum �p�� along the Fermi surface: these are given in Eq.
�3.45�.

�c� The bosonic SDW spectrum does not obey dynamic
scaling with z=2, but instead obeys the “super-power-law”
form in Eq. �3.46�, and the amplitude of the spectrum scales
as in Eq. �3.47�.

Going beyond two loops, we also explored the conse-
quences of a strong-coupling fixed point at which the veloc-
ity ratio and other couplings reach finite fixed-point values.
Here the boson and fermion Green’s functions obey the scal-
ing forms in Eqs. �3.19�–�3.22�, and the non-Fermi liquid
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behavior at the hot spot is specified in Eq. �3.23�. Moving
away from the hot spot, we have the Fermi liquid form in Eq.
�3.24�, with the Fermi velocity and quasiparticle residue
given by Eq. �3.25�.

In Sec. IV, we describe the structure of the field theory at
higher loop order. Similar to the effects pointed out recently
by Lee15 for the problem of a Fermi surface coupled to a
gauge field, we find that there are infrared singularities
which lead to a breakdown in the naive counting of powers
of 1 /N. However, unlike in the problem of a gauge field
coupled to a single patch of the Fermi surface,15 we find that
the higher-order diagrams cannot be organized into an ex-
pansion in terms of the genus of a surface associated with the
graph. Rather, diagrams that scale as increasingly higher
powers of N are generated upon increasing the number of
loops.

In Sec. V, we consider the onset of pairing near the SDW
transition, a question examined previously by Abanov et
al.12–14 Like them, we find that the corrections to the d-wave
pairing vertex are enhanced relative to the naive counting of
powers of 1 /N. However, we also find an enhancement fac-
tor which scales as the logarithm squared of the energy scale:
this is the result in Eq. �5.6�. We will discuss the interpreta-
tion of this log-squared term in Sec. V.

In Sec. VI we show that a similar log-squared enhance-
ment is present for the vertex of a bond order which is lo-
cally an Ising-nematic order; this order parameter is illus-
trated in Figs. 22 and 23. The unexpected similarity between
this order, and the pairing vertex, is a consequence of emer-
gent SU�2� pseudospin symmetries of the continuum theory
of the SDW transition, with independent pseudospin rota-
tions on different pairs of hot spots. One of the pseudospin
rotations is the particle-hole transformation, and the other
pseudospin symmetries will be described more completely in
Sec. II.

II. LOW-ENERGY FIELD THEORY

We will study the generic phase transition between a
Fermi liquid and a SDW state in two spatial dimensions, and
our discussion also easily generalizes to charge density wave
order. The wave vector of the density wave order is Q� , and
we assume that there exist points on the Fermi surface con-
nected by Q� ; these points are known as hot spots. We assume
further that the Fermi velocities at a pair of hot spots con-
nected by Q� are not parallel to each other; this avoids the
case of “nested Fermi surfaces,” which we will not treat here.

A particular realization of the above situation is provided
by the case of SDW ordering on the square lattice at wave
vector Q� = �� ,��. We also take a Fermi surface appropriate
for the cuprates, generated by a tight-binding model with
first and second neighbor hopping. We will restrict all our
subsequent discussion to this case for simplicity.

At wave vector Q� = �� ,�� the SDW ordering is collinear,
and so is described by a three component real field �a, a
=x ,y ,z. There are n=4 pairs of hot spots, as shown in Fig. 1.

We introduce fermion fields ��1�
� ,�2�

� �, �=1, . . . ,n, �
= ↑↓ for each pair of hot spots. Lattice rotations map the

pairs of hot spots into each other, acting cyclically on the
index �. Moreover, the two hot spots within each pair are
related by a reflection across a lattice diagonal. It will be
useful to promote each field � to have N flavors with an eye
to performing a 1 /N expansion. �Note that in Ref. 14, the
total number of hot spots 2nN is denoted as N.� The flavor
index is suppressed in all the expressions. The low-energy
effective theory is given by the Lagrangian

L =
N

2c2 ����� �2 +
N

2
���� �2 +

Nr

2
�� 2 +

Nu

4
��� 2�2

+ �1
†���� − iv�1

� · ���1
� + �2

†���� − iv�2
� · ���2

�

+ ��a��1�
†�����

a �2��
� + �2�

†�����
a �1��

� � �2.1�

The first line in Eq. �2.1� is the usual O�3� model for the
SDW order parameter, the second line is the fermion kinetic
energy, and the third line is the interaction between the SDW
order parameter and the fermions at the hot spots. Here, we
have linearized the fermion dispersion near the hot spots and
v�� are the corresponding Fermi velocities. It is convenient to
choose coordinate axes along directions x̂= 1

�2
�1,1� and ŷ

= 1
�2

�−1,1� so that

v�1
�=1 = �vx,vy�, v�2

�=1 = �− vx,vy� . �2.2�

These Fermi velocities are indicated in Fig. 2. The other
Fermi velocities are related by rotations, v��= �R�/2��−1v��=1.
The modifications of the Fermi surfaces in the phase with
SDW order are shown in Fig. 3.

We choose the coefficient � of the fermion-SDW interac-
tion to be of O�1� in N. As a result, the coefficients in the
first line of Eq. �2.1� are all scaled by N as this factor will
automatically appear upon integrating out the high-
momentum/frequency modes of the fermion fields.

Before proceeding with the analysis of the theory �2.1�,
let us note its symmetries. Besides the microscopic transla-
tion, point-group, spin-rotation, and time-reversal symme-
tries, the low-energy theory possesses a set of four emergent

FIG. 1. Square lattice Brillouin zone showing the Fermi surface
appropriate to the cuprates. The filled circles are the hot spots con-
nected by the SDW wave vector Q� = �� ,��. The locations of the
continuum fermion fields �1

� and �2
� are indicated.
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SU�2� pseudospin symmetries associated with particle-hole
transformations. Let us introduce a four-component spinor,

�i
� = � �i

�

i�2�i
†� � . �2.3�

We will denote the particle-hole indices in the four-
component spinor by � ,	. The spinor �2.3� satisfies the Her-
miticity condition,

i�2�0 − 1

1 0
��i

� = �
i
*�

. �2.4�

Then, the fermion part of Lagrangian �2.1� can be rewritten
as

L� =
1

2
�1

†���� − iv�1
� · ���1

� +
1

2
�2

†���� − iv�2
� · ���2

�

+
1

2
��� · ��1

†����2
� + �2

†����1
�� . �2.5�

Now Lagrangian �2.5� and condition �2.4� are manifestly in-
variant under

SU�2��: �i
� → U��i

�, �2.6�

with U�−SU�2� matrices. We note that the diagonal sub-
group of Eq. �2.6� is associated with independent conserva-
tion of the fermion number at each hot spot pair. Symmetry
�2.6� is a consequence of linearization of the fermion spec-
trum near the hot spots and is broken by higher order terms
in the dispersion. The diagonal subgroup noted above is pre-
served by higher order terms in the dispersion but is broken
by four-fermi interactions, which map fermion pairs from
opposite hot spots into each other. Both symmetry breaking
effects are irrelevant in the scaling limit discussed below.

The pseudospin symmetry �2.6� constrains the form of the
fermion Green’s function to be

− 	�i��
� � j	��

m† 
 = 
�m
ij
�	
���Gi
��x − x�� , �2.7�

which implies

Gi
��x − x�� = − Gi

��x� − x� . �2.8�

The corresponding expression in momentum space, Gi
��k�

=−Gi
��−k�, implies that the location of hot spots in the Bril-

louin zone is not renormalized by the spin wave fluctuations
in the low-energy theory.

Another important manifestation of the particle-hole sym-
metry is the equality of any Feynman graphs, which are re-
lated by a reversal of a fermion loop direction.

A. Hertz action

The Hertz action is derived by working in the metallic
phase, and integrating out the fermions in Eq. �2.1�, leaving
an effective theory for � alone. In particular, the one-loop
self-energy of the field � is evaluated in Appendix A 1 and is
given by

�0��,q�� = �0�� = 0,q� = 0� + N
��� + ¯ , 
 =
n�2

2�vxvy
.

�2.9�

The presence of the nonanalytic term ��� is due to the fact
that the density of particle-hole pairs with momentum Q� and
energy � scales as �. As usual, the constant piece �0�q
=0� is eliminated by tuning the coefficient r. The ellipses in
Eq. �2.9� denote terms analytic in � and q� , starting with �2

and q�2. These terms formally disappear when we take the
cutoff of the effective theory �2.1� to infinity. Thus, the qua-
dratic part of the effective action for the field � reads

S2 =
N

2
� d�d2k

�2��3 �a�− k�,− ���
��� +
1

c2�2 + k�2 + r��a�k�,�� .

�2.10�

At sufficiently low energies, the analytic term �2 in the bo-
son self-energy coming from the bare action, Eq. �2.1�, can
be neglected compared to the dynamically generated ���
term. Thus, at low energies the propagation of collective spin
excitations becomes diffusive due to the damping by the fer-
mions at the hot spots.

Hertz6 proceeds by neglecting all the quartic and higher
order self-interactions of the field �, which are generated

FIG. 2. Configuration of the �=1 pair of hot spots, with the
momenta of the fermion fields measured from the common hot spot
at k� =0, indicated by the filled circle. The Fermi velocities v�1,2 of
the �1,2 fermions are indicated.

FIG. 3. Modification of the Fermi surfaces in Fig. 2 by SDW
order with 	�
�0. The full lines are the Fermi surfaces, and the
white, light shaded, and dark shaded regions denote momenta
where 0, 1, and 2 of the bands are occupied. The upper and lower
lines are boundaries of hole and electron pockets respectively.
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when the fermions are eliminated. This is justified if such
interactions are local, as one can then absorb them into op-
erators, which are polynomial in the order parameter and its
derivatives �the simplest of which is just the operator ��� 2�2�.
The theory then reduces to

SH =
N

2
� d�d2k

�2��3 �a�− k�,− ���
��� + k�2 + r��a�k�,��

+
Nu

4
� d�d2x��� 2�2. �2.11�

The quadratic part of action �2.11� is invariant under scaling
with the dynamical critical exponent z=2,

k� → sk�, � → s2�, ��x�,��� → s��sx�,s2�� . �2.12�

Thus the theory is effectively d+z=4 dimensional and the
quartic coupling u is marginal by power counting in d=2.

At one loop order, the flow of u follows easily from the
conventional momentum shell RG, 17

du

d�
= −

11

2�2N

u2, �2.13�

where s=e−� is the renormalization scale. Thus u is margin-
ally irrelevant and flows to the Gaussian fixed point with u
=0 in the infrared. This stability of the Gaussian fixed point
has formed the basis of much of the subsequent work 8,9,17 on
the Hertz theory.

B. Breakdown of the Hertz theory

The analysis in Sec. II A is valid only under the assump-
tion that the fermion-induced quartic and higher order cou-
plings of the field � can be neglected. In fact, as observed in
Refs. 11 and 14, this assumption is not justified in spatial
dimension d=2. Indeed, as shown in Ref. 14, the fermion-
induced four-point vertex is given by

�4
a1a2a3a4�q1,q2,q3,q4� = �4fa1a2a3a4�q1,q2,q3,q4�

+ permutations of 2,3,4,

�2.14�

fa1a2a3a4�q1,q2,q3,q4� = 

�

N�
a1a2
a3a4 − 
a1a3
a2a4 + 
a1a4
a2a3����1� − ��2� + ��3� − ��4��
2�vxvy„i��2 + �3� − v�1

� · �q�2 + q�3�…„i��1 + �2� − v�2
� · �q�1 + q�2�…

. �2.15�

We see that the vertex �2.14� is highly nonlocal. Moreover,
under the z=2 scaling �2.12�, we can neglect the frequency
dependence in the denominators of Eq. �2.15�, obtaining �4
���� /q�2�O�1�, which produces a marginal interaction.
Similarly, one can show that all the higher-order fermion-
induced vertices behave as �2n���� / �q� �2n−2��q� �4−2n, which
is again marginal under Eq. �2.12� when combined with the
scaling of the field strength. Thus, the Hertz-Millis theory
has an infinite number of nonlocal marginal perturbations
and the standard action �2.11� is incomplete.

C. RG interpretation

An RG interpretation of the results of Sec. II B follows by
performing a scaling analysis directly on the spin-fermion
model �2.1�. As before, we will scale the boson fields accord-
ing to Eq. �2.12�. Correspondingly, it is natural to scale the
fermion momenta towards the hot spots,

�12
� �x�,�� → s3/2�12

� �sx�,s2�� . �2.16�

Here the field-strength rescaling has been chosen to preserve
the spatial gradient terms in the fermion action. We now see
that the boson-fermion coupling � in Eq. �2.1� is marginal
under the field scalings in Eqs. �2.12� and �2.16�; a similar
analysis in d=3 would show that � is irrelevant.

The marginality of �, and the infinite number of marginal
couplings in Sec. II B indicate that all subsequent RG should
be performed directly on the spin-fermion model �2.1�. Fur-

ther, with the scalings as in Eqs. �2.12� and �2.16�, we should
not expand in powers of � but rather analyze the theory at a
fixed boson-fermion “Yukawa” coupling. A similar strategy
was followed in Refs. 18 and 19 for the Ising-nematic tran-
sition in a d-wave superconductor.

An important consequence of scalings �2.12� and �2.16�
on Eq. �2.1� is that both the boson kinetic term �����2 and the
fermion kinetic term �†��� are irrelevant. We may safely
drop the boson kinetic energy. However, the fermion kinetic
energy must be retained—otherwise, the theory does not pos-
sess any dynamics. We will return to this point shortly. Let us

now rescale the fermion fields �= �̃ /�� to eliminate the mar-
ginal coupling �. We define, �=1 /� and ṽ� =v� /�. Note that ṽ
has the unusual dimensions of ���1/2 / �k�. We drop the tildes
in what follows. Then,

L =
N

2
���� �2 +

Nr

2
�� 2 +

Nu

4
��� 2�2 + �1

†����� − iv�1
� · ���1

�

+ �2
†����� − iv�2

� · ���2
� + �a��1�

†�����
a �2��

� + �2�
†�����

a �1��
� � .

�2.17�

As already remarked, the coupling constant � is irrelevant.
Thus, we take the limit �→0+ in all our calculations. In
practice, � gives the prescription for integrating over the
poles of the fermion propagator. We will work with action
�2.17� for the rest of this paper. At criticality it is character-
ized by two dimensionless constants,
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� =
vy

vx
, ũ =

u



�2.18�

and a dimensionful constant 
, Eq. �2.9�,


 =
n

2�vxvy
. �2.19�

Thus, in the critical regime, the theory �2.17� does not pos-
sess an expansion in any coupling constant.

