
Selected for a Viewpoint in Physics

PHYSICAL REVIEW B 83, 075303 (2011)

Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states

Parsa Bonderson,1 Victor Gurarie,2 and Chetan Nayak1,3

1Microsoft Station Q, Elings Hall, University of California at Santa Barbara, Santa Barbara, California 93106, USA
2Department of Physics, CB390, University of Colorado, Boulder, Colorado 80309, USA

3Deparment of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
(Received 31 August 2010; published 7 February 2011)

We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which are likely
candidates to explain the observed Hall conductivity plateaus in the second Landau level, most notably the one
at filling fraction ν = 5/2. We complete the program started in V. Gurarie and C. Nayak, [Nucl. Phys. B 506,
685 (1997)]. and show that the degenerate four-quasihole and six-quasihole wave functions of the Moore-Read
Pfaffian state are orthogonal with equal constant norms in the basis given by conformal blocks in a c = 1 + 1

2
conformal field theory. As a consequence, this proves that the non-Abelian statistics of the excitations in this state
are given by the explicit analytic continuation of these wave functions. Our proof is based on a plasma analogy
derived from the Coulomb gas construction of Ising model correlation functions involving both order and (at most
two) disorder operators. We show how this computation also determines the non-Abelian statistics of collections
of more than six quasiholes and give an explicit expression for the corresponding conformal block-derived wave
functions for an arbitrary number of quasiholes. Our method also applies to the anti-Pfaffian wave function and
to Bonderson-Slingerland hierarchy states constructed over the Moore-Read and anti-Pfaffian states.
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I. INTRODUCTION

Non-Abelian braiding statistics1–7 is currently the subject
of intense study, partly because the experimental observation
of a non-Abelian anyon would be a remarkable milestone in
fundamental science and partly because of its potential ap-
plication to topologically fault-tolerant quantum information
processing.8–16 At present, the state which is the best candidate
to support quasiparticles with non-Abelian braiding statistics
is the experimentally observed ν = 5/2 fractional quantum
Hall state.17–21 Efforts to observe non-Abelian anyons in this
state22–29 and harness them for quantum computation23,30–33

are predicated entirely on two assumptions: (i) The observed
state is in the same universality class as either the Moore-
Read (MR) Pfaffian state34 or the anti-Pfaffian state,35,36 an
assumption which is supported by numerical studies.37–40

(There is another non-Abelian candidate, the so-called SU(2)2

NAF state,41 for this plateau, but it is not supported by
numerics.) (ii) Quasiparticle excitations above these ground
states are non-Abelian anyons. In order for this assumption
to hold, it is necessary for there to be a degenerate set
of n-quasiparticle states and for quasiparticle braiding to
transform these states into each other in such a way that
different braiding transformations do not commute.

Moore and Read34 conjectured that the MR Pfaffian state is
non-Abelian while Greiter, Wen, and Wilczek42 argued that it
is Abelian. It was subsequently shown by Nayak and Wilczek43

and by Read and Rezayi44 that there is a 2� n
2 �−1-fold degenerate

set of n quasiparticle states. To show that assumption (ii) is
correct, it is further necessary to show that these degenerate
states are transformed into each other by noncommuting
transformations enacted by quasiparticle braiding. Several
different arguments43,45–54 strongly support this hypothesis,
but a proof has been missing until now. By “proof,” we
mean an argument that relies on no unproven assumptions
beyond the existence of an excitation gap and the existence
of a screening phase for particular classical two-dimensional

(2D) plasmas at a particular temperature and, therefore, is
at the same level of rigor as the Berry’s phase calculation
for quasiparticles in the ν = 1/M Laughlin states.55 In this
paper, we supply such a proof by mapping matrix elements of
the MR Pfaffian state to the partition function of a classical
multi-component 2D plasma, possibly with magnetic charges.
Our derivation extends and completes a partial result obtained
in Ref. 45. Numerical studies provide very strong evidence that
the plasmas corresponding to the ν = 1/M Laughlin states
with M � 70 are in the screening phase.56 Similar numerical
evidence confirming that the plasma (described in our paper)
corresponding to the ν = 1/2 MR state is in the screening
phase has recently also been obtained.57

One approach to the calculation of the braiding statistics of
quasiparticles in fractional quantum Hall states is based on an
idea due to Moore and Read.34 These authors proposed to use
the conformal blocks of conformal field theories58,59 (CFTs) as
trial wave functions for fractional quantum Hall effect states.
The conformal blocks are the holomorphic parts of correlation
functions. Unlike correlation functions, conformal blocks are
not single valued. The conformal blocks which are used as
trial wave functions for fractional quantum Hall effect states
are single valued in electron coordinates but are not single
valued in the coordinates of the quasiparticles, and it was
conjectured that the properties of the conformal blocks under
analytic continuation of the quasiparticle coordinates define
their non-Abelian statistics.

However, as emphasized by Blok and Wen,60 the analytic
continuation properties of wave functions are only part of the
story. An additional contribution to the statistics is given by
the Berry’s matrix.55,60–63 Wave function analytic continuation
only gives the quasiparticle statistics correctly if the conformal
blocks, as electron wave functions, have matrix elements
which are independent of the quasiparticle coordinates (when
they are well separated). This includes, but is not limited to,
the diagonal matrix elements, which are the wave functions’

075303-11098-0121/2011/83(7)/075303(52) ©2011 American Physical Society

http://link.aps.org/viewpoint-for/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1016/S0550-3213(97)00612-3
http://dx.doi.org/10.1016/S0550-3213(97)00612-3
http://dx.doi.org/10.1103/PhysRevB.83.075303


PARSA BONDERSON, VICTOR GURARIE, AND CHETAN NAYAK PHYSICAL REVIEW B 83, 075303 (2011)

norms. When this condition is satisfied, the Berry’s matrix is
trivial, apart from a term which accounts for the Aharonov-
Bohm phase due to the (charged) quasiparticles’ motion in
the magnetic field. This is because the wave functions are
holomorphic in the quasihole coordinates, except for the
Gaussian factors (which give rise to the resulting Aharonov-
Bohm terms).

The effective field theory of a fractional quantum Hall
state is expected to be a Chern-Simons theory. Chern-Simons
theories are related to CFTs:64 the Hilbert space of a Chern-
Simons theory with fixed nondynamical charges at points
η1, . . . ,ηn is equal to the vector space of conformal blocks in
an associated CFT with primary fields at η1, . . . ,ηn. Thus, if
the multi-quasiparticle wave functions of a fractional quantum
Hall state can be identified with the conformal blocks of a CFT,
it is very natural to conclude that this fractional quantum Hall
state is in the universality class of the associated Chern-Simons
theory. In fact, one can hardly imagine any other possibility.
However, this identification is only correct if the braiding
properties of the multi-quasiparticle wave functions are equal
to those of the Chern-Simons theory. This, in turn, requires the
Berry matrix (in the basis given by the conformal blocks) to
be trivial.

Thus, the logic may be summarized as follows.43,52 Let
us suppose that the quasiparticles of some quantum Hall state
have the special property that when n quasiparticles are present
at arbitrary fixed positions η1, . . . ,ηn, there is a q-dimensional
spaceVn of degenerate states of the system. Now let us suppose
that �α(ημ; zi) with α = 0,1, . . . ,q − 1 are the q conformal
blocks of a correlation function in a CFT, where z1, . . . ,zN are
the coordinates of the N electrons. (We choose the CFT and
the operators in the conformal block so that they are single
valued in the zi , but possibly multivalued in the ημ.) If the
�α(ημ; zi) form a basis for Vn, then we wish to show that the
overlap integrals,

Gα,β (η̄μ,ημ) ≡
∫ N∏

k=1

d2zk �̄α(η̄μ; z̄i)�β(ημ; zi), (1)

are proportional to δαβ and independent of the quasiparticle
positions ημ in the limit where the ημ are far apart from each
other. If we can show this, then the braiding properties of the
n quasiparticles are determined by the analytic continuation
properties of the wave fuctions �α(ημ; zi).

There is significant previous literature which addresses
this problem by analytic or numerical methods.43,45,48,51–54 In
Sec. XIII, we will discuss these previous results and clarify
their relation to the result of this paper.

In this paper, we prove that, for the MR Pfaffian state, the
overlap integrals of Eq. (1) are diagonal and independent of
the quasiparticle positions ημ, in the limit in which the ημ are
far apart from each other. Specifically, we show that

Gα,β(η̄μ,ημ) = Cδαβ + O(e−|ημ−ην |/�), (2)

which allows us to define orthonormal states |�α(ημ)〉 by
dividing by the common normalization constant,

〈zi |�α(ημ)〉 ≡ G−1/2
α,α (η̄μ,ημ)�α(ημ; zi). (3)

We obtain Eq. (2) by expressing the desired matrix elements
in the form of the partition function of a classical plasma

and relying on the screening property of a plasma, thereby
extending Laughlin’s plasma analogy65 arguments to these
non-Abelian states. Our derivation completes the program
started in Ref. 45, where such a plasma representation was used
to prove that the diagonal sum of norms in Eq. (1),

∑
α Gα,α , is

a constant independent of the quasiparticle positions (so long
as they are well separated). The methods used there did not,
however, allow one to prove that their norms are independently
constant and equal, nor that off-diagonal matrix elements Gα,β

are zero. We accomplish this by extending and elaborating on
the methods proposed in Ref. 45. One of the important steps in
our approach is the explicit construction, via the Coulomb gas
formalism,66–68 of Ising model correlation functions including
both order and disorder operators, shown in Eq. (156). This
equation is one of the significant results of our paper and is
interesting in its own right in the context of the Ising CFT.

Although we can directly calculate the Berry’s matrix
only for the two-, four-, and six-quasiparticle wave functions
in this way, our results determine the braiding properties
of arbitrary numbers of quasiparticles. We show that the
enumeration of multi-quasihole states43 [which can be done
without computing the integrals in Eq. (1)] allows us to
compute the braiding statistics of an arbitrary number of
quasiparticles, given a mild assumption of locality. This
derivation uses special properties of the MR Pfaffian state
and works in a particular basis (the “qubit basis”), but does not
need any further assumptions beyond the existence of a gap in
the energy spectrum.

We can also utilize similar locality assumptions in the
form of the more refined formalism of anyon models, which
describes a topological phase with a braided tensor category.
For this, the topological structure is specified by the number
of topologically distinct quasiparticle species, their fusion
algebra, the F -symbols (which encode associativity of fusion),
and the R-symbols (which encode braiding). As we discuss, the
F - and R-symbols can be determined merely from the two- and
four-quasihole wave functions. Thus, the underlying structure
of a topological phase allows us to bootstrap from the four-
quasiparticle case to an arbitrary number of quasiparticles.
In contrast to the previous derivation in the qubit basis, this
derivation economizes on the necessary input, that is, does
not require six-quasiparticle wave functions, because it allows
(in fact incorporates) changes of basis, in the form of the
F -symbol transformations.

The results of our paper also apply to the anti-Pfaffian
wave function, constructed as the particle-hole conjugate of the
MR Pfaffian state.35,36 They similarly apply to the Bonderson-
Slingerland (BS) hierarchical states69 constructed over these,
which provide candidates for all the (other) observed quantum
Hall plateaus in the second Landau level. In particular, this
includes BS candidate states for ν = 12/5, for which there is
also some numerical evidence.70

The methods we develop here should also be generalizable
to other quantum Hall states, most importantly to the Read-
Rezayi (RR) series of parafermion states.71 Doing this in
practice requires a careful development of the Coulomb
gas construction for these states, which has not yet been
accomplished, and overcoming additional obstacles that do
not exist for the Ising-type states analyzed in this paper. This
will remain the subject of future work.
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This paper is organized as follows. In Sec. II, we review
the derivation of the Berry’s matrix for adiabatic processes
involving degenerate states. In Sec. III, we discuss adiabatic
transport of quasiparticles in the MR state and describe the
problem to be solved. In Sec. IV, we discuss Laughlin’s plasma
analogy arguments. In Sec. V, we review the Coulomb gas
construction of the Ising CFT, following Ref. 65. In Sec. VII,
we reproduce the result of Ref. 45 on the sum of the norms
of multi-quasiparticle wave functions. In Sec. VIII, we extend
this Coulomb gas representation to arbitrary matrix elements
of the four-quasihole and six-quasihole wave functions, thus
proving that they are orthogonal with equal norms. In Sec. IX,
we show how these results determine the non-Abelian statistics
for an arbitrary number of quasiparticles. In Sec. X, we use
the plasma analogy to show that two wave functions (with
quasiparticles) are orthogonal if they do not have matching
types of quasiparticles at the same coordinates. In Sec. XI,
we use the previous results to determine the statistics of
quasiparticles in the anti-Pfaffian state and BS states. In
Sec. XII, we briefly discuss the application of the methods
we have developed to other candidate states based on other
CFTs. Finally, in Sec. XIII, we discuss previous works that
have made progress toward establishing the braiding statistics
of the MR state. In Appendix A, we specify the normalization
conventions that we use for free bosons. In Appendix B, we
review Mathur’s procedure68 for relating products of contour
integrals to 2D integrals in the Coulomb gas representation
of CFTs. This relation plays a crucial role in our analysis.
In Appendix C, we use the Coulomb gas representation to
compute the (multi-valued) correlation function of two order
and two disorder operators in the Ising model. In Appendix D,
we discuss the behavior of electric and magnetic operators
in the plasma phase of a two-component Coulomb gas. In
Appendix E, we review and generalize the Debye-Hückel
theory for application to the plasmas that arise in this paper.
In Appendix F, we compute the 2

n
2 −1 conformal blocks of n

σ fields (where n is even) and an arbitrary number N of ψ

fields in the Ising model; this gives a preferred basis for the
q = 2

n
2 −1 degenerate states of n quasiholes in the MR Pfaffian

state. The Berry’s matrix is trivial in this basis and braiding
properties are given explicitly by the analytic continuation
properties of these wave functions. In Appendix G, we give
an incomplete argument that would allow one to compute the
braiding statistics for an arbitrary number of quasiparticles
directly from the wave functions with arbitrary numbers of
quasiparticles. Although, as we show in Sec. IX, this is not
necessary, it would nevertheless be a particularly simple and
elegant route to deriving quasiparticle statistics, if it could be
completed. In Appendix H, we provide two explicit examples
demonstrating the orthogonality of wave functions that do not
have matching quasiparticle types at the same positions.