III. FIELD-THEORETIC RG

We begin by discussing the general renormalization struc-
ture of Eq. �2.17�. In the absence of a coupling constant, we
will use the RPA based scalings �2.12� and �2.16� as the
starting point of our analysis. Naively, one expects that this
scaling is also obeyed by the N=� limit of the theory and
that corrections to it can be calculated in a systematic expan-
sion in 1 /N. Indeed, the usual arguments would indicate that
at N=�, the boson self-energy is given by the RPA bubble in
Fig. 4, Eq. �2.9� �see Appendix A 1 for details of the calcu-
lation�. Hence, the bosonic propagator

	�a�x��b�x��
 = 
abD�x − x�� �3.1�

at N=� takes the form

D�x� =
1

N
� d�d2q

�2��3

1


��� + q�2 + r
e−i��+iq�x� , �3.2�

which respects scaling �2.12�. On the other hand, the fermion
propagator

− 	�i�
� �x�� j��

†m �x��
 = 
�m
ij
���Gi
��x − x��

at N=� is given by its free value,

Gi
��x� =� d�d2k

�2��3

1

i�� − v� i
� · k�

e−i��+ik�·x� . �3.3�

Applying scaling �2.16� to this propagator indicates � scales
to zero; we will eventually take this limit but need a nonzero

� for now to properly define the fermion loop integrals.
As we will see later in Sec. IV, the N=� limit in the

present theory turns out to be much more subtle and is not
given by the simple forms in Eqs. �3.2� and �3.3�. Moreover,
the anomalous dimensions in this limit are not expected to be
parametrically small. Nevertheless, we can reasonably expect
that the RG structure presented here remains valid, even
though we are not able to accurately compute higher loop
corrections to the renormalization constants. In addition, the
difficulties with the 1 /N expansion appear only at high loop
order, which enables us to check the consistency of our ap-
proach to the order discussed below.

With the above remarks in mind, we are ready to discuss
the renormalization of the theory in Eq. �2.17�. The theory
contains five operators that are marginal by power counting
at z=2, and not related by symmetry. Two of these are elimi-
nated by field-strength renormalizations,

� = Z�
1/2�r, � = Z�

1/2�r. �3.4�

As is conventional, we can fix Z� by demanding that the
coefficient of ����2 remains invariant. For fermion field, it is
convenient to allow both velocities to flow, and so we renor-
malize these as

vx = Zv
xvx

r, vy = Zv
yvy

r . �3.5�

The fermion spatial gradient terms are then not available to
fix Z�, and we cannot use the fermion temporal gradient term
because its coefficient � scales to zero. Instead we demand
the invariance of the boson-fermion coupling term to fix the
fermion field strength renormalization; it is thus consistent to
use a unit coefficient for this term, as we have done in Eq.
�2.17�. The quartic boson coupling renormalizes

ũ =
ZuZv

xZv
y

Z�
2 ũr. �3.6�

It is also useful to track the renormalization of the dimen-
sionless velocity ratio � in Eq. �2.18�,

� =
Zv

y

Zv
x �r. �3.7�

All the renormalization factors Z depend only on N, �r, and
ũr and the ratio � /�, where � is a renormalization scale and
� is a UV cutoff.

An important point is that the damping parameter 
 ap-
pearing in the boson propagator does not have an indepen-
dent renormalization constant. It is not a coupling in a local
field theory and only appears in certain correlation functions
as a measure of the strength of the particle-hole continuum,
as determined by Eq. �2.19�. This implies that when we con-
sider the renormalization of the boson propagator, the renor-
malization of the parameter 
 should track the renormaliza-
tions of the velocities vx,y obtained from the renormalization
of the fermion propagator; in other words, the renormaliza-
tion of 
 is

1

2

1

2

FIG. 4. The boson self-energy at N=�. The full lines represent
the �1,2 fermions, and the dashed lines represent the boson �a.
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 =
1

Zv
xZv

y 
r. �3.8�

This tight coupling between the boson and fermion sectors is
a key feature of theory �2.17�, and a primary reason for
strong coupling physics in d=2.

Theory �2.17� contains two relevant perturbations. One of
these is the usual �� 2 operator, whose coefficient renormalizes
as

r =
Zr

Z�

rr �3.9�

Here, r always denotes the deviation from the critical point.
The other relevant perturbation, whose discussion we have
omitted thus far, is the chemical potential,


L = − ��i�
�†�i�

� . �3.10�

However, this perturbation is redundant, as it can be ab-
sorbed into a shift of hot spot location. Moreover, as already
observed in Sec. II, the location of the hot spots is not renor-
malized in the low-energy theory, which implies that there is
no mixing between the two relevant operators. This is unlike
the situation for the Ising-nematic transition in a metal stud-
ied in Ref. 16, where such mixing leads to a nontrivial shift
of the Fermi surface as a function of deviation r from the
critical point.

Introducing the renormalized one-particle irreducible cor-
relation functions of nf fermion and nb boson fields

�r
nf,nb = Z�

nf/2Z�
nb/2�nf,nb, �3.11�

we can write down the renormalization group equations as

��
�

��
+ 	�

�

��r
+ 	u

�

�ũr

+ �

r
�

�
r
− �2rr

�

�rr

−
nb��

2
−

nf��

2
��r

nb,nf��p�,�r, ũr,
r,rr,��

= 0. �3.12�

Here, the 	 functions and anomalous dimensions are func-
tions of �r and ũr given by

	� = �� ��r

��
�

�,ũ,�
, 	u = �� �ũr

��
�

�,ũ,�
, �
 =

1


r
�� �
r

��
�

�,ũ,
,�
,

�3.13�

�� = �� �

��
log Z��

�,ũ,�
, �� = �� �

��
log Z��

�,ũ,�
,

�2 =��
�

��
log

Zr

Z�
�

�,ũ,�
. �3.14�

Using dimensional analysis,

�r
nb,nf����,�p��,�r, ũr,
r,rr,��

= 
r
nb/2+nf/4−1�4−nb−3nf/2fnb,nf��
r�

�2 �,� p�

�
�,�r, ũr,

rr

�2� .

�3.15�

Now, solving the RG equation �3.12�,

fnb,nf���̂�,�p̂�,�r, ũr, r̂�

= s4−3nf/2−nbZ��s�−nb/2Z��s�−nf/2Z
�s�nb/2+nf/4−1

� fnb,nf
„s−2Z
�s���̂�,s−1�p̂�,�r�s�, ũr�s�,Zr�s�r̂… , �3.16�

with

s
d�r

ds
= 	�„�r�s�, ũr�s�…, �r�1� = �r,

s
dũr

ds
= 	u„�r�s�, ũr�s�… , ũr�1� = ũr,

Z��s� = exp��
1

s ds�

s�
��„�r�s��, ũr�s��…� ,

Z��s� = exp��
1

s ds�

s�
��„�r�s��, ũr�s��…� ,

Z
�s� = exp��
1

s ds�

s�
�
„�r�s��, ũr�s��…� ,

Zr�s� = exp�− �
1

s ds�

s�
�2„�r�s��, ũr�s��…� . �3.17�

Now, let us construct the scaling forms of the correlation
functions assuming that the couplings �r, ũr have a stable
fixed point. Actually, as we will see below, this assumption is
not supported by the explicit calculation of low loop contri-
butions to the 	 functions and anomalous dimensions. How-
ever, as already remarked, higher loop diagrams, which are
naively suppressed by powers of 1 /N, actually scale as pro-
gressively higher powers of N and might modify the RG flow
significantly. Thus, the fixed-point form of the correlation
functions satisfies

f�s2−�
��̂�,s�p̂�,s2+�2r̂�

= s4−�
−�3+��−�
/2�nf/2−�2+��−�
�nb/2f���̂�,�p̂�, r̂� . �3.18�

Hence, typical frequencies and momenta are related by �
��p� �z, with the dynamical critical exponent z being given by

z = 2 − �
. �3.19�

Moreover, the correlation length � away from the critical
point scales as ��r−� with

� =
1

2 + �2
. �3.20�

Specializing to boson and fermion two-point functions,
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D−1��,p�� � �−�2−���K���z,p��� ——→
�→�

�p� �2−��K̃��/�p� �z, p̂� ,

�3.21�

G−1��,p�� � �−�z/2−���L���z,p��� ——→
�→�

�p� �z/2−��L̃��/�p� �z, p̂� .

�3.22�

Here, the expressions on the right give the correlation func-
tions at the critical point to which we confine our attention
from here on. From Eq. �3.22� we may infer the fate of the
Fermi surface at the critical point. We expect that as �→�
the Fermi surface remains sharply defined. Close to the hot
spots, the Fermi surfaces of fermions �1 and �2 will evolve
into straight lines with a fixed angle between them. At the
hot spot, the fermion self-energy takes the form

G−1��,p� = 0� � �1/2−��/z, �3.23�

which is generally non-Fermi-liquid-like. On the other hand,
away from the hot spot, if we define p� as the distance to the
Fermi surface and p� as the distance to the hot spot for p�

� p� and �� p�
z, we expect well-defined Landau quasiparti-

cles,

G��,p�� �
Z

i� − vFp�

, �3.24�

with the Fermi velocity vF and quasiparticle residue Z van-
ishing as we approach the hot spot as

vF�p�� � p�
z−1, Z�p�� � p�

z/2+��. �3.25�

The remainder of this section will provide a computation
of the four renormalization constants Z�, Z�, Zv

x, and Zv
y to

leading order in 1 /N. At this order, the constants depend only
on the dimensionless parameter � and do not involve u. We
discuss the renormalization of u in Appendix B 2. Thus our
considerations here will involve the RG flow only of the
single coupling �, the ratio of the velocities, and a discussion
of its physical implications. For completeness, we will also
compute the renormalization constant Zr, which determines
the scaling of the correlation length away from the critical
point. This constant will depend on both � and u already at
leading order in 1 /N.

As we will see below, the four renormalization constants
will be overdetermined from the structure of the 1 /N correc-
tions to the fermion self energy, the boson-fermion vertex,
and the boson self-energy. Computations of these quantities
are provided in the appendix, and we use the results here to
extract the Z’s.

The first correction to the self-energy of the fermion �1
�=1

is given by Fig. 5 and computed in Appendix A 2.

�1��,p�� = −
3

2�N�v� �
�i sgn���„�
��� + �v̂2 · p��2 − �v̂2 · p� �…

+
2

�
v̂2 · p� log

�

�v̂2 · p� �� . �3.26�

Note that unless otherwise stated, we will discuss the �=1
hot spot and drop the index �. We see that at the hot spot,

p� =0, the self-energy has a non-Fermi liquid form,10,20

��p� = 0� = − i
3

�2�n�1/2N
� 1

�
+ ��−1/2

���1/2 sgn��� .

�3.27�

This result is consistent with our scaling form �3.23�; to this
order the anomalous dimension ��=0. On the other hand,
away from the hot spot, in the regime 
���� �v̂2 · p��2, the
fermion propagator takes the Fermi-liquid form �3.24�. To
leading order, the Fermi surface is given by v̂1 · p� =0. The
Fermi velocity and quasiparticle residue vanish with the dis-
tance p� along the Fermi-surface to the hot spot as

vF =
4nN

3

p�, Z =

4N

3
�2�n�1/2
−1/2� 1

�
+ ��−1/2

p� ,

�3.28�

consistent with the scaling form �3.25� with mean-field ex-
ponents z=2, ��=0.

The last term in Eq. �3.26� contributes to the renormaliza-
tion of vx ,vy, and so constrains the renormalization constants
by

Z�Zv
x = 1 −

6

�nN

�

1 + �2 log��/�� , �3.29�

Z�Zv
y = 1 +

6

�nN

�

1 + �2 log��/�� . �3.30�

Next we consider the correction to the boson-fermion ver-
tex,

− 	�2��p���1��
† �p��a�− q�
1PI

= ����
a

���2�1
†�p,q��2��3
3�p� − p − q� . �3.31�

This is given by Fig. 6 and computed in Appendix A 3. We
need only the UV divergent part, which is

���2�1
†�p,q� = 1 +

2

�nN
tan−1 1

�
log � . �3.32�

Equation �3.32� constrains the renormalizations by

Z�
1/2Z� = 1 −

2

�nN
tan−1 1

�
log��/�� . �3.33�

Finally, we consider the corrections to the boson two-
point function, shown in Fig. 7, and computed in Appendix
A 4. These yield

21 1

FIG. 5. The leading contribution to the fermion self-energy.
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D−1��,q��

= N
����1 +
4

�nN
tan−1 1

�
log ��

+ Nq�2�1 +
2

�nN
� 1

�
− � + � 1

�2 + �2�tan−1 1

�
�log ��

+ Nr�1 + � 4

�nN
tan−1 1

�
−

5

2�2N
ũ�log �� . �3.34�

Note that both the frequency and momentum dependent parts
of the boson propagator receive renormalization corrections.
As we discussed earlier, the corrections to the coefficient of
��� should not be considered as renormalizations of an inde-
pendent coupling 
 but should rather track the renormaliza-
tions of the fermion velocities. Consequently, from Eqs. �3.8�
and �3.34�, we conclude that

Z��Zv
xZv

y�−1 = 1 −
4

�nN
tan−1 1

�
log��/�� . �3.35�

From the momentum dependent part of Eq. �3.34� we imme-
diately obtain the bosonic field strength renormalization,

Z� = 1 −
2

�nN
� 1

�
− � + � 1

�2 + �2�tan−1 1

�
�log��/�� ,

�3.36�

while the r dependent part of Eq. �3.34� yields the renormal-
ization constant Zr,

Zr = 1 − � 4

�nN
tan−1 1

�
−

5

2�2N
ũ�log��/�� . �3.37�

We note that while our results for the fermion self-energy
�3.26� and the vertex �3.32� are in agreement with Ref. 14,
the expression for the boson two-point function Eq. �3.34�
differs from that of Ref. 14. More precisely, the frequency
dependent part of our D−1 agrees with Ref. 14, while the
momentum dependent part does not. As already noted, the
renormalization of the frequency-dependent part of D−1 is
constrained by that of the fermion self-energy and the vertex.
On the other hand, the renormalization of the momentum-
dependent part is completely independent. The authors of
Ref. 14 found that both the frequency and the momentum
parts are renormalized by the same factor, which would im-
ply that the dynamical critical exponent z=2 to this order.
However, our calculations indicate that the two renormaliza-
tions are equal only at �=1 and, as we will see below, the
dynamical critical exponent z receives corrections already at
the present order in 1 /N.

We now have five equations for four renormalization con-
stants: Eqs. �3.29�, �3.30�, �3.33�, �3.35�, and �3.36�. It is
easily verified that they are consistent with each other. This
is a strong check on our renormalization procedure and veri-
fies the consistency of tying 
 to the velocities by Eq. �2.19�.
We can solve these equations to obtain

Zv
y

Zv
x = 1 +

12

�nN

�

1 + �2 log��/�� ,

Zv
xZv

y = 1 −
2

�nN
� 1

�
− ���1 + � 1

�
− ��tan−1 1

�
�log��/�� ,

Z� = 1 +
1

�nN
� 1

�
− ���1 + � 1

�
− ��tan−1 1

�
�log��/�� .

�3.38�

RG flows

The renormalization constants in Eq. �3.38� determine the
flow of the dimensionless coupling � with the 	 function,

	��r� =
12

�nN

�r
2

�r
2 + 1

. �3.39�

The 	 function for the velocity anisotropy � has an infrared
stable fixed point �=0 and an infrared unstable fixed point
�=�. Physically, both fixed points correspond to a nested
Fermi surface. For �=0, the Fermi velocities at the two hot
spots are antiparallel, while for �=� they are parallel. The
flows to the two fixed points are logarithmic. In particular,
near the infrared stable fixed point �=0,

FIG. 6. The leading correction to the boson-fermion vertex.

(a) (b)

(c) (d)

FIG. 7. The leading correction to the boson self-energy. A sum
over both directions of the fermion loop is implied.
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�r�s� =
�r

1 +
12�r

�nN
log�1/s�

. �3.40�

Here we have assumed that the starting point of the flow
�r�1. Note that the logarithmic flow to �→0 in the infra-
red, with vanishing velocity ratio, is similar to that found
recently in Ref. 19 in a different physical context.

Let us now discuss the physics of the �=0 fixed point.
The renormalization constants in Eqs. �3.36�–�3.38� also de-
termine the renormalization of the velocities, the anomalous
dimensions of the bosons, fermions, and of the �2 operator.
For the velocities, the ratio is already specified by �, and it is
convenient to take 
 as the other independent combination of
the velocities. We have therefore

�
 =
2

�nN
� 1

�r
− �r��1 + � 1

�r
− �r�tan−1 1

�r
� ,

�� =
2

�nN
� 1

�r
− �r + � 1

�r
2 + �r

2�tan−1 1

�r
� ,

�� = −
1

�nN
� 1

�r
− �r��1 + � 1

�r
− �r�tan−1 1

�r
� ,

�2 = −
2

�nN
� 1

�r
− �r��1 + � 1

�r
− �r�tan−1 1

�r
� −

5

2�2N
ũr.

�3.41�

Note that as can be seen from Eqs. �3.16� and �3.19� the flow
of the dimensionful constant 
r described by the exponent �


is equivalent to an anomalous dynamical critical exponent z.
Since �
 is nonzero, the dynamical behavior of the theory
deviates from the simple Hertz-Millis scaling with z=2.

As � flows slowly to 0, the critical exponents in Eq.
�3.41� slowly vary,

�� →
1

nN

1

�r
2 , �� → −

1

2nN

1

�r
2 , �
 →

1

nN

1

�r
2 ,

�2 → −
1

nN

1

�r
2 ,�r → 0. �3.42�

Observe that the corrections to the critical exponents diverge
as �r→0. Thus, for sufficiently small momenta the 1 /N ex-
pansion breaks down. From Eq. �3.42� we see that this will
happen when ��1 /�N; from Eq. �3.40�, we can estimate
that this occurs at a momentum scale k�exp�−N3/2�. This is
parametrically smaller than the scale k�exp�−N� at which
the direct expansion in 1 /N �without RG improvement� be-
comes invalid.

Despite the breakdown of the RG at the longest scales,
there is an intermediate asymptotic regime, 1 /�N��r�1,
where Eq. �3.42� remains valid, and we can integrate the RG
equations and find interesting consequences for both the fer-
mionic and bosonic spectra.

For the fermions, the location of the �1 Fermi surface is
given at three level by v̂1 · p� =0, or py =−vxpx /vy =−px /�.

Evaluating � at s=� / px, we find the Fermi surface at

py = −
12

�nN
px log��/�px�� . �3.43�

The resulting Fermi surface distorts from the shape shown in
Fig. 1 to that in Fig. 8. We may also use RG to improve the
one-loop result for the fermion self-energy �3.26�. From Eq.
�3.16�, the fermion self-energy at the hot spot is

���,p� = 0� � − i exp�−
3

�2n3N3 log3 �2


r�������1/2 sgn��� ,

�3.44�

Along the Fermi surface away from the hot spot, the quasi-
particle residue and Fermi velocity behave as

vF � exp� 48

�2n3N3 log3 �

p�
�p�, Z � �log

�

p�
�−1/2

p� .

�3.45�

The characteristic frequency of the bosonic spectrum is
��q�2 /
r; evaluating 
r at s=� / �q� �, we find that it scales
with a “super-power-law” of the momentum

� � q�2 exp� 48

�2n3N3 log3 �

�q� �� . �3.46�

From Eq. �3.16� we also obtain the static and dynamic scal-
ing of the bosonic propagator,

D−1��,q� = 0� � ���1−�1/nN� exp� 6

�2n4N4 log3 �2


r����
��log

�2


r����
−1/3

,

D−1�� = 0,q�� � �q� �2 exp� 48

�2n3N3 log3 �

�q� �� . �3.47�

FIG. 8. Modification of the Fermi surfaces in Fig. 2 at the SDW
quantum critical point. As in Figs. 2 and 3, the full lines are the
Fermi surfaces, and the white, light shaded, and dark shaded re-
gions denote momenta where 0, 1, and 2 of the bands are occupied.
The equation of one of the Fermi surfaces is given in Eq. �3.43�.
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Note that the unusual super-power-law dependencies in
Eqs. �3.44�–�3.47� are consequences of the scaling of �r
→0 in the infrared and associated divergences of the anoma-
lous dimensions.

IV. COUNTING POWERS OF N

As written in Eq. �2.17�, our field theory offers a poten-
tially simple way of organizing perturbation theory in powers
of 1 /N: each boson propagator comes with a power of 1 /N,
each fermion loop yields a power of N, and each u interac-
tion yields a factor N: we refer to this as the “naive” 1 /N
expansion, and it has been the basis of our computations so
far.

However, because we have to take �→0 in the scaling
limit, there is a danger that some of the higher order dia-
grams will have a singular dependence on �. The fermion
propagators in such diagrams need to include self-energy
corrections for the diagrams to be finite in the �→0 limit.
The price we will pay for this regularization is that the dia-
grams will acquire additional powers of N, and the naive
counting of powers of 1 /N will break down.

Recently, in the context of a theory of a Fermi surface
interacting with a gauge field, Lee15 has given a procedure
for identifying diagrams with a breakdown of naive 1 /N
counting and shown that the expansion in powers of 1 /N is
actually an expansion in the genus of a surface defined by the
graph. Using his methods we will show that many similar
issues appear in our theory for the SDW transition of a Fermi
surface, although subtle differences in RG properties imply
that in the present case no genus expansion exists, and dia-
grams of increasingly higher order in N are generated as the
number of loops is increased.

In the absence of an external pairing vertex �see Sec. V�,
the simplest diagrams exhibiting the above effect are the
three-loop corrections to the boson-fermion vertex, see Fig.
9. In fact, the two diagrams are equal as they are related by
particle-hole symmetry. The external fermions are taken to
have hot spot index �=1, while the fermions running in the
loop can come from any hot spot ��, although we will see
that the singular contributions will originate from ��=1 and
��=3. The diagram is given by


���2�1
†�p,q��a = − �a1�a2�a3� dk�d

2k�dk��d
2k��

�2��6 faa1a2a3�q,p − k�,k� − k,k − p − q�G1�k�G2�k��D�k� − p�D�k − k��D�p + q − k� .

Substituting the four-point boson vertex f , Eq. �2.15�,


���2�1
†�p,q� = −

7N

2�vxvy


��
� dk�d

2k�dk��d
2k��

�2��6 ��q�� − �p� − k��� + �k�� − k�� − �k� − p� − q���

�
1

„i��p� − k�� − v�1
�� · �p� − k��…„i��q� + p� − k��� − v�2

�� · �q� + p� − k���…

�
1

�i�k� − v�1 · k���i�k�� − v�2 · k���
D�k� − p�D�k − k��D�p + q − k� . �4.1�

Observe that if ��=2 or ��=4 the four denominators in Eq. �4.1� involve four linearly independent combinations of internal
momenta k� and k��. As a result, the integral has a well-defined limit when �→0. On the other hand, when ��=1 or ��=3 �which
we will also denote as ��=−1�, v��� and v� are parallel. Keeping only these two hot spots, let us integrate over the momentum
components v�1 ·k� and v�2 ·k��. We focus on the contribution from the fermionic poles, which, as we will see, is infrared singular.

FIG. 9. Three loop corrections to the boson-fermion vertex that
are enhanced in N, scaling as O�N0�.
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���2�1
†�p,q� �

7N

2�vxvy�v� �2 

��=�1

� dk�dk�dk��dk��

�2��4 ��q�� − �p� − k��� + �k�� − k�� − �k� − p� − q���

�
���k�� − �„���k� − p��…����k��� − �„���k�� − p� − q��…�

�i�„�1 − ���k� − p�… + ��v�1 · p���i�„�1 − ���k�� − p� − q�… + ��v�2 · �p� + q���
D�k� − p�D�k − k��D�p + q − k� .

Here k� and k�� denote the components of k� and k�� along the
Fermi surface of �1 and �2, respectively, and the arguments
of boson propagators are evaluated at v�1 ·k� =v�2 ·k��=0.
�Strictly speaking, only one pair of poles has v�1 ·k� =v�2 ·k��
=0, while the other pair has v�1 ·k� =v�1 · p� and v�2 ·k��=v�2 · �p�
+q��. However, in situations of interest to us discussed below
the above difference may be neglected in the bosonic propa-
gators�.

Note that if we take the initial and final fermion momenta
to lie on the Fermi surface, i.e., v�1 · p� =0, v�2 · �p� +q��=0, then

� diverges as �−2. Since the dimension of � is �−1/2, this is
synonymous to an infrared divergence,


���2�1
† � �−2N−2�−1. �4.2�

This behavior can be easily checked by, for instance, setting
all the external momenta to zero �i.e., taking the external
fermions to be at the hot spots�. We also note that in the case
when the external fermion momenta do not lie on the Fermi
surface, the limit �→0 can be taken in the contribution of
hot spot pair ��=1, but not ��=−1, as the latter contains a
non-local UV divergence. Keeping � finite, we obtain,


���2�1
† � �−1N−2p�

−1. �4.3�

where p� schematically denotes the distance of external fer-
mion momenta to the Fermi surface.

The infrared divergences in Eqs. �4.2� and �4.3� are a
product of the bare fermion propagator having z=1 dynam-
ics, whereas we expect that the full fermion propagator has
the same dynamics as the spin-density wave excitations. We
saw that this, indeed, holds at the one-loop level, where both
the boson �3.2� and fermion �3.26� propagators are invariant
under scaling with z=2 �up to logarithmic corrections in the
latter case�. As in Ref. 15, the divergence can be cured by
including the one-loop fermion self-energy within the fer-
mion propagators, before taking the �→0 limit. This is the
approach that will be adopted below. From Eq. �3.27�, we
know that the self-energy is ��� /N. Therefore, mapping
��→�� /N, we find from Eq. �4.2� that


���2�1
† � O�1� . �4.4�

Thus, the vertex correction is not suppressed relative to the
bare value, and the naive 1 /N expansion has broken down.
In Appendix B 1, we compute the vertex correction in Fig. 9
with dressed fermion propagators and find to logarithmic ac-
curacy,


���2�1
† � X���log

�

�q� �
, �4.5�

where X is a finite negative function of �. Note that the
strong infrared divergence of Eq. �4.2� is now replaced by a
mild logarithmic divergence that one may hope to treat with
renormalization group. However, the price one has to pay for
curing the strong infrared divergence is the enhancement of
the diagram with N, as anticipated in Eq. �4.4�. This en-
hancement occurs for any external fermion momenta �not
only for momenta on the Fermi surface�. Finally, the pres-
ence of a logarithm implies that not only is the diagram itself
unsuppressed relative to its bare value, but also that the
anomalous dimensions are not expected to be suppressed
with N.

Having seen an explicit example of violation of naive
large-N counting, we would like to investigate the general
scaling of diagrams with N in our theory, when a one-loop
dressed fermion propagator is used. Our procedure closely
follows that of Ref. 15. A general diagram can be schemati-
cally written as

D = NLf � �
i=1

L

d2pid�i�
j=1

If 1

�1loop�lj� + v� · l�j

�
k=1

Ib

D�qk� .

�4.6�

Here, If and Ib are numbers of fermion and boson propaga-
tors, respectively, Lf is the number of fermion loops, and L is
the number of total loops. The momenta lj and qk are linear
combinations of pi entering the fermion and boson propaga-
tors. The naive scaling of the diagram with N is given by
D�NQ0,

Q0 = Lf − Ib. �4.7�

It is clear that the enhancement of diagrams with N comes
from the dangerous factor of 1 /N in the fermion self-energy.
However, in order to access this factor the fermion momen-
tum must be on the Fermi surface. Given a diagram, let us
call the phase-space for all internal fermion momenta to lie
on the Fermi surface, the “singular manifold.” Having iden-
tified this manifold, one can divide the momentum integra-
tion variables into components parallel p� and perpendicular
p� to the manifold,

�
i=1

L

d2pi = �
a=1

n

dp�a �
b=1

2L−n

dp�b, �4.8�

where n is the dimension of the manifold. Linear combina-
tions of p�’s enter the fermion energy v� · l�j and hence scale as

QUANTUM PHASE… . II. SPIN DENSITY WAVE… PHYSICAL REVIEW B 82, 075128 �2010�

075128-11



1 /N, making the fermion propagators scale as N. On the
other hand, the components p� only enter the bosonic propa-
gators and the one-loop fermion self-energy �1loop and scale
as N0. Hence, the diagram acquires an enhancement, D
�NQ, Q=Q0+�Q,

�Q = �If − 2L + n� , �4.9�

where �x�=x if x�0 and �x�=0 if x�0.
Thus, to find the degree of a diagram in N, one has to find

the singular manifold and compute its dimension n. This can
be done diagrammatically by introducing a double-line rep-
resentation, originally used in the study of electron-phonon
interactions.24 Below, we will consider diagrams involving
opposite hot spot pairs �=1 and �=−1 only. Substitution of
fermions from hot spots �=2 and �=−2 into these diagrams
is expected to reduce the dimension of the singular manifold.
Moreover, we for simplicity consider diagrams without the
quartic bosonic vertex u. Finally, we take all the external
fermion momenta to be on the Fermi surface.