II. BERRY’S MATRIX

In this section, we review the derivation of Berry’s
matrix61–63 for an adiabatic process when there are energy de-
generacies. We consider the Hamiltonian Ĥ [R1(t), . . . ,Rn(t)],
which depends on a set of parameters Rμ(t) that are varied
in time t . All states evolve according to the Schrödinger

equation

ih̄
d

dt
|�(t)〉 = Ĥ (t)|�(t)〉. (4)

One can define orthonormal energy eigenstates
|α(R1, . . . ,Rn)〉 for the Hamiltonian at particular values
of the parameters Rμ, such that

Ĥ (Rμ)|α(Rμ)〉 = Eα(Rμ)|α(Rμ)〉 (5)

and 〈α(Rμ)|β(Rμ)〉 = δαβ . When the parameters Rμ are varied
with t , we leave the Rμ dependence of quantities implicit, for
example, writing Ĥ (t) and |α(t)〉. We consider a Hamiltonian
such that the Hilbert space splits into subspaces of degenerate
energies H(t) = ∑

E(t) HE(t). We now focus on one of these
subspaces HE0(t) (e.g., the subspace of ground-states) and
assume that the energy gap between it and the other subspaces
does not close during the adiabatic process. The adiabatic
theorem tells us that if we start at t = 0 with a basis state
|ψα(0)〉 = |α(0)〉 ∈ HE0(0), then the time-evolved state |ψα(t)〉
will be in the HE0(t) subspace and can thus be written in the
form

|ψα(t)〉 = e− i
h̄

∫ t

0 E0(t ′) dt ′U0(t)|α(t)〉, (6)

where U0 is the Berry’s matrix, which is a generalization of
Berry’s phase. It is a unitary transformation in the E0 subspace,
that is, U0(t) : HE0(t) → HE0(t), such that U0(0) = 1, and the
dynamical phase exp[− i

h̄

∫ t

0 E0(t ′) dt ′] has been separated
from the Berry’s matrix term. Since it is a matrix, the Berry’s
matrix can potentially exhibit non-Abelian behavior. Taking
the time derivative of Eq. (6) and taking an inner product with
another time-evolved state in HE0(t), we have

ih̄〈ψα(t)| d

dt
|ψβ(t)〉 = E0(t)〈α(t)|β(t)〉

+ ih̄〈α(t)|U−1
0 (t)

dU0(t)

dt
|β(t)〉

+ ih̄〈α(t)| d

dt
|β(t)〉. (7)

Re-writing the left-hand-side by using Eq. (4), one finds

ih̄〈ψα(t)| d

dt
|ψβ(t)〉 = 〈ψα(t)|Ĥ (t)|ψβ(t)〉

= E0(t)〈α(t)|β(t)〉. (8)

Combining Eqs. (7) and (8), we obtain

〈α(t)|U−1
0 (t)

dU0(t)

dt
|β(t)〉 = −〈α(t)| d

dt
|β(t)〉. (9)

Solving this expression for U0, one finds

U0(t) = P exp

[
i

∫ t

0
A(t ′) dt ′

]

= 1 +
∞∑

n=1

in
∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1A(t1) · · ·A(tn),

(10)

whereP stands for path ordering (putting operators to the right
of those with smaller t and to the left of those with larger t),
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and we have defined the Berry’s connection for the HE0(t)

subspace:

Aα,β (t) ≡ i〈α(t)| d

dt
|β(t)〉 =

n∑
μ=1

ARμ

α,β(t)
dRμ(t)

dt
, (11)

ARμ

α,β (t) ≡ i〈α(R1, . . . ,Rn)| ∂

∂Rμ

|β(R1, . . . ,Rn)〉. (12)

Defined this way, A is Hermitian.
The term U0(t) only has a gauge-invariant meaning if the

Hilbert space is the same as the original one. For this, one
must make a closed circuit in configuration space. Let us
consider an adiabatic process with t running from 0 to tf
(where tf is large enough compared to the inverse of the energy
gap that the process is adiabatic), where HE0(tf ) = HE0(0)

and the path in configuration space is a closed loop, which
includes processes that exchange identical (quasi-)particles.
Even though HE0(tf ) = HE0(0), it is possible to have |α(tf )〉 �=
|α(0)〉, for example, if we have defined |α(R1, . . . ,Rn)〉 which
is multivalued as a function of the Rμ. However, they must be
related through a transformation B : HE0(0) → HE0(0), defined
by

Bα,β ≡ 〈α(0)|β(tf )〉, (13)

so that |α(tf )〉 = B|α(0)〉. For such an adiabatic process, we
can now write the time-evolved state at t = tf in terms of
operators acting on the initial state |ψα(0)〉 = |α(0)〉 ∈ HE0(0),

|ψα(tf )〉 = e− i
h̄

∫ tf

0 E0(t ′) dt ′P exp

[
i

∫ tf

0
A(t ′) dt ′

]
B|ψα(0)〉,

(14)

and, thus, it may be applied to an arbitrary initial state |�(0)〉 =∑
α cα|ψα(0)〉 = ∑

α cα|α(0)〉 in the subspace HE0(0),

|�(tf )〉 = e− i
h̄

∫ tf

0 E0(t ′) dt ′P exp

[
i

∫ tf

0
A(t ′) dt ′

]
B|�(0)〉.

(15)

If we never consider states outside the HE0(t) subspace, we
can obviously ignore the common dynamical phase. Thus,
we see that the evolution of the initial state in the HE0(0)

subspace under an adiabatic process is (apart from the common
dynamical phase) composed of the Berry’s matrix and the wave
function transformation B.

III. QUASIHOLE WAVE FUNCTIONS AND
NON-ABELIAN STATISTICS

In this paper, we discuss a set of wave functions and
their braiding properties, that is, the evolution under adiabatic
exchange of quasiparticles in 2D systems. We make little
reference to the Hamiltonian of the system, other than to
assume that the Hamiltonian has a gap above its ground
state(s). The wave functions which we discuss can be regarded
as trial wave functions for the Hamiltonian of electrons in a
magnetic field interacting through the Coulomb interaction.
Alternatively, they can be viewed as exact eigenstates of
electrons in the lowest Landau level at filling fraction ν =

1/M interacting through a special model Hamiltonian with
three-body interactions,

H = HM
3 . (16)

For the case of bosons at ν = 1, the Hamiltonian has the form

H 1
3 = λ

N∑
i<j<k

δ2(zi − zj )δ2(zi − zk), (17)

where λ > 0. For the case of fermions at ν = 1/2, Fermi
statistics dictates a more complicated form:38,42

H 2
3 = λ

N∑
i<j<k

Sijk

{
∂4
i ∂2

j

}
δ2(zi − zj )δ2(zj − zk), (18)

where Sijk is a symmetrizer. Our focus in this paper is on
wave functions with an even number n of quasiholes. For
the model Hamiltonians in Eq. (16), the n quasihole wave
functions which we discuss are zero-energy eigenstates. (This
is typical for such ultralocal Hamiltonians; quasiparticles
cost finite energy, so there is a finite energy cost for a
quasiparticle-quasihole pair.) As we will see, when we fix
the positions η1,η2, . . . ,ηn of these quasiholes, we will still
have a 2

n
2 −1-fold degenerate space of states spanned by

�α , α = 0,1, . . . ,2
n
2 −1 − 1. For the sake of precision, let us

momentarily assume that the system is on a sphere of fixed
area and that the number of electrons is fixed (and that the
magnetic field is tuned to accommodate n quasiparticles). Then
the only assumption that we will need about the spectrum of the
Hamiltonian of Eq. (16) is that all other states with quasiholes
at η1, . . ., ηn will be separated from span(�α) by a finite energy
gap.

When we consider states with quasiholes, we will need
to augment this Hamiltonian with a potential which pins the
quasiholes at fixed positions:

H = HM
3 + HPinning. (19)

This is necessary to guarantee that there is a gap in the
multi-quasihole case; otherwise, it would cost no energy to
move the quasiholes to other positions. An elegant choice
of pinning potentials is constructed in Ref. 54. However, the
Berry’s matrix is computed solely from a set of wave functions,
with no explicit reference to the Hamiltonian, apart from the
assumption that it provides a gap. Thus, the pinning potential,
though important as a matter of principle, is not, as a practical
matter, important in its details for our calculation.

The MR Pfaffian ground-state wave function for an even
number N of particles is given by34

�(z1, . . . ,zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj )Me
− 1

4

N∑
i=1

|zi |2
.

(20)

M is a positive integer, taking odd values if the particles are
bosons (which may occur, e.g., for neutral bosons in a rapidly
rotating trap72,73) and even values if they are fermions (e.g.,
electrons in the quantum Hall effect). Throughout most of
the paper, we set the magnetic length �B = √

h̄c/eB to 1, as
we have done in Eq. (20), and will only reconstitute it when
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it provides necessary clarification. The symbol Pf stands for
Pfaffian:

Pf(Ai,j ) ≡ 1

N !!

∑
σ∈SN

sgn(σ )
N/2∏
k=1

Aσ (2k−1),σ (2k), (21)

where A is an antisymmetric N × N matrix (where N is
even). The square of the Pfaffian of an antisymmetric matrix is
equivalent to the determinant; that is, [Pf(Ai,j )]2 = det(Ai,j ).
This wave function has the same form as the BCS wave
function in real space34,42 multiplied by a Laughlin-Jastrow
factor.

The wave function in Eq. (20) is the unique exact ground
state of the Hamiltonian in Eq. (16). The M = 2 case is
an approximate ground state for electrons with Coulomb
interactions at ν = 5/2 [assuming that the lowest Landau level
of both spins is filled and the wave function in Eq. (20) is
transposed from the lowest Landau level to the second Landau
level].37–39 The M = 1 case is an approximate ground state for
neutral ultracold bosons in a rotating trap.72,73

The wave function in Eq. (20) can be written as a conformal
block in a CFT, as was first proposed in Ref. 34. The relevant
CFT is a (restricted) product of two theories, one at central
charge c = 1/2 describing the Pfaffian part of the wave
function and the other at c = 1 describing the Jastrow factor∏

i<j (zi − zj )M of the wave function, as well as the Gaussian
factor. Specifically, one writes

�(z1, . . . ,zN ) = 〈ψ(z1) · · · ψ(zN )〉
×
〈
ei

√
M
2 ϕ(z1) · · · ei

√
M
2 ϕ(zN )e

−i 1
2π

√
2M

∫
d2z ϕ(z)

〉

= Pf

(
1

zi − zj

)
×

N∏
i<j

(zi − zj )Me
− 1

4

N∑
i=1

|zi |2
.

(22)

Here ψ represents the holomorphic free Majorana fermion (the
operator with conformal dimension hψ = 1/2) of the c = 1/2
Ising CFT, and ϕ is the free boson of a U(1) CFT. Various
conventions can be used to describe the free boson. We adopt
the one presented in Appendix A, with Eq. (A13) and g = 1/4.

For future reference, let us note that the c = 1 correlator is
charge neutral, that is, it is invariant under the change ϕ →
ϕ + const. Indeed, under such a change, the exponential factor
acquires a term N

√
M/2 − A/(2π

√
2M), where A is the total

area. However, M = A/2πN is the inverse filling fraction
of the quantum Hall state, since A/2π is the total number of
available states in a Landau level which we fill with N particles,
and so N

√
M/2 − A/(2π

√
2M) = 0.

An excited-state wave function depends on the positions
zi of the electrons, as well as the positions ημ of the quasi-
particles. It is important to recognize that the quasiparticles’
coordinates are simply parameters of the electrons’ wave
function (and underlying Hamiltonian), not to be treated
on the same footing as the electrons’ coordinates. These
wave functions were constructed as eigenstates of Eq. (16)
in Refs. 43 and 44. Given that the ground state can be
expressed as a conformal block in the c = 1

2 + 1 CFT, it is
natural to try to construct wave functions with n (fundamental)

quasiholes in the same CFT. The natural guess34 is that they are
given by

�α (η1, . . . ,ηn; z1, . . . ,zN )

= 〈σ (η1) · · · σ (ηn) ψ(z1) · · ·ψ(zN )〉α
×
〈
e
i 1

2
√

2M
ϕ(η1) · · · ei 1

2
√

2M
ϕ(ηn)

ei
√

M
2 ϕ(z1) · · ·

× ei
√

M
2 ϕ(zN )e

−i 1
2π

√
2M

∫
d2z ϕ(z)

〉
. (23)

Here σ are the holomorphic spin operators of the Ising CFT,
with conformal dimension hσ = 1/16. The bosonic part of the
correlation function is chosen in such a way that the wave
function is a polynomial function of the zi .

Notice the index α in Eq. (23). The holomorphic spin
operators of the Ising CFT have many conformal blocks, which
we label by the index α. In fact, it is well known that the total
number of conformal blocks is 2

n
2 −1; thus,

α = 0,1, . . . ,2
n
2 −1 − 1. (24)

The wave functions �α represent the set of degenerate wave
functions at fixed positions of the quasiholes and form the
basis for their non-Abelian statistics.