Now, we are ready to introduce the double-line represen-
tation. We would like to find under what conditions do all the
fermions in a diagram go to the Fermi surface. Observe, that
any momentum can be uniquely decomposed into compo-
nents along the Fermi surface of fermion 1 and fermion 2.
Thus, we fatten bosonic propagators into double lines, one
carrying momentum along the Fermi surface of fermion 1,
and the other along the Fermi surface of fermion 2. If a
fermion is to absorb this bosonic momentum and stay on the
Fermi surface, its incoming and outgoing momenta are fixed
in terms of the components of the double line. Hence, the
boson-fermion vertices can be redrawn as shown in Fig. 10.
Note that if a certain momentum is along the Fermi surface
of fermion 1 from hot spot �=1, it is also along the Fermi
surface of fermion 1 from hot spot �=−1. Thus, the fermion
lines in our diagrams can come from either of these hot
spots. Also, the direction of lines in the double-line represen-
tation is not fixed, and need not coincide with that in the
single line representation. If the two are opposite, then it is
understood that the physical fermion momentum p� is the
negative of the momentum carried by the fermion in the
double-line representation, see Fig. 11. Because we are ne-
glecting the Fermi surface curvature in the low-energy

theory, a particle with momentum p� is on the Fermi surface if
and only if a particle with momentum −p� is on the Fermi
surface, and the above representation is consistent. �We re-
mind the reader that here all the fermion momenta are de-
fined relative to hot spot locations�.

Thus, the double line representation completely specifies
the singular manifold. In particular, the dimension of the
manifold n is just given by the number of loops in this rep-
resentation. As an example, consider the double line repre-
sentation of the diagrams in Fig. 9 shown in Fig. 12. We see
that Fig. 12 contains two closed loops, which implies that the
singular manifold is two dimensional. From Eq. �4.9�, the
enhancement of the diagram is �Q=2, which combined with
the naive degree of the diagram, Eq. �4.7�, Q0=−2, gives
Q=0, consistent with the explicit calculation in Eq. �4.5�. In
Fig. 13 we also give an example of a vertex correction which
is not enhanced in N. Here, the double line representation
contains no loops so the dimension of the singular manifold

FIG. 10. Double line representation for the boson-fermion
vertex.

FIG. 11. Double line representation for the boson-fermion ver-
tex. The directions of momentum and particle flow need not
coincide.

FIG. 12. Double line representation applied to the diagrams in
Fig. 9. The enhancement of the diagram in N is related to the num-
ber of loops n in the double line representation via Eq. �4.9�.

FIG. 13. A three loop vertex correction with no enhancement in
N.
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is zero, �Q=0 and the degree of the diagram is given by the
naive N counting, Q=−2.

It is easy to see that the violations of naive large-N count-
ing are not confined to vertex corrections alone. In Fig. 14
we show a fermion self-energy diagram that acquires an en-
hancement. Indeed, the naive degree of the graph is Q0=−3.
However, since the double line representation contains three
loops, the graph receives an enhancement �Q=2 so that the
total degree of the graph is Q=−1. Hence, the graph is of the
same order O�1 /N� as the one-loop fermion self-energy.
Similarly, in Fig. 15 we show an enhanced diagram for the
boson self-energy. In this case, Q0=−1, �Q=2, Q=1. Hence,
the diagram is of O�N�, again the same as the tree level
contribution.

A remarkable feature of the large-N counting in Eqs. �4.7�
and �4.9�, pointed out in Ref. 15, is that the degree of a
diagram is related to its topology. Let us first apply the to-
pological classification to vacuum energy diagrams, i.e.,

graphs with no external lines. We can convert these diagrams
into two-dimensional surfaces in the following way. First, let
us introduce fermion loops back into the double line repre-
sentation �they will appear dotted in our diagrams, see Fig.
16�. Then attach a face to each solid loop of the double-line
representation and a face to each dotted loop �i.e., fermion
loop�. As a result, each boson propagator is shared by two
faces with solid boundaries, while each fermion propagator
is shared by a face with a solid boundary and a face with a
dotted boundary. Therefore, if we glue the faces along propa-
gators we obtain a closed surface. Now consider the Euler
characteristic of this surface,

� = F − E + V , �4.10�

where F is the number of faces, E is the number of edges,
and V is the number of vertices of the surface. We have, F
=Lf +n, E= Ib+ If, and V is just the number of vertices in the
original Feynman graph. Now, using V=2Ib, 2V=2If we ob-
tain,

� = Lf + n −
V

2
. �4.11�

However, using L= Ib+ If −V+1, we see that the degree of a
diagram in N given by Eqs. �4.7� and �4.9� is

Q = Lf −
V

2
+ n − 2, �4.12�

where we have assumed that the argument of � � in Eq. �4.9�
is positive. Thus, we arrive at the relation

Q = � − 2. �4.13�

This result means that at each order in 1 /N one has to sum an
infinite set of diagrams with a given Euler characteristic. In
particular, at N=� the theory is dominated by diagrams with

1 2 1

1

1

2

22

1

21 2 1 1

FIG. 14. A diagram for the fermion self-energy that is of
O�1 /N� as a result of enhancement.

2

1

1

2

1 1

2 2

2 2

1 1

FIG. 15. A diagram for the boson self-energy that is of O�N� as
a result of enhancement.

2

21

2

1
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1

1

1

1

1
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2

2

2

2

2
2

2

2

FIG. 16. Converting vacuum energy diagrams into surfaces: a
face is attached to each solid and dotted loop in the double-line
representation �below�. In the present case, the resulting surface is a
sphere.
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�=2, i.e., those whose double-line representation can be
drawn on a sphere. Such graphs are often referred to as pla-
nar diagrams.

It is straightforward to extend the classification above to
diagrams with external legs. For instance, fermion self-
energy diagrams can be obtained by cutting one fermion
propagator in a vacuum graph. This results in Ib→ Ib, Lf
→Lf −1, so Q0→Q0−1, and If → If −1, L→L−1, n→n−1,
as cutting a fermion propagator destroys a solid loop in the
double line representation. Hence, �Q→�Q and Q→Q−1,
i.e.,

Q = � − 3, �4.14�

with � the Euler characteristic of the initial vacuum diagram.
In particular, planar vacuum graphs give rise to fermion self-
energy diagrams of O�1 /N�.

Similarly, to obtain a boson self-energy diagram, we cut a
boson propagator in a vacuum bubble. This gives Ib→ Ib−1,
Lf →Lf, so Q0→Q0+1, and If → If, L→L−1, n→n−2, as
we now destroy two solid loops in the double line represen-
tation. Hence, �Q→�Q and Q→Q+1, i.e.,

Q = � − 1. �4.15�

Hence, planar graphs give rise to boson self-energy diagrams
of O�N�.

Likewise, to obtain vertex correction diagrams, we re-
move a vertex in a vacuum bubble. As a result, Ib→ Ib−1,
Lf →Lf −1, so Q0→Q0, and If → If −2, L→L−2, n→n−2,
as we again destroy two solid loops in the double line rep-
resentation. Hence, �Q→�Q and Q→Q, i.e.,

Q = � − 2, �4.16�

and all planar graphs give rise to vertex diagrams of O�1�.
At this point, we would like to make a remark about con-

ditions on external momenta in diagrams needed for the en-
hancements to occur. Up to now we have been assuming that
all the external fermion momenta in a diagram are on the
Fermi surface. If all the diagrams in our theory were UV
finite then this condition would, indeed, be required. How-
ever, as we have seen, some of the diagrams actually contain
logarithmic divergences, i.e., they receive contributions from
momenta, which are much larger than the external momenta.
For the purpose of computing the UV divergent contribution
to these diagrams and estimating its scaling with N, we can
set the external momenta to zero �which certainly puts the
external fermions on the Fermi surface�. This explains why
the vertex correction in Figs. 9 and 12 receives an enhance-
ment for any external fermion momentum, as can be explic-
itly seen in Eq. �4.5�.

So far, we have left out one type of diagram which is
important from the point of view of RG properties of the
theory, namely, diagrams for the boson four-point function.
Such diagrams can be obtained by cutting two boson propa-
gators in a vacuum bubble. This results in Ib→ Ib−2, Lf
→Lf, so Q0→Q0+2. Now let us discuss the change in the
enhancement �Q. We see that If → If, L→L−2. The change
in the dimension of the singular manifold 
n depends on how
many loops in the double line representation the two propa-
gators that we cut share. If both components 1 and 2 of the

two propagators are part of the same two solid loops, see Fig.
17�c�, then the change in the dimension of the singular mani-
fold 
n=−2. If these two propagators share only one solid
loop, see Fig. 17�b�, then 
n=−3. Finally, if the two propa-
gators don’t share any solid loops, then 
n=−4. Thus, we
obtain, �Q→�Q+4+
n and Q→Q+6+
n, i.e.,

Q = � + 4 + 
n . �4.17�

It appears that the highest possible degree of the four-point
vertex corresponds to starting with a planar graph and cutting
two bosonic propagators, which are part of the same double-
line loop, to obtain, Q=4. However, it is easy to see that this
always produces a diagram, which is disconnected, see Fig.
17�a�. To obtain a connected diagram for the four-point func-
tion starting from a planar graph, we must cut at least three
solid loops, such that the highest possible degree of a four-
point function is Q=3. The fact that the four-point vertex
scales as N3 could be anticipated from the simple one-loop
result in Eq. �2.15�. Indeed, for special kinematic conditions,
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FIG. 17. Producing a boson four-point function from a vacuum
bubble by cutting two boson propagators. If the initial diagram is
planar and only two solid lines are cut in the double-line represen-
tation then the resulting diagram is disconnected, as in �a�. Dia-
grams of highest degree are obtained by starting with a planar dia-
gram and cutting three solid line loops, as in �b�, or starting with a
diagram with �=1 and cutting two solid line loops, as in �c�.
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v�1 · �q�2+q�3�=0, v�2 · �q�1+q�2�=0, Eq. �2.15� diverges as
N��2��−1, which after including the one-loop fermion self-
energy is expected to become of order N3. Such kinematic
conditions are automatically assumed in our double line rep-
resentation that led to the large-N counting in Eq. �4.17�.
However, as was already noted, diagrams that have ultravio-
let divergences are expected to receive the enhancement in
Eq. �4.9� independent of external momenta. The simplest
diagram for the boson four-point vertex that is expected to
scale as N3 and exhibits such a divergence is shown in Fig.
18. In Appendix B 2, we explicitly evaluate this diagram
obtaining to logarithmic accuracy,


�4 = N3Y���
 log
�

�q� �
, �4.18�

with Y a finite function of �.
The fact that there are diagrams for the four-point boson

function that scale as N3 for arbitrary external momenta has
drastic consequences for the theory. Indeed, a diagram with
just quartic internal vertices �which can themselves have a
nontrivial internal structure�, will scale as NQ, with Q=V4

+
Eb

2 , where V4 is the number of quartic vertices and Eb is the
number of external bosons. Thus, the degree of the diagram
in N grows with the number of quartic vertices. This means
that perturbation theory based on the one-loop dressed fer-
mion propagator is not a good starting point for taking the
large-N limit, and no genus expansion similar to that of Ref.
15 exists in the present case. Note that this effect was not
captured in our initial large-N counting, as we have ignored
the possible presence of UV divergent subdiagrams.

V. PAIRING VERTEX

In this section we will study the renormalization proper-
ties of the BCS order parameter to one loop order. We con-
sider pairing in the spin singlet, parity even, momentum zero

channel. There are four order parameters that one can form
out of our four pairs of hot spots,

V�� = ������1�
�=−1�1��

�=1 + ��2�
�=−1�2��

�=1�

+ �������1�
�=−2�1��

�=2 + ��2�
�=−2�2��

�=2� . �5.1�

Here the minus sign in the hot spot labels �=−1�3 and �
=−2�4 denotes the opposite hot spot pair. The geometry of
the pairing operators for �=1 is illustrated in Fig. 19. The
coefficients �= �1, �= �1 determine the transformation
properties of V under the lattice rotation symmetry R�/2 and
the reflection symmetry I�−1,1� about the �−1,1� axis,

R�/2:V�� → �V��, �5.2�

I�−1,1�:V�� → �V��. �5.3�

These properties are summarized in Table I. Since the theory
�2.17� conserves the number of fermions at each hot spot pair
�, the parts of the order parameter involving �= �1 and �
= �2 renormalize independently. Hence, the scaling dimen-
sion of the pairing vertex in the low-energy theory is inde-
pendent of � and is sensitive only to �, i.e., the operators
with s and dxy, and g and dx2−y2 symmetries are degenerate.

The renormalization properties of the operator V can be
determined from its insertion into the correlation function,

TABLE I. Symmetry properties of the pairing vertex.

�

�

1 −1

1 s g

−1 dxy dx2−y2

11

2

22

2

1

2

1

11

2

2

2

2

1

2

1

1

2

1

FIG. 18. A diagram for the boson four-point function that di-
verges logarithmically and scales as N3.

FIG. 19. Pairing of the electrons at the �= �1 hot spots of Fig.
1. Electrons at opposite ends of the arrows form spin-singlet pairs.
The �=+1 ��=−1� pairing amplitude in Eq. �5.1� has the same
�opposite� sign on the two arrows. Only the �=−1 spin singlet
pairing is enhanced near the SDW critical point.
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�����V�†�†�k1,k−1�

=� dDx1dDx−1	V�0��1��
†�=−1�x−1��1�

†�=1�x1�
1PIe
i�k1x1+k−1x−1�.

�5.4�

At tree level, �V�†�† =1. Let us now consider the one-loop
renormalization of V, shown in Fig. 20�a�. This diagram is
given by


�V�†�†�k1,k−1� = − 3�� dl�d
2l�

�2��3 D�l�G2
1�k1 − l�G2

−1�k−1 + l� .

�5.5�

Details of the evaluation of Eq. �5.5� appear in Appendix B
3. Direct computation with bare fermion propagators gives
rise to strong infrared divergences, which are cured by using
the one-loop dressed propagators. With this approach, we
obtain to logarithmic accuracy


�V�†�† = −
��

���2 + 1�
log2� �2


�
� . �5.6�

Note that the one loop renormalization of the pairing ver-
tex �5.6� is of order unity, and is not suppressed in 1 /N. Thus
the naive counting in powers of 1 /N is violated, as was al-
ready noted in Ref. 12. Moreover, the one-loop contribution
gives a suppression of the vertex for �=1 �s and dxy chan-
nels� and an enhancement for �=−1 �dx2−y2, g channels� as
expected. Finally, we find that the one-loop result has a non-
local log2 divergence. The origin of this nonlocal divergence

is BCS pairing of the Fermi surface away from the hot spots.
Indeed, as noted in Appendix B 3, the divergence comes
from the regime where 
�l��� l�

2, with l� the component of l�
along the Fermi surface of �2. This is precisely the regime in
which one has good Landau quasiparticles, suggesting that it
may be possible to obtain Eq. �5.6� in a Fermi liquid com-
putation.

We now show this is indeed the case, and obtain Eq. �5.6�
in a physically transparent form. Let us approximate the
propagators in Eq. �5.5� by the Fermi-liquid form �Eq.
�3.24��,


�V�†�† =
3�

N
� dl�

2�
�


�l���l�
2

dl�

2�
� dl�

2�

1


�l�� + l�
2

�
Z�l��

i�l� − �� − vF�l��l�

Z�l��
i�l� + �� + vF�l��l�

,

�5.7�

with the Fermi-liquid parameters given by Eq. �3.28�. Note
that due to the restriction 
�l��� l�

2 the bosonic propagator is
static. Changing variables to �=vF�l��l�,


�V�†�† =
3�

N
� dl�

2�

Z2�l��

vF�l��l�
2�


�l���l�
2

dl�

2�
� d�

2�

�
1

i�l� − �� − �

1

i�l� + �� + �
. �5.8�

The integral over l�, � has the form familiar from Fermi-
liquid theory and gives the usual BCS logarithm,

� dl�

2�
� d�

2�

1

i�l� − �� − �

1

i�l� + �� + �
= −

1

2�
log

�FL

�
,

�5.9�

where �FL is the frequency/energy cutoff, which in the
present case is �FL= l�

2 /
. Of course, for the above form to
hold, we need ���FL. Thus,


�V�†�† = −
3�

2�2N
�

�
�

�

dl�

Z2�l��

vF�l��l�
2 log

l�
2


�

= −
��

���2 + 1�
log2 �2


�
, �5.10�

which agrees with the result in Eq. �B26� obtained from a
more complete computation. Note that the prefactor of 1 /N
arising from the boson propagator has disappeared from the
final result. A similar log-squared term has been noted for the
pairing vertex in a theory of a Fermi surface coupled to a
gauge field in three dimensions21,22 and in a theory of a
Fermi surface interacting via a Chern-Simons gauge field
and a 1 /r potential in two dimensions.23

The appearance of the log-squared term above indicates a
breakdown of the present RG in analyzing the renormaliza-
tion of the pairing vertex. It is clearly a consequence of two
different physical effects. One is the familiar BCS logarithm
of Fermi liquid theory, which appears here from the Fermi
surface away from the hot spots. The second logarithm is a
critical singularity associated with SDW fluctuations at the

(a)

(b)
FIG. 20. The leading corrections to �a� BCS pairing vertex and

�b� density-wave vertex.
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hot spot. Our RG approach, defined in terms of a cutoff �
which measures distance from the hot spot, is unable to regu-
late the first logarithm: the Fermi surface is present at mo-
menta all the way up to �.

An alternative RG is necessary to analyze the conse-
quences of the log-squared term. One possible approach is
that of Son,21 who introduced for the problem of fermions
coupled to a gauge field an RG defined in terms of momen-
tum shells a fixed distance from the Fermi surface. We leave
such investigations for future work.

VI. DENSITY VERTICES

In this section we focus attention on one of the interesting
consequences of the pseudospin symmetries of the critical
theory of the SDW transition, specified by Eq. �2.6�. Note
that the pseudospin rotations can be performed indepen-
dently on different pairs of hot spots.

Under the operation in Eq. �2.6�, the pairing operator �5.1�
in the particle-particle channel becomes exactly degenerate
with certain operators in the particle-hole channel which
connect opposite patches of the Fermi surface. Indeed, con-
sider spin-singlet operators that can be built out of fermions
coming from hot spots � and −�. Using the spinor represen-
tation �2.3�, we may write these as

V�	
� = Mij�����i��

−� � j	��
� . �6.1�

The indices �, 	 of V�	 carry spin 1 /2 under the indepen-
dent SU−��2� and SU��2� particle-hole symmetries. Hence,
we have a set of four degenerate operators. Choosing �=1,
	=1,

V11
� = Mij�����i�

−�� j��
� . �6.2�

The mixing matrix Mij is fixed by lattice symmetries to give
operators,

V�
�,Q� =�0,0� = ������1�

−��1��
� + ��2�

−��2��
� � , �6.3�

V�
�,Q� =��,�� = ������1�

−��2��
� + ��2�

−��1��
� � , �6.4�

which correspond to superconducting order parameters with
momenta �0,0� and �� ,��, respectively. The index �= �1
determines the parity of the operator under a reflection about
a lattice diagonal. Operator �6.3� was considered above. We
will not discuss the other operator �6.4� below; due to kine-
matics, its renormalization at one-loop order contains neither
the large-N enhancement, nor the unusual powers of loga-
rithm squared.

Now, let us discuss the particle-hole partners of Eq. �6.3�.
Setting �=2, 	=2 in Eq. �6.1� simply gives rise to the Her-
mitian conjugate of Eq. �6.3�. On the other hand �=2, 	
=1 gives the operators,

O�
� = �1�

−�†�1�
� + ��2�

−�†�2�
� . �6.5�

The other choice �=1, 	=2 generates the Hermitian conju-
gates of Eq. �6.5�. Following Fig. 19, the O�

� operators are
illustrated in Fig. 21. To determine the wavevectors of these

operators, let the �=1, i=1 hot spot be at K� 1= �Kx ,Ky�. �Note
that here we are using the principal axes of the square lattice
for the momentum coordinates, not the diagonal axes indi-
cated in Fig. 1.� Then, from Fig. 1 we note that the �=1, i
=2 hot spot is at �−Ky ,−Kx�, and so the value of the SDW
wave vector Q� = �� ,�� implies that Kx+Ky =�. Also from
Fig. 1, the �=−1, i=1 hot spot is at �−Kx ,−Ky�, and so we
conclude that the ordering wave vector of the first term in O�

1

is �2Kx ,2Ky�. Similarly, the ordering wave vector of the sec-
ond term in O�

1 is seen to be �−2Ky ,−2Kx�. Using Kx+Ky
=�, we observe that these two ordering wave vectors are
actually equal and take the common value Q� 1=2Ky�−1,1�,
which is therefore the momentum of the O�

1 order param-
eters, as shown in Fig. 19. Similarly, the momentum of the
O�

2 order parameters is seen to be Q� 2=2Ky�−1,−1�. Thus the
O�

� represent density modulations along the diagonals of the
square lattice.

For a clearer physical interpretation of the O�
� orders, it is

useful to express them in terms of the lattice fermions ck��,
where the momentum k� ranges over the full square lattice
Brillouin zone. Then by looking at the transformations of Eq.
�6.5� under all square lattice space group operations, and
under time reversal, we find that the O+

� are orders are char-
acterized by

	ck�−Q� �/2,�
†

ck�+Q� �/2,�
 = O+
� f0�k�� , �6.6�

where f0�k�� is any periodic function on the Brillouin zone
that is invariant under the point group operations which leave
the wavevector Q� � invariant, i.e., under the little group of Q� �.
Also time-reversal and inversion symmetries imply f0�k�� is
real and even. The little group consists only of reflections

FIG. 21. Spin singlet density operators ���†�� of the electrons
at the �= �1 hot spots of Fig. 1 �see also Fig. 19�, shown with an
arrow pointing from the Brillouin zone location of �† to that of �.
The dashed arrows are the density operators in the first Brillouin
zone. The full arrows are in an extended zone scheme which shows
that these operators have net momentum Q� 1=2Ky�−1,1�, where
�Kx ,Ky� is the location of the �=1, i=1 hot spot. The density op-
erator with opposite signs ��=−1� on the two arrows is enhanced
near the SDW critical point. Similarly the �= �2 hot spots contrib-
ute density operators at Q� 2=2Ky�1,1�.
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along the diagonals, and so a simple choice is f0�k��=1
+c1�cos kx+cos ky�+¯, where c1 is a constant. By taking a
Fourier transform of Eq. �6.6�, it is clear that O1

� corresponds
to an ordinary charge density wave �CDW� on the sites of the
square lattice,

	cr��
† cr��
 = 


�=1,2
�O+

�eiQ� �·r� + c.c.� . �6.7�

As we saw in Sec. V, SDW fluctuations suppress pairing with
�=+1, and so its particle-hole partner, the CDW order pa-
rameter O+

� will also be suppressed. We will therefore not
consider it further.

By the same reasoning, the order parameter O−
� should be

enhanced by the SDW fluctuations, and so it is of far greater
interest. Following the steps leading to Eq. �6.6�, we now
find

	ck�−Q� �/2,�
†

ck�+Q� �/2,�
 = O−
� f̃0�k���cos kx − cos ky� , �6.8�

where f̃0�k�� has the same structure as f0�k��. Time-reversal
symmetry played an important role in constraining the rhs: it
is easily verified that Eq. �6.8� is invariant under time rever-
sal for general complex O−

�. The order in Eq. �6.8� is odd
under reflections along the diagonals, and so it is a
px�y-density wave, in the nomenclature of Ref. 25. Despite
the d-wave-like factor on the rhs of Eq. �6.8�, this order is
not the popular d-density wave;26 the latter is odd under time
reversal, and in the present notation takes the form

	ck�−Q� /2,�
†

ck�+Q� /2,�
 � i�sin kx − sin ky� , �6.9�

with Q� = �� ,��. The order in Eq. �6.9� is not enhanced near
the SDW critical point, while that in Eq. �6.8� is. By taking
the Fourier transform of Eq. �6.8�, it is easy to see that O−

�

does not lead to any modulations in the site charge density
	cr��

† cr��
, and so it is not a CDW. The nonzero modulations
occur in the off-site correlations 	cr��

† cs��
 with r��s�. For r� and
s� nearest neighbors, we have

	cr��
† cs��
 = 


�=1,2
�O−

�eiQ� �·�r�+s��/2 + c.c.�

��
r�−s�,x̂ + 
s�−r�,x̂ − 
r�−s�,ŷ − 
s�−r�,ŷ� , �6.10�

where x̂ and ŷ are unit vectors corresponding to the sides of
the square lattice unit cell. The modulations in the nearest
neighbor bond variables 	cr��

† cr�+x̂,�
 and 	cr��
† cr�+ŷ,�
 are plotted

in Figs. 22 and 23. These observables measure spin-singlet
correlations across a link: if there are two electrons on the
two sites of a link, this observable takes different values
depending on whether the electrons are in a spin singlet or a
spin triplet state. Thus O−

� has the character of a valence bond
solid �VBS� order parameter. The first factor on the rhs of
Eq. �6.10� shows that the VBS order has modulations at the
wave vectors Q� � along the square lattice diagonals. However,
from our discussion above, note that �Q� ��=2�2Ky, where the
magnitude of Ky is quite small for the Fermi surface in Fig.
1: the �=1, i=1 hot spot is at �Kx ,Ky�. Thus the first factor in
Eq. �6.10� contributes a relatively long-wavelength modula-
tion, as is evident from Figs. 22 and 23. This long-

wavelength modulation serves as an envelope to the oscilla-
tions given by the second factor in Eq. �6.10�. The latter
indicates that the bond order has opposite signs on the x and
y directed bonds: this short distance behavior corresponds
locally to an Ising-nematic order, which is also evident in
Figs. 22 and 23. The ordering in Eq. �6.10� becomes global
Ising-nematic order in the limit Q� �→0. Nonlinear terms in
the effective action for the bond order will lock in commen-
surate values of Q� �, and so it is possible that strong-coupling
effects will prefer Q� �=0.

As already remarked, the particle-hole symmetry of our
theory guarantees a degeneracy between the d-wave super-
conducting vertex and the density-wave vertex. However,
this degeneracy is lifted once effects which break the
particle-hole symmetry are introduced. One such effect is the
curvature of the Fermi surface at the hot spots. Nominally,
the curvature is irrelevant under the scaling toward hot spots
�2.16�. However, we recall that the double-log structure in
Eq. �5.6� originates from an interplay between scaling in a
Fermi liquid and quantum critical scaling. Moreover, we

�1

�1

FIG. 22. �Color online� Plot of the bond density modulations in
Eq. �6.10�. The lines are the links of the underlying square lattice.
Each link contains a colored square representing the value of
	cr��

† cs��
, where r� and s� are the sites at the ends of the link. We chose

the ordering wave vector Q� 1= �2� /16��1,−1�. Notice the local
Ising-nematic ordering, and the longer wavelength sinusoidal enve-
lope along the diagonal.

�1

�1

FIG. 23. �Color online� As in Fig. 22, but for orderings along
both Q� 1= �2� /16��1,−1� and Q� 2= �2� /16��1,1�.
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know that the scaling of the superconducting vertex and the
density-wave vertex in a Fermi liquid are very different: at
one loop the corrections to former are logarithmic, while
corrections to latter are suppressed by �1/2. Thus, one might
expect that the Fermi surface curvature will play an impor-
tant role in the renormalization of the density-wave vertex,
reducing its enhancement compared to the BCS vertex and
establishing superconductivity as the dominant instability of
the SDW critical point. We check this by an explicit calcu-
lation below.

We introduce the Fermi-surface curvature into the theory
via a perturbation,

Lc =
1

2m


�,i

��� · n̂�,i
� ��i

��2, �6.11�

where n̂�,i
� = ẑ� v̂i

� is the unit tangent to the Fermi surface of
�i

�.
Let us define the insertion of the density-wave order pa-

rameter O�
� into the fermion correlation function,

�O��†�k1,k−1�
���

=� dDx1dDx−1	O�
� �0��1�

−��x−1��1��
†� �x1�
1PIe

i�k1x1−k−1x−1�.

�6.12�

At tree level �O��†�k1 ,k−1�=1. The one loop correction to the
vertex is given by the diagram in Fig. 20�b�. We perform the
calculations with propagators dressed by the one-loop fer-
mion self-energy and by curvature �6.11�. Details are pre-
sented in Appendix B 4. To leading logarithmic accuracy we
obtain


�O��† = −
��

3���2 + 1�
log2 �2


�
, �6.13�

which is a factor of 3 smaller than the corresponding expres-
sion for the superconducting vertex �5.6�.

Finally, we note the resemblance between our results and
those obtained by Halboth and Metzner27 and Honerkamp et
al.,28 using a functional renormalization group treatment of
the Hubbard model. They find dominant instabilities to SDW
order and d-wave pairing, along with a subdominant en-
hancement of Ising-nematic order. They assumed their Ising-
nematic order was at Q� �=0, but their results could be limited
by the finite resolution of Fermi surface points, and their
specific Fermi surface configurations. It would be interesting
if higher resolution studies of more generic Fermi surfaces
lead to ordering compatible with Eq. �6.8�.