To find the wave functions of Eq. (23) explicitly, we need
to evaluate the appropriate conformal blocks of the CFT. For
n = 2, there is only a single conformal block for Eq. (23);
evaluating it for N even, we obtain the two-quasihole wave
function

�(η1,η2; z1, . . . ,zN )

= (η1 − η2)
1

4M
− 1

8 Pf

(
(η1 − zi)(η2 − zj ) + (i ↔ j )

zi − zj

)

×
N∏

i<j

(zi − zj )Me
− 1

8M (|η1|2+|η2|2)− 1
4

N∑
i=1

|zi |2
. (25)

This wave function is, indeed, a zero-energy eigenstate of the
Hamiltonian in Eq. (16) (see Refs. 43 and 44 for details).
Since there is only a single generator for the two-particle
braid group, a counterclockwise exchange of the two particles,
non-Abelian effects cannot be seen; they require at least two
different braids which do not commute with each other. The
effect of braiding can, therefore, only be a phase which is
acquired by the wave function in Eq. (25). This wave function
is single valued in electron coordinates, as it must be, but is
multivalued in the quasihole coordinates. Taking the analytic
continuation of this wave function at face value, we would
conclude that the effect of a counterclockwise exchange of two
quasiholes in this state is a phase exp[iπ ( 1

4M
− 1

8 )]. However,
this conclusion is premature, because we must also take into
account the Berry’s matrix (which, in this case, is simply a
phase).

Before discussing the Berry’s matrix, let us consider the
four-quasihole wave functions and, briefly, the general n

quasihole wave functions (with n even). In the four-quasihole
case, we are faced with evaluating Eq. (23) for n = 4. This
calculation is more difficult, but was accomplished in Ref. 43.
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For N even, it results in the following two wave functions:

�0(η1,η2,η3,η4; z1, . . . ,zN )

=
4∏

μ<ν

η
1

4M
− 1

8
μν

(η13η24)
1
4√

1 + √
1 − x

× (
�(13)(24) + √

1 − x �(14)(23)
)
e
− 1

8M

4∑
μ=1

|ημ|2
,

�1(η1,η2,η3,η4; z1, . . . ,zN )

=
4∏

μ<ν

η
1

4M
− 1

8
μν

(η13η24)
1
4√

1 − √
1 − x

× (
�(13)(24) − √

1 − x �(14)(23)
)
e
− 1

8M

4∑
μ=1

|ημ|2
, (26)

where the so-called anharmonic ratio x, well known in CFT,
is given by

x = η12η34

η13η24
≡ (η1 − η2) (η3 − η4)

(η1 − η3) (η2 − η4)
. (27)

Here we have introduced the notation ημν ≡ ημ − ην and the
shorthand �(ab)(cd) for

�(ab)(cd)

= Pf

(
(ηa − zi)(ηb − zi)(ηc − zj )(ηd − zj ) + (i ↔ j )

zi − zj

)

×
N∏

i<j

(zi − zj )M e
− 1

4

N∑
i=1

|zi |2
. (28)

The wave functions �(13)(24) and �(14)(23) are zero-energy
eigenstates of Eq. (16) and they form a basis of the two-
dimensional space of states with four quasiholes at fixed
positions.43 The state �(12)(34) is not linearly-independent of
these two because of the identity:43

�(12)(34) − �(13)(24) = (1 − x)(�(12)(34) − �(14)(23)). (29)

Even though �(13)(24) and �(14)(23) form a basis of the four-
quasihole Hilbert space, they do not provide an orthonormal
basis. In this paper, we demonstrate that the linear combina-
tions �0 and �1 defined in Eq. (26) are, in fact, an orthogonal
basis. Moreover, we show that �0 and �1 have the same norms
(though we do not compute the precise value of their overall
normalization constant) and thus can provide an orthonormal
basis by dividing by a common normalization constant.

It has been argued since Ref. 34 that using the wave
functions in Eq. (26) allows us to read off the non-Abelian
statistics of the quasiparticles in a straightforward manner.
Indeed, if the quasihole at η1 is exchanged with the quasihole
at η2 in a counterclockwise fashion (or, equivalently, if the
quasiholes at η3 and η4 undergo counterclockwise exchange),
a straightforward analytic continuation of the wave functions
leads to the transformation rules:

η1 ←→ η2 or η3 ←→ η4 : �0 �→ eiπ( 1
4M

− 1
8 )�0,

(30)
�1 �→ eiπ( 1

4M
− 1

8 )i�1.

To see this, we note that 1 − x = η14η23/η13η24 �→ 1
1−x

and
�(13)(24) ↔ �(14)(23) under this exchange. We see that the phase

exp[iπ ( 1
4M

− 1
8 )] acquired by �0 is the same as that acquired

from counterclockwise exchange of the two quasiholes in the
n = 2, N even case.

On the other hand, if the quasiparticles at η2 and η3 undergo
counterclockwise exchange (or if the ones at η1 and η4 are
exchanged), then we get

η2 ←→ η3 or η1 ←→ η4 : �0 �→ eiπ( 1
4M

+ 1
8 ) �0 − i�1√

2
,

(31)

�1 �→ eiπ( 1
4M

+ 1
8 ) −i�0 + �1√

2
.

Finally, if the quasiparticles at η1 and η3 undergo counterclock-
wise exchange (or if the ones at η2 and η4 are exchanged), then
we get

η1 ←→ η3 or η2 ←→ η4 : �0 �→ eiπ( 1
4M

+ 1
8 ) �0 + �1√

2
,

(32)
�1 �→ eiπ( 1

4M
+ 1

8 ) −�0 + �1√
2

.

These exchange transformations are more difficult to show, but
can be checked using algebraic manipulations as in Ref. 43.
These three exchange operations [Eqs. (30)–(32)] constitute
the building blocks of the non-Abelian statistics of states with
four quasiholes.

The explicit form of the conformal block wave functions
for n > 4 was not previously calculated. In Appendix F, we
show that they have the following form:

�(p1,p2,...,pn/2)

=

⎛
⎜⎜⎜⎝

n/2∏
i<j

η2i−1,2j−1 η2i,2j

n/2∏
i,j

η2i−1,2j

⎞
⎟⎟⎟⎠

1
8⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l

⎫⎬
⎭

−1/2

×
⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l �(1+r1,3+r2,...)(2−r1,4−r2,...)

⎫⎬
⎭

×
n∏

μ<ν

η
1

4M
μν e

− 1
8M

n∑
μ=1

|ημ|2

. (33)

The indices take the values pi = 0,1, with the constraint that∑n/2
i=1 pi is even, so there are 2

n
2 −1 such wave functions. (If we

were to consider the case where the number of electrons N was
odd instead of even, then we would instead require

∑n/2
i=1 pi to

be odd.) Here xk,l ≡ η2k−1,2l η2l−1,2k

η2k−1,2l−1 η2k,2l

and �(1+r1,3+r2,...)(2−r1,4−r2,...)

is a generalization of the notation in Eq. (28), which was
introduced in Ref. 43 and is explained in Appendix F. As
discussed there, the wave functions of Eq. (33) form a basis
of the 2

n
2 −1-dimensional space of zero-energy n quasihole

eigenstates of the Hamiltonian in Eq. (16). For the special
case n = 4, Eq. (33) is identical to Eq. (26). The analytic
continuation properties of wave functions with an arbitrary
number of quasiholes can be read off from Eq. (33).

However, calculating the explicit analytic continuation of
the wave functions is not, in principle, sufficient to establish
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the statistics of quasiholes. One also needs to calculate the
Berry’s connection. It is defined as

Aα,β(t) =
n∑

μ=1

(
Aημ

α,β

dημ

dt
+ Aη̄μ

α,β

dη̄μ

dt

)
, (34)

Aημ

α,β = i

∫ N∏
k=1

d2zk

�̄α

G
1/2
α,α

∂

∂ημ

(
�β

G
1/2
β,β

)
, (35)

Aη̄μ

α,β = i

∫ N∏
k=1

d2zk

�̄α

G
1/2
α,α

∂

∂η̄μ

(
�β

G
1/2
β,β

)
, (36)

where the overlap matrix is defined by

Gα,β (η̄μ,ημ) ≡
∫ N∏

k=1

d2zk �̄α(η̄μ; z̄i)�β(ημ; zi). (37)

We have allowed for the wave functions in Eqs. (35) and
(36) to be un-normalized, since we do not determine the
overall normalization constant of the wave functions we work
with in this paper. When the quasiparticles are adiabatically
transported along the coordinate paths ημ(t), forming a closed
circuit in parameter space as t goes from 0 to tf , an arbitrary
state � in the (2

n
2 −1-dimensional) degenerate ground-state

space is transformed under the following unitary evolution,
combining the explicit transformation of the wave functions
resulting from analytic continuation with the Berry’s matrix
transformation resulting from the Berry’s connection (see
Sec. II for more details),

∣∣�[ημ(tf )]
〉 = P exp

[
i

∫ tf

0
A(t)dt

]
B
∣∣�[ημ(0)]

〉
(38)

where P stands for path ordering and B is the unitary trans-
formation describing the analytic continuation of orthonormal
states,

|�α[ημ(tf )]〉 =
q−1∑
β=0

Bβ,α|�β[ημ(0)]〉. (39)

(We have dropped the overall dynamical phase, since it is the
same for all states in the ground-state space.) For example, the
analytic continuation matrices corresponding to the exchanges
in Eqs. (30)–(32) (assuming the wave functions have equal
norms) are, respectively, given by

B(1←→2) = eiπ( 1
4M

− 1
8 )
[

1 0

0 i

]
,

B(2←→3) = eiπ( 1
4M

+ 1
8 ) 1√

2

[
1 −i

−i 1

]
, (40)

B (1←→3) = eiπ( 1
4M

+ 1
8 ) 1√

2

[
1 −1

1 1

]
.

We show that the wave functions in Eq. (26) are orthogonal
for large separations |ημ − ην | → ∞, such that

Gα,β = C δαβ + O(e−|ημ−ην |/�), (41)

where C and � are η-independent constants. This implies that
the Berry’s connection is zero, up to terms that give the Abelian

Aharonov-Bohm phase, as may be seen from the following
calculation:

Aημ

α,β = i

∫ N∏
k=1

d2zk

�̄α

G
1/2
α,α

∂

∂ημ

(
�β

G
1/2
β,β

)

= i
∂

∂ημ

(∫ N∏
k=1

d2zk

�̄α

G
1/2
α,α

�β

G
1/2
β,β

)

− i

∫ N∏
k=1

d2zk

∂

∂ημ

(
�̄α

G
1/2
α,α

)
�β

G
1/2
β,β

= i
∂

∂ημ

(
G−1/2

α,α G
−1/2
β,β Gα,β

)

− iG−1/2
α,α G

−1/2
β,β

∫ N∏
k=1

d2zk

(−η̄μ

8M

)
�̄α�β

+ O(e−|ημ−ην |/�)

= i
η̄μ

8M
δαβ + O(e−|ημ−ην |/�). (42)

We have integrated by parts to go from the first line to the
second. Similarly, we have

Aη̄μ

α,β = i

∫ N∏
k=1

d2zk

�̄α

G
1/2
α,α

∂

∂η̄μ

(
�β

G
1/2
β,β

)

= iG−1/2
α,α G

−1/2
β,β

∫ N∏
k=1

d2zk

(−ημ

8M

)
�̄α�β

+O(e−|ημ−ην |/�)

= −i
ημ

8M
δαβ + O(e−|ημ−ην |/�). (43)

In Eqs. (42) and (43), we have used the fact that the dependence
of �̄α on ημ and �α on η̄μ comes only through the Gaussian
factor exp(− 1

8M
|ημ|2) (ημ and η̄μ are considered independent

of each other for these purposes). The resulting Berry’s
connection is diagonal in the space of wave functions, giving
rise to the Berry’s matrix,

P exp

[
i

∫ tf

0
dtA(t)

]

= exp

[
− 1

8M

n∑
μ=1

∫ tf

0
dt

(
η̄μ

dημ

dt
− ημ

dη̄μ

dt

)]
1

+O(e−|ημ−ην |/�), (44)

which is the same for all wave functions in the degenerate
subspace. When the quasiparticle coordinates are taken around
a closed loop (or the exchange paths of identical quasiparticles
form a closed loop), this term is equal to the phase exp(−i A

2M
),

which is proportional to the total enclosed area A encircled by
the quasiparticles in the counterclockwise sense (area encircled
in the clockwise sense contributes negatively to A). This is
unlike particle braiding statistics, which depends only on the
enclosed particles and not on the area. By reconstituting the the
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magnetic length �B = √
h̄c/eB (which we set equal to 1) in

this expression, we see that this phase is simply the Aharonov-
Bohm phase

exp

[
− 1

8M�2
B

n∑
μ=1

∫ tf

0
dt

(
η̄μ

dημ

dt
− ημ

dη̄μ

dt

)]

= exp

(
−i

A

2M�2
B

)
= exp

(
−i

e

2M

BA

h̄c

)
= exp

(
i
q�

h̄c

)
(45)

acquired by a charge q = e/2M particle encircling a total
flux � = −BA due to the background magnetic field

−→
B =

−Bẑ. (We use the convention where zj = xj + iyj , which
corresponds to holomorphic wave functions for electrons of
charge −e in a background magnetic field

−→
B = −Bẑ.) This

reconfirms the interpretation of the given wave functions
as corresponding to charge e/2M quasiholes. As long as
Eq. (41) is fulfilled, however, no other contributions arise in the
Berry’s matrix. In particular, it does not affect the non-Abelian
statistics, which comes from the explicit analytic continuation
of quasiparticle coordinates in the wave functions.