VII. CONCLUSIONS

Quantum phase transitions involving symmetry breaking
in the presence of a Fermi surface can be associated with the
appearance of a condensate of particle-hole pairs of the
Fermi surface quasiparticles. Such transitions can be divided
into two broad classes: those in which the particle-hole con-
densate carries net momentum Q� �0, and those in which the
particle-hole condensate is at Q� =0. Both classes were con-

sidered by Hertz in his 1976 paper,6 using a self-consistent
RPA approach, formulated in terms of a RG analysis of an
effective action for the condensate fluctuations. He argued
that for both cases, and for all spatial dimensions d�2, the
condensate fluctuations were effectively Gaussian, and hence
the leading critical behavior could be exactly calculated.

We have reexamined both classes of Fermi surface tran-
sitions in this and a previous paper.16 While Hertz’s conclu-
sions are expected to be largely correct in d=3, they break
down11 in both classes for the physically important case of
d=2. Our previous paper16 proposed and analyzed a critical
theory in d=2 for a paradigm of the Q� =0 case: the onset of
Ising-nematic order. This theory involved both the bosonic
order parameter and the fermionic quasiparticles as funda-
mental degrees of freedom, which interact strongly at the
quantum critical point. The present paper has considered a
typical case in d=2 with Q� �0, the onset of SDW order
using a field theory for the bosonic order parameter and the
fermions proposed by Abanov and Chubukov.10

Our analysis for Q� �0 begins by focusing on the vicinity
of the “hot spots” on the Fermi surface shown in Fig. 1.
Zooming in on a single pair of hot spots and shifting one of
the hot spots by a momentum Q� , we obtain the situation
shown in Fig. 2, where we can approximate the two Fermi
surfaces near the hot spots by two noncollinear straight lines.
The two Fermi surfaces are coupled at the hot spot by the
SDW order parameter �, and the low-energy physics is then
described by the field theory in Eq. �2.1�. In the phase with
SDW order with 	�
�0, the Fermi surfaces reconnect into
the configuration shown in Fig. 3, leading to electron and
hole pockets appearing from the original large Fermi surface
in Fig. 1.

Our RG analysis of Eq. �2.1� was performed using the
1 /N expansion, where the fermions are endowed with an
additional flavor index which runs over N values. Initially, it
seems that the counting of powers of 1 /N is simple: each
boson propagator comes with a factor of 1 /N, and each fer-
mion loop yields a factor N. Using this naive counting, all
RG flow equations were computed to order 1 /N in Sec. III.
We found a consistent renormalization of the couplings in
the local field theory in Eq. �2.1�; the damping parameter 

appearing in the boson propagator was tied to the local cou-
plings via Eq. �2.9�, and this relation was maintained under
the RG. The flow of the spin-damping rate under RG implies
that the dynamical critical exponent z renormalizes away
from its RPA value z=2. This is in stark contrast to Hertz
theory6 and previous studies of the present theory.14 One of
the main consequences of the RG flow in Sec. III was a
logarithmic divergence in the ratio of Fermi velocity compo-
nents with length scale: this implied that the Fermi surfaces
at the quantum critical point took the shape in Fig. 8. The
effective dynamical nesting of the Fermi surfaces at low en-
ergies gives rise to a divergence of anomalous dimensions,
which may lead to a first order phase transition.

Section IV looked at higher loop effects which showed
that the naive counting of powers of 1 /N was not correct.
The enhancements in powers of N arose from infrared sin-
gularities appearing when internal fermion lines were re-
stricted to momenta on the Fermi surface, similar to the
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Fermi surface enhancements discovered by Lee for the prob-
lem of a Fermi surface coupled to a U�1� gauge field.15 These
enhancements distinguish the present problem from that con-
sidered in Refs. 18 and 19: the Ising-nematic transition in a
d-wave superconductor. Formally, the latter problem is de-
scribed by a field theory similar to that of the present paper:
fermions with linear dispersion coupled via a Yukawa inter-
action to a scalar field �. Also, in both problems we find a
logarithmic divergence of velocity ratios in the infrared at
order 1 /N for the RG flows. However, for the d-wave super-
conductor, with Dirac fermions whose energy vanishes only
at isolated hot spots the 1 /N expansion was found to be
stable at higher loops. In contrast, for the present SDW prob-
lem, the fermion hot spots are connected to “cold” Fermi
lines, and singularities associated with these lines lead to a
breakdown in the naive 1 /N counting. Because of this break-
down, the nature of the N→� limit of Eq. �2.1� remains
unclear.

Next, we examined the instability of the SDW metal to
the onset of superconductivity near the quantum critical
point in Sec. V. We found a strong tendency towards spin-
singlet pairing, with pairing amplitude having opposite signs
across a pair of hot spots. For the cuprate Fermi surface in
Fig. 1 this includes dx2−y2 pairing, while for the pnictide
Fermi surfaces this includes s+− pairing. This pairing insta-
bility was manifested in a log-squared divergence of the
renormalization of the pairing vertex, arising from an inter-
play of the infrared singularities associated with the Fermi
surfaces and the hot spot. This log-squared singularity cannot
be resolved by the present RG approach, and other methods
are needed to determine its consequences. An important
problem for future research is to understand the feedback of
the pairing fluctuations on the non-Fermi liquid singularities
at the metallic hot spot. Clearly, superconductivity appears
near the quantum critical point as T→0. The interesting
question is the behavior above Tc, involving the interplay
between the metallic quantum criticality and the pairing fluc-
tuations.

In our discussion of the critical theory for the SDW tran-
sition in Sec. II, we noted that the field theory had emergent
pseudospin SU�2� symmetries �Eq. �2.6�� containing the
particle-hole transformation; note that the pseudospin rota-
tions can be carried out independently on different pairs of
hot spots. Given the strong instability towards d-wave pair-
ing near the SDW critical point described in Sec. V, it is
natural to examine the action of the SU�2� pseudospin sym-
metries on the d-wave pairing order parameter. This was de-
scribed in Sec. VI, where we found a similar log-squared
enhancement of the susceptibility to a modulated VBS order
parameter illustrated in Figs. 22 and 23. Notice that at short
scales this ordering has an Ising-nematic character: this cor-
responds to the breaking of a 90° rotation symmetry of the
square lattice by the values of the bond order parameter in
Eq. �6.10�. It would be interesting if future work supports a
connection between the ordering instability of Section VI,
and the bond and Ising-nematic ordering observed in
experiments.29–34 While the present analysis has focused ex-
clusively on the vicinity of the hot spots, it is quite possible
that strong coupling physics away from the hot spot could
lock in a preference for commensurate values, such as Q� �

=0, in Eq. �6.10�, leading to global Ising-nematic order.
Also, it would be interesting to study the changes in the VBS
ordering for the case of a SDW transition at an incommen-
surate ordering wavevector, like that found in the hole-doped
cuprates.

Finally, we note an interesting possibility for future theo-
retical work. Given the breakdown of the 1 /N expansion for
the theory in Eq. �2.1� for the SDW critical point in a two-
dimensional metal, other systematic methods of analyzing
this field theory are clearly needed. Following Ref. 23, one
possibility is to modify the ���� �2 term in Eq. �2.1� to k1+x�� 2,
where k is the momentum carried by �. Then at the RPA
level, we obtain a theory with z=1+x, and an expansion in
small x appears possible.
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APPENDIX A: RG COMPUTATIONS

In this appendix we give the details of our calculations in
Secs. II and III.

1. RPA polarization

We begin with the one-loop boson self-energy,

�ab�q� = 2N
ab

�
� dl�d

2l�

�2��3 „G1
��l + q�G2

��l�

+ G2
��l + q�G1

��l�… . �A1�

The two terms in brackets come from the two graphs in Fig.
4 with different directions of the particle flow. As discussed
in Sec. II such graphs are equal by the emergent particle-hole
symmetry. Thus, focusing on the contribution from �=1,

��=1�q� = 2N� dl�d
2l�

�2��3

1

„i��l� + q�� − v�1 · �l� + q��…�i�l� − v�2 · l��

+ �q → − q� . �A2�

We change variables to l1= v̂1 · �l�+q��, l2= v̂2 · l�, and take the
limit �→0 using the relation,

1

x + i�
=

P

x
− �i sgn���
�x� , �A3�

which yields,

��=1�q� =
N

vxvy
� dl�d

2l�

�2��3�P

l1
+ �i sgn�l� + q��
�l1��

��P

l2
+ �i sgn�l��
�l2�� + �q → − q� . �A4�

Evaluating the integrals over l1 and l2,
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��=1�q� = −
N

8�vxvy
� dl� sgn�l� + q��sgn�l�� + �q → − q� .

�A5�

Here, we have taken the principal value integral to be zero,
as it would be if we used a particle-hole symmetric regular-
ization. Otherwise, one can check that any terms generated
by the pv integral are of the form iq� and are cancelled by the
�q→−q� term of Eq. �A5�. Now, subtracting the value of the
polarization bubble at q=0, we obtain

��=1�q� − ��=1�q = 0� = −
N

8�vxvy
� dl�„sgn�l� + q��

�sgn�l�� − 1… + �q → − q�

=
N

2�vxvy
�q�� , �A6�

which, taking into account contributions from the other hot
spots, gives

��q� = ��q = 0� +
Nn

2�vxvy
�q�� . �A7�

2. Fermion self-energy

We next proceed to the self-energy of fermion �1
�=1, Fig.

5,

�1,����p� = �� 
a � ��

a � dl�d
2l�

�2��3 G2�p − l�D�l�

=
3

N

���� dl�d

2l�

�2��3

1

i��p� − l�� − v�2 · �p� − l��

1


�l�� + l�2
.

�A8�

We take the limit �→0 and use Eq. �A3�. Moreover, we
change variables so that l�= v̂2 · l� and l� is the momentum
component along the Fermi surface of �2 �i.e., perpendicular
to v̂2�. Then,

�1�p� =
3

N�v� � � dl�dl�dl�

�2��3 � P

l� − v̂2 · p�
+ �i sgn�l� − p��
�l�

− v̂2 · p��� 1


�l�� + l�
2 + l�

2 . �A9�

Thus, the imaginary part of � is given by

Im �1�p� =
3

N�v� � � dl�

8�
sgn�l� − p��

1

�
�l�� + �v̂2 · p� �2
,

�A10�

where we have performed the integral over l� and l�. Since,
Im ��p�=0�=0,

Im �1�p� =
3

N�v� � � dl�

8�
„sgn�l� − p�� − sgn�l��…

�
1

�
�l�� + �v̂2 · p� �2

= −
3

2�N�v� �

sgn�p����
�p�� + �v̂2 · p��2 − �v̂2 · p� �� .

�A11�

On the other hand, the real part of � is given by

Re �1�p� = −
3v̂2 · p�

2N�v� � � dl�dl�

�2��2

1

�
�l�� + l�
2

1


�l�� + l�
2 + �v̂2 · p��2 .

�A12�

Changing variables to u=�
l�+ l�
2,

Re �1�p� = −
3�v̂2 · p��

2�2N
�v� � � dl��
�l��

�

du
1

u2 + �v̂2 · p��2

= −
3�v̂2 · p��

2�2N
�v� � � dl�

�v̂2 · p� �
tan−1� �v̂2 · p� �

�l��
� .

�A13�

The integral over l� is ultraviolet divergent. Cutting off the
integral at �l��=�, we obtain to logarithmic accuracy,

Re �1�p� = −
3v̂2 · p�

�2N�v� �

log

�

�v̂2 · p� �
. �A14�

Combining Eqs. �A11� and �A14� we obtain the self-energy
�3.26�.

3. Boson-fermion vertex

Proceeding to the first correction in 1 /N to the boson-
fermion vertex, Fig. 6,


����
a �p,q� = ��b�a�b����� dl�d

2l�

�2��3 G2�l + p�G1�l + p + q�D�l� .

�A15�

Evaluating the matrix product,


��p,q� = −
1

N
� dl�d

2l�

�2��3

1

v�2 · �l� + p�� − i��l� + p��

�
1

v�1 · �l� + p� + q�� − i��l� + p� + q��

1


�l�� + l�2
.

�A16�

Integral �A16� is logarithmically divergent in the UV. To
extract this divergence, we may set all external momenta to
zero,
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��p,q� =
UV

−
1

N
� dl�d

2l�

�2��3

1

�− vxlx + vyly − i�l���vxlx + vyly − i�l��
1


�l�� + lx
2 + ly

2 . �A17�

The poles in ly coming from the two fermion propagators in Eq. �A17� are in the same half-plane; we may choose to close the
ly integration contour in the opposite half-plane, picking up the pole from the bosonic propagator,


��p,q� =
UV

−
1

N
� dl�dlx

�2��2

1

�− vxlx − ivy sgn�l���
�l�� + lx
2��vxlx − ivy sgn�l���
�l�� + lx

2�

1

2�
�l�� + lx
2

. �A18�

Changing variables to u=�
�l��+ lx
2,


��p,q� =
UV 2

N

�

−�

� dlx

2�
�

�lx�

� du

2�

1

vx
2lx

2 + vy
2u2 . �A19�

We now go to polar coordinates, vxlx+ ivyu= �v� � ei�,


��p,q� =
UV 1

N��2�vxvy
��0

� d 

 
�

tan−1 �

�−tan−1 �

d� . �A20�

The integral over  is logarithmically divergent in the UV;
cutting off the integral at  ��,


��p,q� =
UV 2

�nN
tan−1 1

�
log � . �A21�

4. Boson self-energy

We now proceed to the 1 /N corrections to the boson self-
energy, Fig. 7. We first analyze the contribution of diagrams
�a�, �b�, and �c�, which we label 
�I. Utilizing expression
�2.15� for the fermion induced quartic coupling, we obtain,


�I
ab�q� =

1

2
� dl�d

2l�

�2��3 �abcc�q,− q,l,− l�D�l�

=� dl�d
2l�

�2��3 �fabcc�q,− q,l,− l� + faccb�q,l,− l,− q�

+ facbc�q,l,− q,− l��D�l� . �A22�

The first two terms in Eq. �A22� vanish �these terms corre-
spond to the diagrams in Figs. 7�a� and 7�b��. Thus, only the
diagram in Fig. 7�c� contributes


�I�q�,q�� = �q��A�q�,q�� + B�q�,q�� , �A23�

with

A�q�,q�� = −
N

�vxvy



�
� dl�d

2l�

�2��3 G1
��l − q�G2

��l + q�D�l� ,

�A24�

B�q�,q�� =
N

�vxvy



�
� dl�d

2l�

�2��3 �l��G1
��l − q�G2

��l + q�D�l� .

�A25�

The quantity A�q� ,q�� is logarithmically divergent in the UV.
The coefficient of the divergence may be extracted by setting
the external momenta and r to zero. Then, from Eq. �A16�,
we recognize

A�q�,q�� =
UV N

�vxvy



�


��p,q� =
4


n�
tan−1 1

�
log � .

�A26�

Now, let us evaluate B. We temporarily keep only the con-
tribution from the hot spot pair �=1.

B�=1�q�,q�� =
1

�vxvy
� dl�d

2l�

�2��3

�l��
�
�l�� + lx

2 + ly
2 + r�

�
1

„vxlx + vyly − v�1 · q� − i��l� − q��…

�
1

„− vxlx + vyly + v�2 · q� − i��l� + q��…
.

�A27�

Note that the region �l��� �q�� does not contain any UV di-
vergences. Thus, to compute the UV divergent part, we can
confine our attention to the region �l��! �q��. In this case, the
two poles in ly coming from the fermion propagators in Eq.
�A27� lie in the same half-plane; we may choose to close the
ly integration contour in the opposite half-plane, picking up
the pole from the bosonic propagator,

B�=1�q�,q�� =
UV 1

�vxvy

�
�l��!�q��

dl�dlx

�2��2

�l��

2�
�l�� + lx
2 + r

�
1

vxlx − ivy sgn�l���
�l�� + lx
2 + r − v�1 · q�

�
1

− vxlx − ivy sgn�l���
�l�� + lx
2 + r + v�2 · q�

.

�A28�

Note that we may extend the integration over l� in Eq. �A28�
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back to the whole real line without influencing the UV part
of the result. Thus,

B�=1�q�,q�� =
UV

−
1

�vxvy
�

0

� dl�

2�
�

−�

� dlx

2�

�
1

�vxlx − ivy
�
l� + lx

2 + r − v�1 · q��

�
1

�vxlx + ivy
�
l� + lx

2 + r − v�2 · q��

l�

2�
l� + lx
2 + r

+ c.c. �A29�

It is convenient to change variables to u=�
�l��+ lx
2+r,

B�=1�q�,q�� =
UV

−
1

�vxvy

2�

−�

� dlx

2�
��lx

2+r

� du

2�

�
u2 − lx

2 − r

�vxlx − ivyu − v�1 · q���vxlx + ivyu − v�2 · q��
+ c.c.

�A30�

The r in the lower limit of the integral over u may be
dropped without influencing the UV behavior. We now go to
polar coordinates, vxlx+ ivyu= �v� � ei�,

B�=1�q�,q�� =
UV

−
1

��2�vxvy
�2

�v� �2

vxvy
�  d 

��
tan−1 �

�−tan−1 �

d�

 2� 1

�
sin2 � − � cos2 �� −

vxvy

�v� �2
r

� ei� − v̂2 · q��� e−i� − v̂1 · q��

+ c.c. �A31�

The integral over  is quadratically divergent. Expanding the
divergent part in q� and r,

B�=1�q�,q�� =
UV

−
2

�n2

�v� �2

vxvy
�  d �

tan−1 �

�−tan−1 �

d��� 1

�
sin2 �

− � cos2 ���1 +
1

 
�v̂1 + v̂2� · q� cos �

+
1

 2 ��v̂1 · q���v̂2 · q�� + „�v̂1 · q��2

+ �v̂2 · q��2
…cos 2��� −

vxvy

�v� �2
r

 2� . �A32�

As usual, the term constant in q� corresponds to a shift in the
position of the critical point and will be dropped below. The
term linear in q� vanishes under �→�−�, i.e., lx→−lx �more
rigorously, this term must vanish by symmetry, once the con-
tributions from all four pairs of hot spots are summed�. Fi-
nally, the term quadratic in q� and the term linear in r give
logarithmic divergences. Cutting off the integral over  at
 ��,

B�=1�q�,q�� =
UV 4

�n2 log �� qx
2

�2�tan−1 1

�
+

�

1 + �2�
+ �2qy

2�tan−1 1

�
−

�

1 + �2� + r tan−1 1

�
� .

�A33�

Now, summing over the four pairs of hot spots, we restore
rotational invariance,

B�q�,q�� =
2

�n
� 1

�
− � + � 1

�2 + �2�tan−1 1

�
�q�2 log �

+
4

�n
tan−1 1

�
r log � . �A34�

We now compute the diagram in Fig. 7�d�, which we label

�II. This diagram is present already in the Hertz-Millis
theory and, being momentum independent, leads only to a
renormalization of r,


�II�q� = 5u� dl�d
2l�

�2��3 D�l�

=
UV

−
5

N
ur� dl�d

2l�

�2��3

1

�
�l�� + l�2�2

= −
5ur

�N

� d2l�

�2��2

1

l�2

= −
5

2�2N
ũr log � . �A35�

Now combining Eqs. �A23�, �A26�, �A34�, and �A35� we
obtain the UV part of the correction to the boson propagator,
Eq. �3.34�.

APPENDIX B: VIOLATIONS OF LARGE-N COUNTING

1. Boson-fermion vertex correction at three loops

In this section we compute the vertex correction in Fig. 9.
As shown in Sec. IV, an attempt to evaluate this graph di-
rectly with bare fermion propagators results in infrared di-
vergences. To cure this problem, we dress the fermion propa-
gators by the one-loop self-energy �3.26�. For simplicity, we
include only the imaginary part of the self-energy respon-
sible for the dynamics. The frequency independent real part
responsible for the logarithmic running of the velocity v will
be ignored here. Thus, we use

Gi
���,k�� =

1

− i
cf

N
g��, v̂

ī

�
· k�� + v� i

� · k�
, �B1�

where 1̄=2, 2̄=1 and

g��,k� = sgn�����
��� + k2 − �k��, cf =
3

2��v� �

. �B2�

Then, the diagram in Fig. 9 is given by
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���2�1
† = − 28N� d3k

�2��3

d3l1

�2��3

d3l2

�2��3G1
−1�k�G2

−1�k − l1�

�G1
−1�k − l2�G2

−1�k�G2
1�l1�G1

1�l2�

�D�l1�D�l2�D�l2 − l1� . �B3�

The external fermions are taken to have hot spot index �
=1, while the fermions in the loop are taken to have ��
=−1. As discussed in Sec. IV, the contributions from ��=2
and ��=4 are not enhanced in N, while ��=1 contributes a
UV finite term of O�1� when the external fermion momenta
are chosen to lie on the Fermi surface. As we are mainly
interested in corrections to mean-field scaling, we only retain
UV divergent contributions below. Hence, all the external
momenta of the diagram have been set to 0. Substituting the
one-loop corrected propagators �B1�, we obtain


���2�1
† = − 28N� d3k

�2��3

d3l1

�2��3

d3l2

�2��3

�
1

− i
cf

N
g�k�, v̂1 · k�� − v�2 · k�

�
1

− i
cf

N
g�k�, v̂2 · k�� − v�1 · k�

�
1

− i
cf

N
g�k� − l1�, v̂1 · �k� − l�1�� − v�2 · �k� − l�1�

�
1

− i
cf

N
g�k� − l2�, v̂2 · �k� − l�2�� − v�1 · �k� − l�2�

�
1

− i
cf

N
g�l1�, v̂1 · l�1� + v�2 · l�1

�
1

− i
cf

N
g�l2�, v̂2 · l�2� + v�1 · l�2

D�l1�D�l2�D�l1 − l2� .

�B4�

We may divide the spatial momenta into two groups: v̂1 ·k�,
v̂2 ·k�, v̂2 · l�1, v̂1 · l�2 and v̂1 · l�1, v̂2 · l�2. The singular manifold of
the diagram is given by setting the momenta in the first
group to zero and can be parameterized by the two variables
in the second group. We begin by integrating over the first
set of variables, picking up the contribution from the poles of
the fermion propagators. As this integration is saturated at
momenta of O�1 /N�, we can neglect the dependence of the
boson propagators and fermion self-energies on these mo-
menta. We then obtain the result in terms of an integral over
the singular manifold.

Due to the symmetry, G�l�=−G�−l�, the contributions to
the integral from k�!0 and k��0 are equal. Now, changing
momentum variables to v̂1 · p� , v̂2 · p� , and integrating over
v̂2 · l�1, v̂1 · l�2,


���2�1
† = − 7N

�v� �4

�vxvy�3�
0

� dk�

2�
� d�v̂1 · k��d�v̂2 · k��d�v̂1 · l�1�d�v̂2 · l�2�

�2��4 ��
k�

�

− �
−�

0 �dl1�

2� ��
k�

�

− �
−�

0 ��dl2�

2�

�D�l1�D�l2�D�l1 − l2��
v̂1·l�2=v̂2·l�1=0

�
1

− i
cf

N
�g�l1�, v̂1 · l�1� − g„k� − l1�, v̂1 · �k� − l�1�…� + v�2 · k�

�
1

i
cf

N
g�k�, v̂1 · k�� + v�2 · k�

1

− i
cf

N
�g�l2�, v̂2 · l�2� − g„k� − l2�, v̂2 · �k� − l�2�…� + v�1 · k�

1

i
cf

N
g�k�, v̂2 · k�� + v�1 · k�

. �B5�

Now, performing the integral over v̂1 ·k�, v̂2 ·k�,


���2�1
† = − 7N3 �v� �2

�vxvy�3cf
2�

0

� dk�

2�
�

k�

� dl1�

2�
�

k�

� dl2�

2�
� d�v̂1 · l�1�d�v̂2 · l�2�

�2��2

1

g�k�,0� + g�l1�� + g�l1� − k�, v̂1 · l�1�

�� 1

g�k�,0� + g�l2�� + g�l2� − k�, v̂2 · l�2�
� D�l1�D�l2�D�l1 − l2��

v̂1·l�2=v̂2·l�1=0

.

Changing variables to l1,2�=k�x1,2, l1,2y =�
k�y1,2,


���2�1
† =

1

2
X����

0

� dk�

k�

= X���log � , �B6�

with
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X��� = −
7

18�2n
� 1

�
+ ��2�

1

�

dx1�
1

�

dx2�
−�

�

dy1�
−�

�

dy2
1

�x1 + y1
2 + �x1 − 1 + y1

2 − 2�y1� + 1
�

1

�x2 + y2
2 + �x2 − 1 + y2

2 − 2�y2� + 1

�
1

x1 +
1

4
� 1

�
+ ��2

y1
2

�
1

x2 +
1

4
� 1

�
+ ��2

y2
2

�
1

�x1 − x2� +
1

4
� 1

�
+ ��2

�y1
2 + y2

2� −
1

2
� 1

�2 − �2�y1y2

. �B7�

2. Quartic vertex

In this section we evaluate the five loop correction to the
boson four-point function shown in Fig. 18. We recall that by
the particle-hole symmetry of our theory, diagrams with a
reversed direction of the two fermion loops have the same
value. We focus only on the diagrams where the fermions in
the two loops come from opposite hot spots as these give a
result, which is of O�N3� and logarithmically divergent. To
identify the coefficient of the logarithmic divergence we may
set all the external momenta to zero. Then by rotational in-
variance each hot spot pair gives the same contribution.
Moreover, we can also consider the diagram as in Fig. 18 but
with fermions 1 and 2 interchanged. By reflection symmetry,
this has the same UV divergence. Finally, we should be able
to absorb the UV divergence into the coefficient of the quar-
tic vertex ��� 2�2, which specifies the spin structure,


�4
a1a2a3a4 =

UV1

3
�
a1a2
a3a4 + 
a1a3
a2a4 + 
a1a4
a2a3�
�4

3333

�B8�

and


�4
3333 = − 4 · 6 · 2 · n · S · N2

�� d3p1d3p2d3l1d3l2d3l3

�2��15 D�l1�D�l3�D�l1 − l2�

�D�l2 − l3�G1
1�p1�G2

1�p1�2G1
1�p1 − l1�G2

1�p1 − l2�

�G1
1�p1 − l3�G1

−1�p2�G2
−1�p2�2G1

−1�p2 − l1�

�G2
−1�p2 − l2�G1

−1�p2 − l3� , �B9�

with

S = tr��3�3�a�b�c�d�tr��3�3�a�b�c�d� = 84. �B10�

We will use the same strategy for evaluating integral �B9�
as for computing the vertex correction in Appendix B 1. The
singular manifold in the present case is specified by vanish-
ing p�1, p�2, v̂1 · l�1, v̂2 · l�2, v̂1 · l�3 and can be parametrized by the
three momenta v̂2 · l�1, v̂1 · l�2, v̂2 · l�3. We will integrate explic-
itly over the first set of momenta and leave the result as an
integral over the later three momenta.

Let us call I�p1� , p2�� the result of integrating over all
momenta and frequencies in Eq. �B9�, except p1� and p2�.
Then, using the particle-hole symmetry, G�p�=−G�−p�, and
the inversion symmetry, G−1�p� , p��=G1�p� ,−p��, we obtain
I�p1� , p2��= I�−p1� ,−p2�� and I�p1� , p2��= I�p2� , p1��. Thus,


�4
3333 = − 210 · 32 · 7 · N2� �v� �2

2vxvy
�5�

0

� dp1�

2�
�

−p1�

p1� dp2�

2�

�� dl1�dl2�dl3�

�2��3 � d�v̂1 · p�1�d�v̂2 · p�1�d�v̂1 · p�2�d�v̂2 · p�2�d�v̂1 · l�1�d�v̂2 · l�1�d�v̂1 · l�2�d�v̂2 · l�2�d�v̂1 · l�3�d�v̂2 · l�3�
�2��10

�
1

− i
cf

N
g�p1�,0� + v�1 · p�1

�
1

�− i
cf

N
g�p1�,0� + v�2 · p�1�2 �

1

− i
cf

N
g�p1� − l1�, v̂2 · l�1� + v�1 · �p�1 − l�1�

�
1

− i
cf

N
g�p1� − l2�, v̂1 · l�2� + v�2 · �p�1 − l�2�

�
1

− i
cf

N
g�p1� − l3�, v̂2 · l�3� + v�1 · �p�1 − l�3�

�
1

− i
cf

N
g�p2�,0� − v�1 · p�2

�
1

�− i
cf

N
g�p2�,0� − v�2 · p�2�2 �

1

− i
cf

N
g�p2� − l1�, v̂2 · l�1� − v�1 · �p�2 − l�1�

�
1

− i
cf

N
g�p2� − l2�, v̂1 · l�2� − v�2 · �p�2 − l�2�
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�
1

− i
cf

N
g�p2� − l3�, v̂2 · l�3� − v�1 · �p�2 − l�3�

� D�l1�D�l3�D�l1 − l2�D�l2 − l3� . �B11�

Integrating over v̂1 · l�1, v̂2 · l�2, v̂1 · l�3,


�4
3333 = − i210 · 32 · 7 · N2 �v� �7

�2vxvy�5�
0

� dp1�

2�
�

−p1�

p1� dp2�

2� ��
p1�

�

− �
−�

p2� �dl1�

2� ��
p1�

�

− �
−�

p2� �dl2�

2� ��
p1�

�

− �
−�

p2� �dl3�

2�

�� d�v̂1 · p�1�d�v̂2 · p�1�d�v̂1 · p�2�d�v̂2 · p�2�d�v̂2 · l�1�d�v̂1 · l�2�d�v̂2 · l�3�
�2��7

1

− i
cf

N
g�p1�,0� + v�1 · p�1

�
1

�− i
cf

N
g�p1�,0� + v�2 · p�1�2 �

1

− i
cf

N
g�p2�,0� − v�1 · p�2

�
1

�− i
cf

N
g�p2�,0� − v�2 · p�2�2

�
1

− i
cf

N
„g�p1� − l1�, v̂2 · l�1� + g�p2� − l1�, v̂2 · l�1�… + v�1 · �p�1 − p�2�

�
1

− i
cf

N
„g�p1� − l2�, v̂1 · l�2� + g�p2� − l2�, v̂1 · l�2�… + v�2 · �p�1 − p�2�

�
1

− i
cf

N
„g�p1� − l3�, v̂2 · l�3� + g�p2� − l3�, v̂2 · l�3�… + v�1 · �p�1 − p�2�

� D�l1�D�l3�D�l1 − l2�D��l2 − l3��v̂1·l�1=v̂2·l�2=v̂1·l�3=0.