There are other length scales one should be aware of when
considering non-Abelian quasiparticles. In general, topolog-
ically nontrivial excitations can tunnel between non-Abelian
quasiparticles, which has the effect of splitting the degeneracy
of their states.74 Such tunneling is exponentially suppressed
with separation distance, and thus introduces correlation
length scales associated with the tunneling of topological
excitations and determined by the (non-universal) microscopic
physics of the system. As long as the quasiparticles are
farther apart than these correlation lengths, the topological
degeneracies are preserved (up to exponentially suppressed
corrections), but otherwise the notion of the non-Abelian
state space and braiding statistics transformations upon it
breaks down. For σ non-Abelian quasiparticles in Ising-type
topologically ordered systems, the relevant correlation length
is ξψ , which corresponds to tunneling of the ψ excitation,
i.e., a Majorana fermion. For p-wave superconductors, ξψ is
identified as the superconducting coherence length.75 For the
MR state, ξψ corresponds to tunneling of the neutral fermion
(ψ0 in the notation of Sec. IX B). Numerical studies53,76

provide an estimate of ξψ ≈ 0.8�B − 2.3�B for the ν = 5/2
MR state.

The wave functions in Eq. (26) were derived as correlators
of some CFT. There is no reason a priori to expect that
they will form an orthogonal basis obeying Eq. (41) with
respect to the inner product of nonrelativistic electrons in a
magnetic field. It is the goal of this paper to show that this is
indeed so.

IV. LAUGHLIN’S PLASMA ARGUMENT

We proceed by first recalling an argument due to Laughlin77

which he used to deduce the normalization of the Laughlin
wave function with N electrons and n quasiholes in the ν =

1/M quantum Hall effect. Such a wave function has the form

� 1
M

(η1, . . . ,ηn; z1, . . . ,zN )

=
n∏

μ<ν

(ημ − ην)
1
M

n∏
μ=1

N∏
i=1

(ημ − zi)

×
N∏

i<j

(zi − zj )Me
− 1

4M

n∑
μ=1

|ημ|2− 1
4

N∑
i=1

|zi |2
. (46)

Note that the prefactor
∏

μ<ν(ημ − ην)
1
M depends only on the

quasihole coordinates ημ and is independent of the electron
coordinates zi’s. Therefore, it can be regarded as part of the
normalization of the wave function. By including it explicitly
in the definition of the wave function, we are anticipating that
it will result in a norm of the wave function that is independent
of the quasihole positions. Laughlin proved that

∥∥∥� 1
M

(ημ; zi)
∥∥∥2

≡
∫ N∏

k=1

d2zk�̄ 1
M
� 1

M

= C1 + O(e−|ημ−ην |/�1 ), (47)

where C1 and �1 are constants independent of ημ. (We use
the subscript 1 here to indicate quantities that correspond
to the one-component plasma and to differentiate them from
similar quantities occurring elsewhere in the paper.) The proof
proceeds as follows. One observes that the normalization
integral Eq. (47) can be rewritten as

∥∥� 1
M

∥∥2 =
∫ N∏

k=1

d2zk �̄ 1
M
� 1

M
=
∫ N∏

k=1

d2zk e−�1/T = e−F1/T ,

(48)

�1 = −
n∑

μ<ν

Q2

M2
log |ημ − ην | −

n∑
μ=1

N∑
i=1

Q2

M
log |ημ − zi |

−
N∑

i<j

Q2 log |zi − zj | + Q2

4M2

n∑
μ=1

|ημ|2 + Q2

4M

N∑
i=1

|zi |2,

(49)

where T = Q2/2M . We note that the 2D Coulomb interaction
between two charges q1 and q2 separated by a distance
R is −q1q2 log R. Thus, �1 can be interpreted as the 2D
Coulomb-interaction potential energy for N charge Q particles
at zi and n charge Q/M particles at ημ, together with a uni-
form neutralizing background of charge density ρ = − Q

2πM�2
B

[which is the uniformly negatively charged disk, represented
by the Gaussian terms in Eq. (46)].78 Consequently, F1 can be
interpreted as the free energy of a classical 2D one-component
plasma at temperature T of N charge Q particles in the
presence of n additional test particles of charge Q/M at the
fixed positions ημ and a uniform neutralizing background.
Clearly, one can ascribe different charge values Q to the plasma
particles, as long as one similarly alters the test charges and
temperature in a compensating manner. One convenient choice
is to take T = g and Q = √

2Mg. (Another typical choice
is T = M/2 and Q = M , which gives the test particles unit
charge.) In any case, the coupling constant � = Q2/T = 2M

remains invariant under such redefinitions, and it is known

075303-8



PLASMA ANALOGY AND NON-ABELIAN STATISTICS FOR . . . PHYSICAL REVIEW B 83, 075303 (2011)

from Monte Carlo simulations56 that the freezing point of such
a classical 2D plasma is at �c1 ≈ 140 (i.e., Tc1 ≈ Q2/140).
Hence, the plasma is a screening fluid for M � 70, whereas it
freezes into a crystal for M � 70.

It is important to distinguish this Mc1 ≈ 70 transition
point between the fluid and crystal phases of the analogous
2D one-component plasma from the Mc ≈ 9 transition point
between the quantum Hall fluid and Wigner-crystal phases
of the physical electron systems.79 The later determines
the physical range where quantum Hall states exist, while
the former indicates that the plasma analogy argument indeed
applies to the Laughlin wave functions for all the physically
relevant filling fractions.

When the plasma screens, the free energy F1 in Eq. (48)
cannot depend on the positions ημ of the Q/M test charges, so
long as |ημ − ην | � �1, where �1 is the Debye length of this
plasma, since they are screened by the elementary charges. The
Debye length can be estimated using Debye-Hückel theory
(see Appendix E) to be �1 = �B/

√
2, where �B = √

h̄c/eB is
the magnetic length (which we have set to 1) of the quantum
Hall system. Thus, the overlap integral is indeed a constant,
as long as the test charges are sufficiently far away from each
other.

It follows that the Berry’s connection for adiabatically
transporting Laughlin quasiholes using the wave function as
normalized in Eq. (46) is given by

Aημ = i

∫ N∏
k=1

d2zk

�̄

‖�‖
∂

∂ημ

(
�

‖�‖
)

= i
∂

∂ημ

(
‖�‖−2

∫ N∏
k=1

d2zk �̄�

)

− i

∫ N∏
k=1

d2zk

∂

∂ημ

(
�̄

‖�‖
)

�

‖�‖

= i
η̄μ

4M
+ O(e−|ημ−ην |/�1 ), (50)

and

Aη̄μ = i

∫ N∏
k=1

d2zk

�̄

‖�‖
∂

∂η̄μ

(
�

‖�‖
)

= −i
ημ

4M
+ O(e−|ημ−ην |/�1 ). (51)

This gives a Berry’s phase of

P exp

[
i

∫ tf

0
dtA(t)

]

= exp

[
− 1

4M

n∑
μ=1

∫ tf

0
dt

(
η̄μ

dημ

dt
− ημ

dη̄μ

dt

)]

+O(e−|ημ−ην |/�1 )

= exp

(
−i

e

M

BA

h̄c

)
+ O(e−|ημ−ην |/�1 ), (52)

where A is the area encircled by the quasiholes in the counter-
clockwise sense. This contributes only the Aharonov-Bohm
phase exp(iq�/h̄c) acquired by charge q = e/M encircling
an area A containing flux � = −BA from the background

magnetic field
−→
B = −Bẑ. The remaining contribution to the

unitary evolution resulting from adiabatic transport of the
quasiparticles comes from explicit analytic continuation of
the wave function, which is thus the braiding statistics of the
quasiparticles. This proves that the Laughlin quasiholes are
anyons that accumulate a statistical phase θ = π/M as the
positions of two of them are exchanged in a counterclock-
wise fashion, as can be explicitly seen from analytic continu-
ation of the term (ημ − ην)

1
M in the wave function of Eq. (46).

V. THE COULOMB GAS CONSTRUCTION

A. Intuitive approach

In the previous section, we saw that, although we could not
explicitly evaluate the norm of the Laughlin wave function,
we could make a strong statement about its dependence on
quasihole coordinate by appealing to the screening property of
a Coulomb plasma. We would now like to construct such an
argument to prove Eq. (41), but we must first note that, taken
at face value, the overlap integrals of �α , defined in Eq. (37),
have little to do with the partition function of a plasma. Indeed,
the plasma argument seems to be custom tailored for wave
functions which can be written as products of differences,
such as Eq. (46). The MR Pfaffian ground state wave function
Eq. (20), or the wave functions with quasihole excitations, such
as Eqs. (23), (25), and (26), are in fact sums of products and
cannot be written as exponentials of logarithms. Nevertheless,
there exists an approach, called the Coulomb gas construction,
which allows one to represent conformal blocks in terms of a
plasma. Let us review this approach in its particular application
for the c = 1/2 Ising CFT of interest here.

In the next subsection, we follow the logic and notation of
Feigin and Fuchs,80 Dotsenko and Fateev,66,81 Felder,67 and
Mathur,68 which is essentially an algebraic approach to the
Coulomb gas construction of the minimal models.58 However,
there is another approach to the Coulomb gas construction
which is more intuitive; we briefly describe it here (see Refs.
82–84).

The basic question which we answer in this section is as
follows: Why does the Ising model, which does not have a
conserved U(1) charge, have anything at all to do with a gas
of electric and magnetic charges interacting logarithmically?
One way of answering this question lies in the following steps.

(i) Write the Ising model partition function on the honey-
comb lattice (we choose this lattice for convenience) in the
form

Z =
∑

{σi=±1}
e−βH =

∑
{σi=±1}

∏
i,j

cosh βJ [1 + tanh(βJ )σiσj ],

(53)

where the Ising Hamiltonian has the form H =
−J

∑
〈i,j〉 σiσj .

(ii) In any term in the expansion of the product in Eq. (53),
each lattice bond can either receive a 1 or an xσiσj , where
x = tanh βJ . Notice that any term in the expansion vanishes
upon summation over {σi = ±1} unless every spin σi appears
either zero times or twice. Consequently, the bonds which
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receive an xσiσj form closed loops, and the partition function
takes the form

Z(x) =
∑
{α}

xb(α), (54)

where {α} is a configuration of loops on the honeycomb
lattice and b(α) is the total length of all of the loops in the
configuration {α}. The critical point of the Ising model occurs
at x = 1/

√
3.

(iii) Observe that this partition function can be obtained
from the following local rules for the Boltzmann weights.
When a loop turns left, it acquires a factor xeiχ , and when it
turns right, it acquires a factor xe−iχ . Since the number of left
turns minus the number of right turns is ±6 for any closed loop,
every such loop receives a factor 2xb cos 6χ after summing
over both orientations of the loop, where b is the number of
bonds in the loop. We obtain the Ising model partition function
in Eq. (54) provided 2 cos 6χ = 1.

(iv) Write the critical partition function (as defined by these
local weights) as a height model on the honeycomb lattice.
A height model is a model of a fluctuating interface which
is specified by its local height z = φ(x,y). The loops are
interpreted as domain walls between regions with different
heights (the heights live on the plaquettes and the domain walls
on the links). In the continuum limit, the energetic penalty for
domain walls between different heights becomes a gradient
energy (∇φ)2 so that the partition function for the interface
can be viewed as a quantum field theory for a scalar field φ.

(v) Write the height model as a free bosonic field φ (i.e., as a
Coulomb gas) with stiffness g = 1 − 6χ

π
= 4/3 together with

a coupling (1 − g) = −1/3 to the scalar curvature R. (Note
that we had to take −π < 6χ < 0 in order to obtain the critical
point of the Ising model; taking 0 < 6χ < π would give us the
low-temperature fixed point.) The stiffness gives the correct
energy penalty for a domain wall. A background charge is
necessary to correctly describe the coupling of the bosonic field
to the curvature, because the number of left turns minus the
number of right turns will be different from ±6 around a point
of non-zero curvature. For the honeycomb lattice on the plane,
this reduces to a background charge at infinity 2(1 − g) =
−2/3.

(vi) In terms of the bosonic field, φ, the effective action
of the height model has a marginal operator w e−2iφ which
enforces the fact that the heights take values that are integral
multiples of π (which would otherwise be lost in the passage
to the continuum limit). In fact, the term which enforces the
integrality of the heights is more complicated. We have kept
only the most relevant term in its Fourier expansion, which
is marginal; the other terms are irrelevant. Thus, the effective
action takes the form

S = g

4π

∫
d2x (∇φ)2 + i(1 − g)

4π

∫
d2x R φ

+w

∫
d2x e−2iφ + · · · . (55)

The . . . denotes other (irrelevant) terms in the Fourier expan-
sion of the potential term which enforces integral heights;

we have kept only the marginal term. Rescaling the field
φ → 2

√
gφ, the effective action takes the form

S = 1

16π

∫
d2x (∇φ)2 + i(1 − g)

8π
√

g

∫
d2x R φ

+w

∫
d2x e−iφ/

√
g + · · · . (56)

(vii) When we compute an Ising correlation function with n

spin fields in this model, only the term of order wn is non-zero;
that is, this correlation function has n insertions of the marginal
operator e−iφ

√
3/2 (here we have substituted g = 4/3), which

we call a screening operator.
The preceding logic makes it seem natural for correlation

functions in the Ising model (and, in fact, a large class
of models which have a height model representation) to
have a Coulomb gas representation. It is, thus, helpful for
understanding our results intuitively. However, it is not the
most convenient way to derive the Coulomb gas representation
for the conformal blocks which we need. For that, we use
a more technical approach, described in the next section.
We note that, although the two approaches are very similar,
there is not really a one-to-one correspondence between them,
although the results which we find in this paper strengthen the
connection.