�B12�

Now, integrating over v̂1 · p�1, v̂2 · p�1,


�4
3333 = − i210 · 32 · 7 · N2 �v� �5

�2vxvy�5�
0

� dp1�

2�
�

−p1�

p1� dp2�

2�
�

p1�

� dl2�

2�

� � d�v̂1 · p�2�d�v̂2 · p�2�d�v̂2 · l�1�d�v̂1 · l�2�d�v̂2 · l�3�
�2��5

1

− i
cf

N
g�p2�,0� − v�1 · p�2

�
1

�− i
cf

N
g�p2�,0� − v�2 · p�2�2

�
1

�− i
cf

N
„g�p1�,0� + g�l2� − p1�, v̂1 · l�2� + g�l2� − p2�, v̂1 · l�2�… + v�2 · p�2�2

� ��p1�

� dl1�

2�
�

p1�

� dl3�

2�

1

i
cf

N
„g�p1�,0� + g�l1� − p1�, v̂2 · l�1� + g�l1� − p2�, v̂2 · l�1�… − v�1 · p�2

�
1

i
cf

N
„g�p1�,0� + g�l3� − p1�, v̂2 · l�3� + g�l3� − p2�, v̂2 · l�3�… − v�1 · p�2

+ �
p1�

� dl1�

2�
�

−�

p2� dl3�

2�

1

− i
cf

N
„g�p1�,0� + g�l1� − p1�, v̂2 · l�1� + g�l1� − p2�, v̂2 · l�1�… + v�1 · p�2

�
1

− i
cf

N
„g�l1� − p1�, v̂2 · l�1� + g�l1� − p2�, v̂2 · l�1� + g�p1� − l3�, v̂2 · l�3� + g�p2� − l3�, v̂2 · l�3�…
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+ �
−�

p2� dl1�

2�
�

p1�

� dl3�

2�

1

− i
cf

N
„g�p1�,0� + g�l3� − p1�, v̂2 · l�3� + g�l3� − p2�, v̂2 · l�3�… + v�1 · p�2

�
1

− i
cf

N
„g�p1� − l1�, v̂2 · l�1� + g�p2� − l1�, v̂2 · l�1� + g�l3� − p1�, v̂2 · l�3� + g�l3� − p2�, v̂2 · l�3�…�

� D�l1�D�l3�D�l1 − l2�D��l2 − l3��v̂1·l�1=v̂2·l�2=v̂1·l�3=0. �B13�

Observe that under l1↔ l3 the first term in the square brackets is invariant, while the second and third terms map into each
other. Utilizing this fact and integrating over v̂1 · p�2, v̂2 · p�2,


�4
3333 = − 212 · 32 · 7 · N7 �v� �3

�2vxvycf�5�
0

� dp1�

2�
�

0

p1� dp2�

2�
�

p1�

� dl1�

2�
�

p1�

� dl2�

2�

�� d�v̂2 · l�1�d�v̂1 · l�2�d�v̂2 · l�3�
�2��3

1

g�p1�,0� + g�p2�,0� + g�l1� − p1�, v̂2 · l�1� + g�l1� − p2�, v̂2 · l�1�

�
1

„g�p1�,0� + g�p2�,0� + g�l2� − p1�, v̂1 · l�2� + g�l2� − p2�, v̂1 · l�2�…3

� ��
p1�

l1� dl3�

2�

1

g�p1�,0� + g�p2�,0� + g�l3� − p1�, v̂2 · l�3� + g�l3� − p2�, v̂2 · l�3�

+ �
−�

p2� dl3�

2�

1

g�l1� − p1�, v̂2 · l�1� + g�l1� − p2�, v̂2 · l�1� + g�p1� − l3�, v̂2 · l�3� + g�p2� − l3�, v̂2 · l�3�
�

�D�l1�D�l3�D�l1 − l2�D��l2 − l3��v̂1·l�1=v̂2·l�2=v̂1·l�3=0. �B14�

We now introduce dimensionless variables, p2�=xp1�, li�=yip1�, v̂2 · l�1=�
p1�z1, v̂1 · l�2=�
p1�z2, v̂2 · l�3=�
p1�z3. Then,


�4
3333 =

1

2
N3Y���
�

0

� dp1�

p1�

= N3Y���
 log � , �B15�

with

Y��� = −
56

27�2� 1

�
+ ��4�

0

1

dx�
1

�

dy1�
1

�

dy2�
−�

�

dz1�
−�

�

dz2�
−�

�

dz3 �
1

1 + �x + �y1 − 1 + z1
2 + �y1 − x + z1

2 − 2�z1�

�
1

�1 + �x + �y2 − 1 + z2
2 + �y2 − x + z2

2 − 2�z2��3
� ��

1

y1

dy3
1

1 + �x + �y3 − 1 + z3
2 + �y3 − x + z3

2 − 2�z3�

+ �
−�

x

dy3
1

�y1 − 1 + z1
2 + �y1 − x + z1

2 + �1 − y3 + z3
2 + �x − y3 + z3

2 − 2�z1� − 2�z3�
�

�
1

y1 +
1

4
� 1

�
+ ��2

z1
2

1

�y3� +
1

4
� 1

�
+ ��2

z3
2

1

�y1 − y2� +
1

4
� 1

�
+ ��2

�z1
2 + z2

2� +
1

2
��2 −

1

�2�z1z2

�
1

�y2 − y3� +
1

4
� 1

�
+ ��2

�z2
2 + z3

2� +
1

2
��2 −

1

�2�z2z3

. �B16�
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3. Pairing vertex

This appendix will describe the direct evaluation of the
pairing vertex correction in Eq. �5.5�. We first attempt to
perform the calculation using bare fermion propagators,


�V�†�† =
− 3�

N�v� �2 � dl�dl�dl�

�2��3

1


�l�� + l�
2 + l�

2

�
1

l� − v̂2 · k�1 − i
�

�v� �
�l� − k1��

�
1

l� + v̂2 · k�−1 + i
�

�v� �
�l� + k−1��

,

where we have introduced variables l�= v̂2 · l�, l� =�ij�v̂2�ilj.
For simplicity, let us choose k1�=k−1�=�!0. We now per-
form the integral over l�. For �l���� both poles in the fer-
mion propagators are in the same half-plane and we can pick
up just the pole from the bosonic propagator. In the opposite
regime, �l��!�, we get contributions from both the bosonic
and fermionic poles. Thus,


�V�†�† = −
3�

N�v� �2�− �
0

� dl�

2�
� dl�

2�

1

�
l� + l�
2

�
1

�
l� + l�
2 + iv̂2 · k�1

1

�
l� + l�
2 − iv̂2 · k�−1

�
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+
�v� �
2�
�

�

� dl�

2�
� dl�

2�� 1

l� − i
v�2

�
· �k�1 + k�−1�

1


l� + l�
2 + �v̂2 · k�1�2�

�B18�

+�� 1

l� + i
v�2

�
· �k�1 + k�−1�

1


l� + l�
2 + �v̂2 · k�−1�2�� . �B19�

The contribution from the bosonic pole in Eq. �B17� gives an
expected logarithmic divergence,


bos�V�†�† �
3�

N�2
�v� �2
log

�

�v̂2 · k��
. �B20�

On the other hand, the contribution from the fermionic poles
in Eqs. �B18� and �B19� gives a much stronger infrared sin-
gularity. If we set the total momentum of the fermion pair
k�1+k�−1 to zero, then


 fer�V�†�† � −
3�

4�N��v�2 · k�1�
f� 
���

�v̂2 · k�1�2
� , �B21�

with

f�a� = �
a

�

dx
1

x

1
�x + 1

. �B22�

If the total pair momentum is nonvanishing, in particular, if


� �v�2 · �k�1+k�−1��" �v�2 ·k�1�2 ,
�, then,


 fer�V�†�† = −
3�

4N�v� ��2
�

1

��v�2 · �k�1 + k�−1��
. �B23�

As usual, we cure the strong infrared divergences by using a
one-loop dressed fermion propagator �B1�. Then,


�V�†�†�k1,k−1�

= −
3�

N�v� �2 � d3l

�2��3

1


�l�� + l�2

�
1

v̂2 · �l� − k�1� − i
cf

N�v� �
g„l� − k1�, v̂1 · �l� − k�1�…

�
1

v̂2 · �l� + k�−1� + i
cf

N�v� �
g„l� + k−1�, v̂1 · �l� + k�−1�…

.

For simplicity, we take the external fermion momenta to lie
at the hot spots, k�1=k�−1=0. Moreover, as before, we choose
the external frequencies, k1�=k−1�=�!0. Switching to vari-
ables, l�, l�, we perform the integral over l�. As we saw
above, the contribution from the pole in the bosonic propa-
gator could be calculated without dressing the fermion
Green’s function and was of O�1 /N�—we drop this piece
below. On the other hand, as we will see, the contribution
from the poles in fermionic propagators is of O�1� in N.
Moreover, since l��O�1 /N� at these poles, we may ignore
the dependence of the fermion self-energy on l�, which
gives, v̂1 · l�= 2�

�2+1
l�. In this manner, we obtain


�V�†�† = −
6�

cf�v� ���

� dl�

2�
� dl�

2�

1


l� + l�
2

�
1

g�l� − �,
2�

�2 + 1
l�� + g�l� + �,

2�

�2 + 1
l�� .

�B24�

We now perform the integral over l�. This integral is conver-
gent in the ultra-violet. However, when �→0, it is logarith-
mically divergent in the infrared. This infrared divergence
comes from the region 
l�� l�

2. Changing variables to 
l�

=xl�
2, we obtain,
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�V�†�† = −
3�

�2
�v� �cf
�

0

� dl�

l�
�


�/l�
2

dx

x + 1

1

�x + � 2�

�2 + 1
�2

−

�

l�
2 +�x + � 2�

�2 + 1
�2

+

�

l�
2 −

4�

�2 + 1

. �B25�

For l�
2"
�, performing the integral over x to logarithmic

accuracy,


�V�†�† � −
6��

�2
�v� �cf��2 + 1���
�

� dl�

l�

log� l�
2


�
�

= −
��

���2 + 1�
log2� �2


�
� . �B26�

4. Density vertex

In this appendix, we compute the one-loop renormaliza-
tion of the density-wave vertex, shown in Fig. 20�b�,


�O��†�k1,k−1� = 3�� d3l

�2��3D�l�G2
1�k1 − l�G2

−1�k−1 − l� .

�B27�

If we ignore the effects of Fermi-surface curvature, G�l�
=−G�−l�, and Eq. �B27� reduces to its counterpart in the
superconducting channel with k−1→−k−1. In the present cal-
culation, we will keep the effects of the Fermi-surface cur-
vature using a propagator

Gi
��l� =

1

−
icf

N
g�l�, v̂ī

�
· l�� + v� i

� · l� + �n̂�,i
� · l��2

. �B28�

Here, we ignore any dressing of the curvature by the inter-
actions.

For simplicity, we set external momenta to zero and
choose k1�=−k−1�=�!0. As in Appendix B 3, we introduce
variables l�= v̂2 · l�, l� =�ij�v̂2�ilj. Proceeding as in Sec. V, we
keep only the contribution to integral �B27� from the Fermi
liquid regime, 
l�� l�

2. Then,


�O��† =
3�

N
� dl�

2�
�


�l���l�
2

dl�

2�
� dl�

2�

1

l�
2

�
1

iZ−1�l���l� − �� − �v� �l� −
1

2m
l�
2

�
1

iZ−1�l���l� + �� + �v� �l� −
1

2m
l�
2

. �B29�

Performing the integral over l�,


�O��† = −
3�

N�v� � � dl�

2�
�

�

l�
2/
 dl�

2�

Z�l��

l�
2

l�

l�
2 + �Z�l��l�

2

2m
�2 .

�B30�

Notice that the Fermi-surface curvature is present in the de-
nominator of Eq. �B30�. This is in contrast to the correspond-
ing calculation in the superconducting channel, where the
Fermi-surface curvature drops out. Performing the integral
over l�,


�O��† = −
3�

2�N�v� ���
�

� dl�

2�

Z�l��

l�
2 log

l�
4

�
��2 + �
Z�l��l�
2

2m
�2 ,

�B31�

where we have ignored terms subleading in l� in the numera-
tor of the logarithm. Recall, Z�l���N�v� �l�. Hence, for l�

� �m� /N�v� ��1/3 the l� integral is cutoff in the infrared by the
external frequency and the Fermi surface curvature may be
neglected. On the other hand, for l� " �m� /N�v� ��1/3 the inte-
gral is cutoff by the curvature. By comparison, in the super-
conducting channel the integral is cutoff by the external fre-
quency in both regimes resulting in a stronger enhancement.
Notice that the crossover scale �m� /N�v� ��1/3 is much larger
than the infrared cutoff of the l� integral �
�. Evaluating the
integral over l� to leading logarithmic accuracy,


�O��† = −
��

3���2 + 1�
log2� �2


�
� . �B32�
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