B. Algebraic approach

The algebraic approach to the Coulomb gas takes, as its
starting point, the action for a free boson with a background
charge α0 at infinity from step (v) of the previous section. This
can be re-written as a total derivative term with imaginary
coefficient iα0. This total derivative term changes the energy-
momentum tensor, thus shifting the central charge from its free
boson value, c = 1, to c = 1 − 24α2

0 . Since the added term is
imaginary, the theory is not unitary. However, for certain values
of α0, including the one relevant to the Ising model, the theory
has a unitary subspace.

This approach was introduced by Feigin and Fuchs,80 and
developed for the minimal models58 by Dotsenko and Fateev
in Refs. 66 and 81. The method was subsequently refined
by Felder,67 who both elucidated its BRST cohomological
structure and extended the results to the torus. The advantage
of Felder’s approach is that it holds at the operator level, not
merely at the level of correlation functions, allowing a more
systematic description. This leads to a simple prescription
which can be applied in a uniform manner. Thus, we adopt
Felder’s notation. The next few paragraphs are a short review
of the procedure, whose full details can be found in Ref. 67.

The approach consists of taking a holomorphic free boson
field ϕ(z), whose two-point correlation function is given by

〈ϕ(z1)ϕ(z2)〉 = −2 log(z1 − z2). (57)

This corresponds to Eq. (A5) with g = 1/4. This field can be
used to construct the vertex operators of charge α, eiαϕ(z). If the
αj satisfy charge neutrality,

∑N
j=1 αj = 0, then a collection of

vertex operators has correlation function

〈eiα1ϕ(z1)eiα2ϕ(z2) · · · eiαN ϕ(zN )〉 =
N∏

i<j

(zi − zj )2αiαj . (58)
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If
∑

jαj �= 0, then this correlation function vanishes. This
matches up precisely with Laughlin’s plasma analogy, where
the vertex operators in the CFT Coulomb gas formalism
correspond to the particles that comprise the plasma and charge
neutrality must be obeyed (though, for the Laughlin states’
plasmas, charge neutrality is achieved through a uniform
background charge density). However, one can deviate from
this simple Coulomb gas in two ways: (i) If a set of vertex
operators violates charge neutrality, one can place an additional
compensating vertex operator of charge 2α0 = −∑jαj at ∞
to obtain a non-vanishing correlation function, and (ii) one
can introduce “screening charges” which modify the vertex
operators. As mentioned before, this will produce a unitary
theory only for special values of α0, αj , and screening charges.

The minimal model CFTs with central charge c = 1 −
6 (p−p′)2

pp′ are denoted M(p,p′) for positive integers p and p′,
where p > p′ and the unitary theories are given by p = p′ + 1.
(The Coulomb gas formulation also applies to the non-unitary
minimal models with p �= p′ + 1, so we leave these integers
arbitrary in the following expressions.) The M(p,p′) CFT has
two screening charges given by

α− = −
√

p′

p
, α+ =

√
p

p′ , (59)

a possible charge at infinity of

2α0 = α− + α+ = p − p′
√

pp′ , (60)

and allowed vertex operator charges

αnm = 1

2
(1 − n) α− + 1

2
(1 − m) α+, (61)

for n = 1, . . . ,p − 1 and m = 1, . . . ,p′ − 1. The vertex
operator eiαnmϕ(z) for these charges are used to describe the
minimal model’s primary field φ(n,m) with conformal scaling
dimension

hn,m = 1

4
(nα− + mα+)2 − α2

0 = (mp − np′)2 − (p − p′)2

4pp′ ,

(62)

which can be arranged into the conventional Kac table. These
fields obey the identification φ(n,m) ≡ φ(p−n,p′−m), so there
are (p − 1)(p′ − 1)/2 distinct fields in the theory, each of
which can be represented by two distinct vertex operators. Of
course, these vertex operators by themselves cannot correctly
represent the minimal model fields, so screening operators

Q± =
∮

dzeiα±ϕ(z) (63)

must also be introduced.
In this way, one can generate the correlation functions of

the minimal model CFTs as a Coulomb gas with screening
charges. However, the specification of the contour integrals of
the screening operators of Eq. (63) is a crucial matter. For this,
we follow Felder’s prescription of combining the screening

z

1

C2

Ss

0

C

FIG. 1. The integration contours in Eq. (64).

operators with the vertex operators to form screened vertex
operators67

V rs
nm(z) ≡

r∏
k=1

∮
Ck

dwk

s∏
l=1

∮
Sl

dul e
iαnmϕ(z) eiα−ϕ(wk) eiα+ϕ(ul ),

(64)

where the screening charges’ integration contours in Eq. (64)
are taken to be concentric circles of radius |z| centered at
the origin (with the α+ contours Sl inside the α− contours
Ck), as shown in Fig. 1. These contour integrals have
divergences that must be regularized in some manner, i.e.
either by an appropriate point-splitting at z or through analytic
continuation.

The full conformal block of the CFT operators is repre-
sented by the correlation function

Fα(z1, . . . ,zN ) = 〈
φ(n1,m1)(z1) . . . φ(nN ,mN )(zN )

〉
α

= 〈
V r1s1

n1m1
(z1) . . . V rN sN

nN mN
(zN )

〉
(65)

for a set of screened vertex operators V rksk
nkmk

(zk), where the
indices nk and mk are chosen to represent the minimal model
field φ(nk,mk ) at zk . The conformal blocks are labeled by the
intermediate states in the fusion sequence of fields

α = {(ν1,μ1) , . . . , (νN,μN )} (66)

which must obey the fusion algebra of the CFT, i.e. φ(νk,μk) ∈
φ(νk−1,μk−1) × φ(nk,mk ). This means that

1 + |nk − νk−1| � νk

� min{nk + νk−1 − 1,2p − nk − νk−1 − 1},
1 + |mk − μk−1| � μk

� min{mk +μk−1 − 1,2p′− mk− μk−1 − 1},
(nk + νk−1 + νk) mod 2 = 1,

(mk + μk−1 + μk) mod 2 = 1. (67)

Here, we have (ν0,μ0) = (νN,μN ) = (1,1), indicating that the
entire collection of fields must fuse to vacuum [the identity
field I = φ(1,1)]. These different conformal blocks correspond
to different choices of the numbers of screening charges rk

and sk assigned to each screened vertex operator, which must
therefore satisfy the conditions67

μk−1 = mk + μk − 2sk − 1 (68)

νk−1 = nk + νk − 2rk − 1. (69)
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When these rules are not satisfied, the correlation functions
will evaluate to zero. It is important to recognize that these
rules require that the sum of all Coulomb gas representation
charges (vertex operator charges αnm and screening operator
charges α±) is zero.

One can alternatively represent the same conformal block
as in Eq. (65) by using the fact that φ(n,m) ≡ φ(p−n,p′−m) and,
in particular, that the identity field can also be represented
by I = φ(p−1,p′−1). With this in mind, it becomes clear that
we should obtain the same conformal block if we replace
V r1s1

n1m1
(z1) with V 00

p−n1,p′−m1
(z1), require (νN,μN ) = (1,1) and

(ν0,μ0) = (p − 1,p′ − 1), and place a charge 2α0 at infinity.
In this case, the sum of all Coulomb gas representation charges
together with the charge 2α0 at infinity is zero.

We now focus on the Coulomb gas representation of the
c = 1/2 Ising CFT, which is the M(4,3) minimal model and
has three primary fields I , ψ , and σ . The two screening charges
for this CFT are given by

α− = −
√

3

2
, α+ = 2√

3
. (70)

The six vertex operator charges are constructed out of α− and
α+, according to

αnm = 1

2
(1 − n) α− + 1

2
(1 − m) α+, n = 1,2,3, m = 1,2.

(71)

It is convenient to put these together into the “Kac table”:

2 − 1√
3

− 1
4
√

3
1

2
√

3

1 0
√

3
4

√
3

2

m/n 1 2 3

(72)

The columns of the table are labeled by the index n =
1,2,3, and the rows by m = 1,2. The entries of the table
are the charges αnm of the vertex operators. They represent
the operators of the c = 1/2 Ising CFT according to the
identification

2 ψ σ I

1 I σ ψ

m/n 1 2 3
(73)

Here I is the identity field, and just as in Eqs. (22) and (23),
σ is the dimension 1/16 operator, and ψ is the dimension 1/2
operator of the c = 1/2 Ising CFT.

We can now examine in detail a concrete example of how the
same conformal block can have several different but equivalent
representations using the screened vertex operators. Consider,
for example

〈ψ(z) ψ(0)〉 = 1

z
. (74)

Since both V12 and V31 correspond to ψ , this correlation
function can be represented in three different ways:

〈
V 00

31 (z) V 00
12 (0)

〉 = 1

z
, (75)

〈
V 01

12 (z) V 00
12 (0)

〉 = ∮
du

z
2
3

(z − u)
4
3 u

4
3

, (76)

and

〈
V 20

31 (z) V 00
31 (0)

〉 = ∮
dw1

∮
dw2

z
3
2 (w1 − w2)

3
2

(z−w1)
3
2 w

3
2
1 (z−w2)

3
2 w

3
2
2

.

(77)

It should be clear that all three methods give the same answer,
1/z, up to an overall unimportant constant (as may be verified
by making the change of variables: ζ = u/z and ξk = wk/z).
The correlation function in Eq. (75) has total charge −2α0 =
1/2

√
3 (which is canceled by a charge at infinity) while the

other two correlation functions, Eqs. (76) and (77), have the
total charge 0.

Now we can use these techniques to represent the conformal
block corresponding to the Pfaffian as

Pf

(
1

zi − zj

)
= 〈ψ(z1) · · · ψ(zN )〉

= 〈
V 20

31 (z1)V 00
31 (z2) · · ·V 20

31 (zN−1)V 00
31 (zN )

〉
,

(78)

(where N is even). This is not the only way to construct this
conformal block, but it is the most convenient for subsequent
generalizations.

Now consider a conformal block with four σ operators
(which correspond to four quasiholes). There are two such
conformal blocks [as we saw, for instance, in Eq. (26)], which
we denote by

Fα(ημ; zi) = 〈σ (η1)σ (η2)σ (η3)σ (η4)ψ(z1) · · · ψ(zN )〉α ,

(79)

where α = 0,1 corresponds to the block in which the first
two σ fields fuse to I or ψ , respectively. We can represent
F0(ημ; zi) in the following way:

F0(ημ; zi) = 〈
V 10

21 (η1)V 00
21 (η2)V 10

21 (η3)V 00
21 (η4) V 20

31 (z1)

×V 00
31 (z2) · · · V 20

31 (zN−1)V 00
31 (zN )

〉
. (80)

This representation mirrors that of Eq. (78) in that it only
uses vertex operators from the m = 1 row of the Kac table
in Eq. (72). The total charge of all the operators involved in
Eq. (80) is equal to zero. Furthermore, the total charge of the
first two screened vertex operators is also zero, V 10

21 V 00
21 ∼ I ,

which is the reason for the identification of this Coulomb gas
correlation function with the c = 1/2 Ising conformal block
F0(ημ; zi). If we wish, instead, to compute F1(ημ; zi), then
we need a Coulomb gas correlation function in which the
first two screened vertex operators have total charge

√
3/2

corresponding to the ψ field:

F1(ημ; zi) = 〈
V 10

21 (η1)V 10
21 (η2)V 00

21 (η3)V 00
21 (η4) V 20

31 (z1)

×V 00
31 (z2) · · · V 20

31 (zN−1)V 00
31 (zN )

〉
. (81)

Since the screening operators are attached to the first two
vertex operators, rather than the first and third, the construction
Eq. (81) can be interpreted as simply a different choice of
contour for one of the screening operators in Eq. (80).
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We note, for later use, that we can also represent F0 and F1

in an alternative way:

F0(ημ; zi) = 〈
V 00

22 (η1)V 00
21 (η2)V 10

21 (η3)V 00
21 (η4) V 20

31 (z1)

×V 00
31 (z2) · · · V 20

31 (zN−1)V 00
31 (zN )

〉
, (82)

F1(ημ; zi) = 〈
V 00

22 (η1)V 10
21 (η2)V 00

21 (η3)V 00
21 (η4) V 20

31 (z1)

×V 00
31 (z2) · · · V 20

31 (zN−1)V 00
31 (zN )

〉
. (83)

Unlike in Eqs. (80) and (81), the total charge of the vertex
operators involved in Eqs. (82) and (83) is equal to 1/(2

√
3)

(which is another representation of the identity).
Finally, we can also construct conformal blocks with any

even number n of σ fields (corresponding to wave functions
with n quasiholes), for example,

F(0,0,...,0)(ημ; zi)

= 〈
V 10

21 (η1)V 00
21 (η2) · · · V 10

21 (ηn−1)V 00
21 (ηn)V 20

31 (z1)

×V 00
31 (z2) · · ·V 20

31 (zN−1)V 00
31 (zN )

〉
(84)

= 〈
V 00

22 (η1)V 00
21 (η2)V 10

21 (η3)V 00
21 (η4) · · · V 10

21 (ηn−1)

×V 00
21 (ηn)V 20

31 (z1)V 00
31 (z2) · · ·V 20

31 (zN−1)V 00
31 (zN )

〉
.

(85)

The subscript (0,0, . . . ,0) denotes that this is the conformal
block in which the first and second σ fields fuse to I , the third
and fourth σ fields fuse to I , . . . , the (n − 1)th and nth σ fields
fuse to I .

Similarly, the Coulomb gas construction gives the general
conformal block

F(π1,π2,...,πn/2)(ημ; zi)

=
〈

n/2∏
j=1

[
V

1−πj−1,0
21 (η2j−1)V

πj ,0
21 (η2j )

]
V 20

31 (z1)V 00
31 (z2)

· · ·V 20
31 (zN−1)V 00

31 (zN )

〉
(86)

=
〈
V 00

22 (η1)V π1,0
21 (η2)

n/2∏
j=2

[
V

1−πj−1,0
21 (η2j−1)V

πj ,0
21 (η2j )

]

×V 20
31 (z1)V 00

31 (z2) · · ·V 20
31 (zN−1)V 00

31 (zN )

〉
, (87)

in which the 1st through 2j th σ fields collectively fuse to
I if πj = 0 and to ψ if πj = 1 and where π0 = πn/2 = 0,
indicating the overall parity constraint that the σ fields must
collectively fuse to I since there are an even number N of
ψ fields. This is presented in the “standard basis,” where
fusion channels are specified by fusing in the anyons one at a
time from left to right.85 For the Ising CFT, we can trivially
transform between the standard basis and the qubit basis,

F qubit
(p1,p2,...,pn/2) = F standard

(π1,π2,...,πn/2), (88)

in which the (2j − 1)th and 2j th σ fields fuse to I if pj = 0
and to ψ if pj = 1, by simply using the conversions

πj ≡
(

j∑
k=1

pk

)
mod 2, (89)

pj ≡ (πj − πj−1) mod 2. (90)

Since this is a trivial change of basis (i.e., it is just a different
way of presenting the subscript label), we can interchange
between the two freely. For the purposes of describing con-
formal blocks using the Coulomb gas formalism, the standard
basis is more natural. For describing the explicit evaluation of
the conformal blocks using bosonization methods, the qubit
basis is more natural. Henceforth, we differentiate the use of
these two bases through context.

A similar expression can also be used if the number N of
electrons is odd. Specifically, for N odd, one would use

F(π1,π2,...,πn/2)(ημ; zi)

=
〈

n/2∏
j=1

[
V

1−πj−1,0
21 (η2j−1)V

πj ,0
21 (η2j )

]
V 00

31 (z1)V 20
31 (z2)V 00

31 (z2)

· · · V 20
31 (zN−1)V 00

31 (zN )

〉
(91)

=
〈
V 00

22 (η1)V π1,0
21 (η2)

n/2∏
i=2

[
V

1−πj−1,0
21 (η2j−1)V

πj ,0
21 (η2j )

]

×V 00
31 (z1)V 20

31 (z2)V 00
31 (z2) · · · V 20

31 (zN−1)V 00
31 (zN )

〉
, (92)

with π0 = 0 and πn/2 = 1, which indicates that the n σ ’s have
overall fusion channel ψ . We note that the number of screening
charges in both Eqs. (86) and (91) is N + n

2 .
The explicit expressions for correlation functions such

as Eq. (84) involve products of powers of differences of
coordinates, and integrals over some of them, as in the simple
examples of Eqs. (76) and (77). This has a reasonably similar
structure to the Laughlin states, such as Eq. (46), so it brings
us closer to the goal of constructing an effective plasma
describing Eq. (41).

VI. PLASMA REPRESENTATION FOR THE NORM OF
THE GROUND STATE WAVE FUNCTION

Using the preceding expressions for the conformal blocks
to construct the overlap integrals Eq. (41), we see that they
do appear superficially similar to the plasma construction of
Eq. (48). The difference is that the screening operators need
to be integrated over their holomorphic and antiholomorphic
coordinates along some specially chosen contours. As a result,
Eq. (37) no longer takes the form of the partition function of
a classical plasma. In what follows, we construct the overlap
integrals in a slightly different way, which leads to an expres-
sion which does take the form of a classical plasma’s partition
function. For this, we crucially utilize the method invented by
Mathur in Ref. 68 of relating expressions involving products
of holomorphic and antiholomorphic screening charge contour
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integrals to expressions involving 2D integrals over screening
charge positions. (We review this method in Appendix B.)

We begin by considering the case with no quasiholes,
that is, the ground-state wave function. We will construct a
representation of the norm of the ground-state wave function
which takes the form of the partition function for a classical
plasma. We begin by ignoring the charge part of the wave
function and focusing on the Pfaffian:∣∣∣∣Pf

(
1

zi − zj

)∣∣∣∣
2

. (93)

In order to represent this as a plasma, we take the conformal
block represented by Eq. (78) and multiply it by its complex
conjugate. Then, instead of integrating the screening operators
over the contours in the complex plane of their respective
holomorphic and antiholomorphic coordinates, we integrate
the screening operators over the entire 2D plane.

To see why this procedure is valid, we first consider the
expression

Pf

(
1

zi − zj

)
= 〈

V 20
31 (z1)V 00

31 (z2) · · ·V 20
31 (zN−1)V 00

31 (zN )
〉

=
〈∮

Cz1

dw1

∮
Cz1

dw2 eiα31ϕ(z1)eiα−ϕ(w1)eiα−ϕ(w2)eiα31ϕ(z2)

× · · · ×
∮

CzN−1

dwN−1

∮
CzN−1

dwN eiα31ϕ(zN−1)eiα−ϕ(wN−1)

× eiα−ϕ(wN ) eiα31ϕ(zN )

〉
, (94)

where Cx is used to indicate a contour of radius |x| centered on
the origin (with appropriate regularization, i.e., taking contours
at the same radius to be infinitesimally concentric and point-
split at the zi coordinates). To obtain the norm squared of this
wave function, we multiply this expression by its complex
conjugate:

Pf

(
1

z̄i − z̄j

)

=
〈∮

Cz1

dw̄1

∮
Cz1

dw̄2 eiα31ϕ(z̄1)eiα−ϕ(w̄1)eiα−ϕ(w̄2)eiα31ϕ(z̄2)

× · · · ×
∮

CzN−1

dw̄N−1

∮
CzN−1

dw̄N eiα31ϕ(z̄N−1)eiα−ϕ(w̄N−1)

× eiα−ϕ(w̄N )eiα31ϕ(z̄N )

〉
. (95)

Evaluating the correlation functions of vertex operators, noting
that α31 = −α− = √

3/2, we obtain∣∣∣∣Pf

(
1

zi − zj

)∣∣∣∣
2

=
N/2∏
k=1

∮
Cz2k−1

dw2k−1

∮
Cz2k−1

dw̄2k−1

∮
Cz2k−1

dw2k

∮
Cz2k−1

dw̄2k

×
N∏

i<j

|wi − wj |3
N∏
i,j

|wi − zj |−3
N∏

i<j

|zi − zj |3. (96)

It is important to emphasize that wi and w̄i are independent
variables in this expression, so terms such as |wi − wj |3 should
really be understood as shorthand for (wi − wj )3/2(w̄i −
w̄j )3/2. Retracing Mathur’s steps, as explained in Appendix B,
we rewrite the product of wi and w̄i contour integrals in
Eq. (96) in terms of 2D integrals:

∫ N∏
k

d2wk

N∏
i<j

|wi − wj |3
N∏
i,j

|wi − zj |−3
N∏

i<j

|zi − zj |3

=
N/2∏
k=1

∮
Cz2k−1

dw2k−1

∮
Cz2k−1

dw̄2k−1

∮
Cz2k−1

dw2k

∮
Cz2k−1

dw̄2k

×
N∏

i<j

|wi−wj |3
N∏
i,j

|wi − zj |−3
N∏

i<j

|zi − zj |3. (97)

Therefore, we can write the square of the Pfaffian in the
form:∣∣∣∣Pf

(
1

zi − zj

)∣∣∣∣
2

=
∫ N∏

k

d2wk

N∏
i<j

|wi −wj |3
N∏
i,j

|wi − zj |−3

×
N∏

i<j

|zi − zj |3. (98)

Note that the right-hand-side of this equation is divergent as
any wi approaches any zj . It can be made well-defined by
analytic continuation. In other words, we define this expression
by evaluating the integral

∫ N∏
k

d2wk

N∏
i<j

|wi − wj |3α

N∏
i,j

|wi − zj |−3α

N∏
i<j

|zi − zj |3α.

(99)

for α < 2/3, where the integral is convergent, and analytically
continuing to α = 1. This analytic continuation gives the right-
hand side of Eq. (98). As we will discuss, the associated plasma
does not go through a phase transition as α is varied from
α < 2/3 to 1, so the right-hand side of Eq. (98) is a useful
representation of the left-hand-side.

If, instead, we modify the right-hand-side at short distances
by, for instance, introducing a short-ranged repulsion (e.g., a
hard-core cutoff), then the right-hand side will be modified
for zi → zj but will be unchanged at long distances. This will
produce a wave function in the same universality class as the
Pfaffian. However, rather than introduce a cutoff and work
with a modified wave function, we prefer to define Eq. (98) by
analytic continuation, as described earlier.

Now we can interpret the norm of the Pfaffian in terms of a
two-component plasma. Specifically, we can write

∥∥∥∥Pf

(
1

zi − zj

)∥∥∥∥
2

≡
∫ N∏

k=1

d2zk

∣∣∣∣Pf

(
1

zi − zj

)∣∣∣∣
2

=
∫ N∏

k=1

d2zk d2wk e−�2/T = e−F2/T ,

(100)
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�2 = −
N∑

i<j

Q2 log |wi − wj | +
N∑
i,j

Q2 log |wi − zj |

−
N∑

i<j

Q2 log |zi − zj |, (101)

where T = Q2/3. Now �2 is the 2D Coulomb-interaction po-
tential energy for N charge Q particles at zi and N charge −Q

particles at wi . Thus, F2 is the free energy of a classical 2D two-
component plasma of charges ±Q at temperature T . (We use
the subscript 2 to indicate the two-component plasma.) Again,
we can let T take any value as long as Q is adjusted accord-
ingly. One convenient choice is to take T = g and Q = √

3g.
It is known that such a two-component plasma with

coupling constant � = Q2/T is a screening fluid for � < 4,
that is, the condensation temperature is Tc2 = Q2/4, but
that it needs a short-ranged repulsive interaction, such as
a hard-core cutoff, in order to be stable against collapse
into neutral bound pairs for � > 2 (i.e., T < 2Tc2 ).86–89 For
� > 4 all particles are bounded into neutral pairs, while for
� < 2 all pairs are broken. The Pfaffian wave function’s
corresponding plasma is precisely in the range 2 < � < 4,
where it is a screening fluid as long as a short-ranged repulsion
is introduced. This fits with the preceding discussion regarding
the need for a short-distance repulsion or analytic continuation
and is intuitively clear from the fact that Pf( 1

zi−zj
) diverges as

zi → zj . We discuss the screening properties of this plasma in
more detail using field theoretic methods in Appendix D. Its
Debye screening length can be estimated (see Appendix E) to
be �2 = (12πnf )−1/2, where nf is the electron density.

Adding the charge part of the MR ground state, we have:

|�(z1, . . . ,zN )|2 =
∣∣∣∣Pf

(
1

zi−zj

)∣∣∣∣
2 N∏

i<j

|zi−zj |2Me
− 1

2

N∑
i=1

|zi |2

=
∫ N∏

k

d2wk

N∏
i<j

∣∣wi − wj

∣∣3 N∏
i,j

∣∣wi − zj

∣∣−3

×
N∏

i<j

∣∣zi − zj

∣∣2M+3
e
− 1

2

N∑
i=1

|zi |2
. (102)

This expression is antisymmetric under exchange of zi with
zj while holding z̄i and z̄j fixed. It is also of degree M(N −
1) − 1 in any of the zis and degree M(N − 1) − 1 in any
of the z̄is. Indeed, there is a unique polynomial satisfying
these properties, so it is clear that once the right-hand-side is
computed by analytic continuation, it will give the squared
modulus of the MR Pfaffian ground-state wave function.

Now we can write the norm of the MR ground-state wave
function in terms of a classical plasma by writing

‖�(z1, . . . ,zN )‖2 ≡
∫ N∏

k=1

d2zk |�(z1, . . . ,zN )|2

=
∫ N∏

k=1

d2zk d2wk e−(�1+�2)/T = e−F/T ,

(103)

�1 = −
N∑

i<j

Q2
1 log |zi − zj | + Q2

1

4M

N∑
i=1

|zi |2 , (104)

�2 = −
N∑

i<j

Q2
2 log |wi − wj | +

N∑
i,j

Q2
2 log |wi − zj |

−
N∑

i<j

Q2
2 log |zi − zj |, (105)

where T = g, �1 corresponds to the 2D Coulomb potential for
N charge Q1 = √

2Mg particles at zi in a uniform neutralizing
background of charge density ρ1 = − Q1

2πM�2
B

, and �2 corre-

sponds to the 2D Coulomb potential for N charge Q2 = √
3g

particles at zi and N charge −Q2 = −√
3g particles at wi

(and no neutralizing background charge density). Thus, F

is the free energy of a classical 2D plasma (at temperature
T ) in which its particles can carry charges corresponding to
two independent types of Coulomb interactions, differentiated
using the subscripts 1 and 2. In particular, the plasma described
here consists of N particles at wi carrying charge −Q2, N

particles at zi carrying charge Q1 and Q2, and a uniform
background of charge density ρ1 = − Q1

2πM�2
B

and ρ2 = 0 that
neutralizes the charges of type 1.

When plasmas 1 and 2 are independently in the screening
liquid phase for the corresponding values of T , Q1, and Q2,
we expect that the combined plasma should also be in the
screening liquid phase (except, perhaps, as these parameters
become close to their critical values for either of the two
plasmas). A recent numerical study57 of this combined plasma
for M = 2 found that the behavior is very similar to the
M = 0 case (i.e. the two-component plasma) in that it is in the
screening phase for Q2

2/T < 4. In particular, this study verifies
the MR state’s analogous plasma (which has Q2

2/T = 3) is in
the screening phase for the most important case M = 2. (For
additional results on similar plasmas in the context of vortices
in multi-component superconductors, which support the idea
that the combined plasma is likely to be in the screening liquid
phase, see Refs. 90–92.) We estimate the Debye screening
length of this plasma (see Appendix E) to be

� =
(

M

M + 3 − √
M2 + 9

)1/2

�B. (106)

For M = 2, this gives � ≈ 1.2�B .

VII. PLASMA REPRESENTATION FOR THE TRACE
OF THE OVERLAP MATRIX

The situation gets more complicated when we turn to wave
functions with multiple quasiholes. We would again like to
be able to treat quasiparticles as test charges in the analogous
plasma. However, this is not as straightforward to do as for the
Laughlin case. There are multiple degenerate wave functions
(corresponding to multiple conformal blocks) in such a case.
These different conformal blocks are distinguished in the
Coulomb gas formalism by the location of the screening charge
operators’ contours. Thus, if we exchange a pair of screening
contour integrals, one holomorphic and one antiholomorphic,
for a 2D integral too naively, we would elide the distinction
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between the different conformal blocks, which would clearly
be incorrect.

Thus, we must proceed with greater caution. To do this, it is
useful to recall that the c = 1/2 Ising CFT with its conformal
blocks is but a mathematical tool to construct the correlation
functions of the Ising model at its critical point.58,93 These
correlation functions are real, not complex, and they depend
on the 2D coordinates of the operators of the Ising model,
not just on the holomorphic part of these coordinates. In
particular, consider a correlation function of four Ising spins
(order operators) σ , as well as N Ising energy operators ε:

〈σ (η1,η̄1)σ (η2,η̄2)σ (η3,η̄3)σ (η4,η̄4) ε(z1,z̄1) · · · ε(zN,z̄N )〉 .

(107)

Note that these are non-chiral operators. For instance, ε = ψ̄ψ ,
where ψ is the chiral Majorana fermion field introduced earlier
and ψ̄ is its antiholomorphic counterpart. This correlation
function can be written in terms of the two conformal blocks,
F0 and F1. These conformal blocks are the chiral part(s) of
the correlation function Eq. (107), which we denoted in the
previous section as

Fα(ημ; zi) ≡ 〈 σ (η1)σ (η2)σ (η3)σ (η4) ψ(z1) · · · ψ(zN ) 〉α .

(108)

Note that these are now chiral operators σ (ημ) and ψ(zi). The
subscript α = 0,1 denotes whether the first two σ fields fuse
to I or ψ , respectively. The explicit forms of F0 and F1 are

F0,1 =
(

η13η24

η12η23η34η41

) 1
8 1√

1 ± √
1 − x

× (
�̃(13)(24) ± √

1 − x �̃(14)(23)
)
, (109)

where �̃(13)(24), �̃(14)(23) are defined in Eq. (F11). Note that
F0 and F1 are clearly multivalued functions; they transform
under the braiding of coordinates in exactly the same way as
the functions �0 and �1 of Eq. (26), up to an overall phase
[which is due to the c = 1 CFT present in Eq. (26)]. Indeed,
�0,1 were constructed by multiplying F0,1 in Eq. (109) by
a Laughlin wave-function-like factor coming from the c = 1
CFT.

The antiholomorphic part of the correlation function is
similarly given by F̄0 and F̄1. However, the nonchiral corre-
lation function 〈 σ (η1,η̄1) · · · σ (η4,η̄4) ε(z1,z̄1) · · · ε(zN,z̄N ) 〉
must combine holomorphic and antiholomorphic sectors in
such a way as to be single valued. There is a unique way to do
this, which is the trace:

〈σ (η1,η̄1)σ (η2,η̄2)σ (η3,η̄3)σ (η4,η̄4) ε(z1,z̄1) · · · ε(zN,z̄N )〉
= F0(ημ; zi)F̄0(η̄μ; z̄i) + F1(ημ; zi)F̄1(η̄μ; z̄i). (110)

Indeed, this is the only combination of the conformal blocks
which is single valued as η1 and η̄1 = η∗

1 are taken all over
the complex plane, and similarly for the other ημ and η̄μ. This
may be checked by using the analytic continuation properties
of F0 and F1, which are exactly the same as Eqs. (30)–(32) for
�0 and �1 (up to the overall phase, which obviously cancels
between holomorphic and antiholomorphic terms anyway).
This expression is also real, as expected for a real correlation
function of the Ising model.

Since the sum of the squares of the four-quasihole
conformal blocks is single-valued, we can form a plasma
representation for the sum of overlap integrals:

∫ N∏
k=1

d2zk[F0(ημ; zi)F̄0(η̄μ; z̄i) + F1(ημ; zi)F̄1(η̄μ; z̄i)].

(111)

We cannot do this for each of the individual terms in this sum.
In order to express Eq. (111) in terms of a classical plasma, we
begin with the Coulomb gas representation for the conformal
blocks of Eqs. (80) and (81) [we could have equally well
chosen the representations in Eqs. (82) and (83), but this choice
is more suitable for subsequent generalizations, as we will see
later], and multiply them by their complex conjugates. The
conformal block F0(ημ; zi) is precisely the expression which
we defined in Eq. (80): the conformal block in which the first
two σ s fuse to I . Written explicitly in terms of the vertex
operators, this is:

F0(ημ; zi)

= 〈
V 10

21 (η1)V 00
21 (η2)V 10

21 (η3)V 00
21 (η4) V 20

31 (z1)V 00
31 (z2)

· · ·V 20
31 (zN−1)V 00

31 (zN )
〉

=
〈∮

Cη1

dw1 eiα21ϕ(η1)eiα−ϕ(w1)eiα21ϕ(η2)
∮

Cη3

dw2 eiα21ϕ(η3)

× eiα−ϕ(w2)eiα21ϕ(η4)
∮

Cz1

dw3

∮
Cz1

dw4 eiα31ϕ(z1)eiα−ϕ(w3)

× eiα−ϕ(w4)eiα31ϕ(z2) × · · · ×
∮

CzN−1

dwN+1

∮
CzN−1

dwN+2

× eiα31ϕ(zN−1)eiα−ϕ(wN+1)eiα−ϕ(wN+2)eiα31ϕ(zN )

〉
. (112)

We multiply this expression by its complex conjugate

F̄0(η̄μ; z̄i)

=
〈∮

Cη̄1

dw̄1 eiα21ϕ(η̄1)eiα−ϕ(w̄1)eiα21ϕ(η̄2)
∮

Cη̄3

dw̄2 eiα21ϕ(η̄3)

× eiα−ϕ(w̄2)eiα21ϕ(η̄4)
∮

Cz̄1

dw̄3

∮
Cz̄1

dw̄4e
iα31ϕ(z̄1)eiα−ϕ(w̄3)

× eiα−ϕ(w̄4)eiα31ϕ(z̄2) × · · · ×
∮

Cz̄N−1

dw̄N+1

∮
Cz̄N−1

dw̄N+2

× eiα31ϕ(z̄N−1) eiα−ϕ(w̄N+1)eiα−ϕ(w̄N+2)eiα31ϕ(z̄N )

〉
. (113)

In Eqs. (112) and (113), there are N coordinates zi (electrons),
four coordinates ημ (quasiholes), and N + 2 coordinates
wa (screening charges). The correlation functions of vertex
operators in Eq. (112) and (113) can be evaluated using
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Eq. (58):

F0(ημ; zi)F̄0(η̄μ; z̄i)

=
N+2∏
c=1

∮
dwc

∮
dw̄c

N+2∏
a<b

(wa − wb)
3
2

N+2∏
a=1

4∏
μ=1

(wa − ημ)−
3
4

×
N+2∏
a=1

N∏
i=1

(wa−zi)
− 3

2

N∏
i<j

(zi−zj )
3
2

4∏
μ=1

N∏
i=1

(ημ−zi)
3
4

×
4∏

μ<ν

(ημ−ην)
3
8

N+2∏
a<b

(w̄a − w̄b)
3
2

N+2∏
a=1

4∏
μ=1

(w̄a − η̄μ)−
3
4

×
N+2∏
a=1

N∏
i=1

(w̄a − z̄i)
− 3

2

N∏
i<j

(z̄i − z̄j )
3
2

4∏
μ=1

N∏
i=1

(η̄μ − z̄i)
3
4

×
4∏

μ<ν

(η̄μ − η̄ν)
3
8 . (114)

In these expressions, the appropriate choice of integration
contours (which we left implicit here) tells us that we
are computing F0(ημ; zi)F̄0(η̄μ; z̄i). However, by choosing a
different contour for one of the screening charges in Eqs. (112)
and (113), as per Eq. (81) (specifically, if the contour C2

corresponding to w2 was a circle of radius |η2| rather than
radius |η3|), we would obtain F1(ημ; zi)F̄1(η̄μ; z̄i) instead.
To obtain the nonchiral correlation function, we should add
the right-hand side of Eq. (114) to the corresponding expres-
sion for F1(ημ; zi)F̄1(η̄μ; z̄i), with these different integration
contours.

Instead, following Mathur68 once again, we replace the in-
tegrations over pairs of contours by integrations over the plane
as described in Appendix B. This replacement gives us nei-
ther F0(ημ; zi)F̄0(η̄μ; z̄i) nor F1(ημ; zi)F̄1(η̄μ; z̄i) but, rather,
the combination F0(ημ; zi)F̄0(η̄μ; z̄i) + F1(ημ; zi)F̄1(η̄μ; z̄i).
Thus, we obtain

F0(ημ; zi)F̄0(η̄μ; z̄i) + F1(ημ; zi)F̄1(η̄μ; z̄i)

=
∫ N+2∏

c=1

d2wc

N+2∏
a<b

|wa−wb|3
N+2∏
a=1

4∏
μ=1

|wa−ημ|− 3
2

×
N+2∏
a=1

N∏
i=1

|wa−zi |−3
N∏

i<j

|zi − zj |3
4∏

μ=1

N∏
i=1

|ημ − zi | 3
2

×
4∏

μ<ν

|ημ − ην | 3
4 . (115)

The reason that the particular combination
F0(ημ; zi)F̄0(η̄μ; z̄i) + F1(ημ; zi)F̄1(η̄μ; z̄i) appears on
the right-hand side is, as shown by Mathur,68 that when the
contour integrals are replaced by 2D integrals, as described
in Appendix B, this has the effect of computing a sum of
holomorphic and antiholomorphic conformal blocks, such
that the entire combination is single valued as a function of
all variables.

We now define

GF
α,β (η̄μ,ημ) ≡

∫ N∏
k=1

d2zkF̄α(η̄μ; z̄i)Fβ(ημ; zi). (116)

We denote this overlap matrix as GF to distinguish it from
the closely related G defined in Eq. (37), which is the overlap
matrix of the MR wave functions �α . If we take the integral
of Eq. (115) over the coordinates zi , we obtain

TrGF = GF
0,0 + GF

1,1

=
∫ N∏

k=1

d2zk[F̄0(η̄μ; z̄i)F0(ημ; zi)

+ F̄1(η̄μ; z̄i)F1(ημ; zi)]

=
∫ N+2∏

c=1

d2wc

N+2∏
a<b

|wa − wb|3
N+2∏
a=1

4∏
μ=1

|wa − ημ|− 3
2

×
N+2∏
a=1

N∏
i=1

|wa − zi |−3
N∏

i<j

|zi − zj |3

×
4∏

μ=1

N∏
i=1

|ημ − zi | 3
2

4∏
μ<ν

|ημ − ην | 3
4 . (117)

Comparing with Eq. (A4), we can rewrite this in terms of the
partition function of a plasma

TrGF =
∫ N∏

k=1

d2zk

N+2∏
c=1

d2wc e−�2/T = e−F2/T (118)

�2 = −
N+2∑
a<b

Q2 log |wa − wb| +
N+2∑
a=1

4∑
μ=1

Q2

2
log |wa − ημ|

+
N+2∑
a=1

N∑
i=1

Q2 log |wa − zi | −
N∑

i<j

Q2 log |zi − zj |

−
4∑

μ=1

N∑
i=1

Q2

2
log |ημ − zi | −

4∑
μ<ν

Q2

4
log |ημ − ην|,

(119)

where, for temperature T = g, �2 is the 2D Coulomb-
interaction potential for N particles of charge Q = √

3g at
positions zi and N + 2 particles of charge −Q at positions
wa , in the presence of four fixed test particles of charge Q/2
at positions ημ. This plasma obeys overall charge neutrality,
as can be seen by adding up all the charges. As previously
mentioned, it is known that the 2D two-component classical
plasma comprised of particles of opposite charge ±Q is
in the screening fluid phase for � = Q2/T = 3, though a
short-ranged repulsion (e.g. a hard-core cutoff) is needed. (We
discuss the screening properties of this plasma in more detail
in Appendix D). Since this plasma screens, the free energy F2

in Eq. (118) is independent of the positions ημ, as long as they
are farther apart than the screening length �2 of the plasma.
This proves, for the case of n = 4 quasiholes, that

Tr GF = 2C2 + O(e−|ημ−ην |/�2 ), (120)

where C2 is a constant independent of ημ.
We now turn to the overlap matrix G of the MR wave

functions �α . The wave functions �0 and �1 differ from F0
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and F1 by an additional c = 1 correlation function, as is clear
from Eqs. (26) and (23). This additional correlation function

is straightforward to calculate [as before, use Eq. (A6) with
g = 1/4]

〈
e
i 1

2
√

2M
ϕ(η1)

e
i 1

2
√

2M
ϕ(η2)

e
i 1

2
√

2M
ϕ(η3)

e
i 1

2
√

2M
ϕ(η4)

ei
√

M
2 ϕ(z1) . . . ei

√
M
2 ϕ(zN )e

−i 1
2π

√
2M

∫
d2z ϕ(z)

〉

=
4∏

μ<ν

(ημ − ην)
1

4M

4∏
μ=1

N∏
i=1

(ημ − zi)
1
2

N∏
i<j

(zi − zj )Me
− 1

8M

4∑
μ=1

|ημ|2− 1
4

N∑
i=1

|zi |2
. (121)

Consequently, the analog of Eq. (117) for these functions is given by

TrG = G0,0 + G1,1

=
∫ N∏

k=1

d2zk

[
�̄0(η̄μ; z̄i)�0(ημ; zi) + �̄1(η̄μ; z̄i)�1(ημ; zi)

]

=
∫ N∏

k=1

d2zk

∫ N+2∏
c=1

d2wc

N+2∏
a<b

|wa − wb|3
N+2∏
a=1

4∏
μ=1

|wa − ημ|− 3
2

N+2∏
a=1

N∏
i=1

|wa − zi |−3
N∏

i<j

|zi − zj |3
4∏

μ=1

N∏
i=1

|ημ − zi | 3
2

×
4∏

μ<ν

|ημ − ην | 3
4

N∏
i<j

|zi − zj |2M

4∏
μ=1

N∏
i=1

|ημ − zi |
4∏

μ<ν

|ημ − ην | 1
2M e

− 1
4M

4∑
μ=1

|ημ|2− 1
2

N∑
i=1

|zi |2
. (122)

Similarly, this can be interpreted in terms of a plasma for which there are two independent Coulomb interactions, denoted using
subscripts 1 and 2, by rewriting Eq. (122) as

TrG =
∫ N∏

k=1

d2zk

N+2∏
c=1

d2wc e−(�1+�2)/T = e−F/T (123)

�1 = −
4∑

μ<ν

Q2
1

4M2
log |ημ − ην | −

4∑
μ=1

N∑
i=1

Q2
1

2M
log |ημ − zi | −

N∑
i<j

Q2
1 log |zi − zj | + Q2

1

8M2

4∑
μ=1

|ημ|2 + Q2
1

4M

N∑
i=1

|zi |2 (124)

�2 = −
N+2∑
a<b

Q2
2 log |wa − wb| +

N+2∑
a=1

4∑
μ=1

Q2
2

2
log |wa − ημ| +

N+2∑
a=1

N∑
i=1

Q2
2 log |wa − zi | −

N∑
i<j

Q2
2 log |zi − zj |

−
4∑

μ=1

N∑
i=1

Q2
2

2
log |ημ − zi | −

4∑
μ<ν

Q2
2

4
log |ημ − ην |, (125)

where, for T = g, we have �1 corresponding to a 2D Coulomb
potential for N charge Q1 = √

2Mg particles at zi and four
fixed test particles with charge Q1/2M = √

g/2M at ημ, in
a uniform neutralizing background of charge density ρ1 =
− Q1

2πM�2
B

, and �2 corresponding to a 2D Coulomb potential

for N charge Q2 = √
3g particles at zi , N + 2 charge −Q2

particles at wa , and four fixed test particles with charge Q2/2 at
ημ. Hence, this plasma consists of N particles (corresponding
to the electrons) at zi which carry charges Q1 and Q2, N + 2
particles (screening operators) at wa which carry charges −Q2,
four fixed test charges (quasiholes) at ημ which carry charges
Q1/2M and Q2/2, and a uniform neutralizing background
of charge density ρ1 = − Q1

2πM�2
B

(and ρ2 = 0). As previously
mentioned, we expect such a plasma to be in the screening
phase for roughly T > Tc1 ,Tc2 , where Tc1 = Q2

1/140 and Tc2 =
Q2

2/4 are the critical temperatures above which plasmas 1 and
2 are individually in their screening fluid phase. Therefore,
this plasma at temperature T = g with Q1 = √

2Mg and

Q2 = √
3g should be in the screening phase for M � 70.

This has been numerically confirmed57 for M = 2. When the
plasma is in the screening phase, the free energy F will not
depend on the positions of the test charges ημ, as long as
their separations are larger than the screening length � of the
combined plasma.

Thus, for sufficiently small M , we have proved that the
trace of the overlap matrix G [defined in Eq. (37)] for n = 4
quasiholes is an ημ-independent constant for large separations,
or

TrG =
∑

α=0,1

∫ N∏
k=1

d2zk�̄α(η̄μ; z̄i)�α(ημ; zi)

= 2C + O(e−|ημ−ην |/�). (126)

Hence, we have established that both the trace of G, which
includes the charge sector as in Eq. (122), as well as the trace
of GF , without the charge sector, as in Eq. (117), are constants.
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The preceding derivation can be generalized to an arbitrary even number n of quasiholes, for which the formulas analogous
to Eqs. (118), (123), (124), (125) are

TrGF =
∫ N∏

k=1

d2zk

q−1∑
α=0

F̄α(η̄μ; z̄i)Fα(ημ; zi) =
∫ N∏

k=1

d2zk

N+ n
2∏

c=1

d2wc e−�2/T = e−F2/T (127)

TrG =
∫ N∏

k=1

d2zk

q−1∑
α=0

�̄α(η̄μ; z̄i)�α(ημ; zi) =
∫ N∏

k=1

d2zk

N+ n
2∏

c=1

d2wc e−(�1+�2)/T = e−F/T (128)

�1 = −
n∑

μ<ν

Q2
1

4M2
log |ημ − ην | −

n∑
μ=1

N∑
i=1

Q2
1

2M
log |ημ − zi | −

N∑
i<j

Q2
1 log |zi − zj | + Q2

1

8M2

n∑
μ=1

|ημ|2 + Q2
1

4M

N∑
i=1

|zi |2 (129)

�2 = −
N+ n

2∑
a<b

Q2
2 log |wa − wb| +

N+ n
2∑

a=1

n∑
μ=1

Q2
2

2
log |wa − ημ| +

N+ n
2∑

a=1

N∑
i=1

Q2
2 log |wa − zi | −

N∑
i<j

Q2
2 log |zi − zj |

−
n∑

μ=1

N∑
i=1

Q2
2

2
log |ημ − zi | −

n∑
μ<ν

Q2
2

4
log |ημ − ην |, (130)

where q = 2
n
2 −1. The sum over α can be replaced by a sum

over πj = 0,1 or pj = 0,1, for j = 1, . . . ,n/2 with the parity
constraint πn/2 = (

∑
j pj )mod 2 = 0 (for N even). Summing

the diagonal product of holomorphic and antiholomorphic
conformal blocks over all conformal blocks, we obtain the
single-valued expression on the right-hand-side.

The arguments discussed thus far are a carefully worked-out
version of the arguments presented in Ref. 45. Their main
drawback is that they do not prove Eq. (41). They only prove
the weaker statements

TrGF =
q−1∑
α=0

∫ N∏
k=1

d2zkF̄α(η̄μ; z̄i)Fα(ημ; zi)

= qC2 + O(e−|ημ−ην |/�2 ) (131)

TrG =
q−1∑
α=0

∫ N∏
k=1

d2zk�̄α(η̄μ; z̄i)�α(ημ; zi)

= qC + O(e−|ημ−ην |/�) (132)

which is necessary but not sufficient, with one exception, for
the (nontrivial part of) Berry’s connections Eq. (34) to vanish.
In the next section we extend the proof to show that the stronger
statement Eq. (41) is true.

The noted exception is the case of two quasiholes. Since
there is only a single conformal block in this case, equal to
either of the Coulomb gas expressions

F0(ημ; zi) = 〈
V 10

21 (η1)V 00
21 (η2) V 20

31 (z1)V 00
31 (z2) . . .

× V 20
31 (zN−1)V 00

31 (zN )
〉

(133)

= 〈
V 00

22 (η1)V 00
21 (η2) V 20

31 (z1)V 00
31 (z2) . . .

× V 20
31 (zN−1)V 00

31 (zN )
〉
,

the overlap matrix is a 1 × 1 matrix which is equal to its trace,
and so, for the n = 2 quasiholes case, we have

GF
0,0 =

∫ N∏
k=1

d2zkF̄0(η̄μ; z̄i)F0(ημ; zi)

= C2 + O(e−|ημ−ην |/�2 ) (134)

G0,0 =
∫ N∏

k=1

d2zk�̄0(η̄μ; z̄i)�0(ημ; zi)

= C + O(e−|ημ−ην |/�). (135)

Thus, as concluded in Ref. 45 by the same logic, when there are
only two quasiholes, the effect of a counterclockwise exchange
is the accrual of a statistical phase exp

[
iπ
(

1
4M

− 1
8

)]
and an

Aharonov-Bohm phase exp
(−i e

2M
BA
h̄c

)
. In fact, we should be

more precise: This is the phase that is accrued when there is
an even number of electrons in the system. When there is an
odd number of electrons, one can repeat these steps using

F1(ημ; zi) = 〈
V 10

21 (η1)V 10
21 (η2) V 00

31 (z1)V 20
31 (z2)V 00

31 (z3) . . .

× V 20
31 (zN−1)V 00

31 (zN )
〉

(136)

= 〈
V 00

22 (η1)V 10
21 (η2) V 00

31 (z1)V 20
31 (z2)V 00

31 (z3) . . .

× V 20
31 (zN−1)V 00

31 (zN )
〉
,

which has the two quasiholes fusing into the ψ channel. The
overlap matrix is again a 1 × 1 matrix which is equal to its
trace, but in this case it gives:

GF
1,1 =

∫ N∏
k=1

d2zkF̄1(η̄μ; z̄i)F1(ημ; zi)

= C2 + O(e−|ημ−ην |/�2 ) (137)

G1,1 =
∫ N∏

k=1

d2zk�̄1(η̄μ; z̄i)�1(ημ; zi)

= C + O(e−|ημ−ην |/�). (138)
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(We note that the number of screening charge coordinates
wa is N + 1 for both N even and odd.) Thus, when there
are only two quasiholes and an odd number of electrons,
the effect of a counterclockwise exchange is the accrual of
a statistical phase exp

[
iπ
(

1
4M

+ 3
8

)]
and an Aharonov-Bohm

phase exp
(−i e

2M
BA
h̄c

)
. This difference in the resulting phase

is an indication of non-Abelian braiding statistics, specifically
due to the fact that the two quasiholes must be in different
fusion channels I and ψ when N is even and odd, respectively.
This is is discussed further in Sec. IX.

VIII. PLASMA REPRESENTATION OF THE OVERLAP
MATRIX FOR FOUR QUASIHOLES

To represent all the entries of the overlap matrix as a plasma,
we need to find Coulomb gas representations for arbitrary
products of conformal blocks. While it does not seem possible
to find such a representation for an arbitrary product F̄αFβ

(see Appendix G for an incomplete approach), it turns out
to be possible to do so for particular linear combinations.
These combinations, in turn, are nothing but the correlation
functions of the order and disorder operators in the Ising model.
The disorder operator μ(η,η̄) in the Ising model has the same
scaling properties as the order operator σ (η,η̄), but it changes
sign as it is taken around the order operator. The analog of
Eq. (110) for correlation functions of two disorder operators
and two order operators is

〈μ(η1,η̄1)μ(η2,η̄2)σ (η3,η̄3)σ (η4,η̄4) ε(z1,z̄1) · · · ε(zN,z̄N )〉
= F0(ημ; zi)F̄0(η̄μ; z̄i) − F1(ημ; zi)F̄1(η̄μ; z̄i), (139)

〈σ (η1,η̄1)μ(η2,η̄2)σ (η3,η̄3)μ(η4,η̄4) ε(z1,z̄1) · · · ε(zN,z̄N )〉
= F0(ημ; zi)F̄1(η̄μ; z̄i) − F1(ημ; zi)F̄0(η̄μ; z̄i), (140)

〈μ(η1,η̄1)σ (η2,η̄2)σ (η3,η̄3)μ(η4,η̄4) ε(z1,z̄1) · · · ε(zN,z̄N )〉
= F0(ημ; zi)F̄1(η̄μ; z̄i) + F1(ημ; zi)F̄0(η̄μ; z̄i). (141)

The expressions for these correlation functions without the
energy operators ε were given in Ref. 58. Since the trans-
formation laws of the conformal blocks Fα are the same as
those of the wave functions �α (up to an irrelevant phase),
we can use Eqs. (30)–(32) to verify that the expressions in
Eqs. (139)–(141) indeed change sign when an order operator
is taken around a disorder operator. We can similarly verify
that the right-hand sides of Eqs. (139)–(141) remain invariant
if an order operator is taken around the other order operator or
a disorder operator is taken around the other disorder operator.

If we can prove that the integrals
∫ ∏

kd
2zk of the three

expressions in Eqs. (139)–(141) are equal to zero, then we will
have proved that the overlap matrix GF defined in Eq. (116) is
proportional to the identity matrix, since we would know that

GF
0,0 − GF

1,1 = 0, GF
0,1 − GF

1,0 = 0, GF
0,1 + GF

1,0 = 0.

(142)

Combined with the already proven identity,
∑

α GF
α,α = 2C2,

this would prove that GF
α,β = C2δα,β .

To do this, let us construct the Coulomb gas representation
for Eqs. (139)–(141), which is straightforward to do using
what we have learned so far. First, let us consider Eq. (139).

We take Eqs. (82) and (83) for the holomorphic part of our
representation [unlike Eq. (115) where we used the alternative
Eqs. (80) and (81)]:

F0(ημ; zi) = 〈
V 00

22 (η1)V 00
21 (η2)V 10

21 (η3)V 00
21 (η4) V 20

31 (z1)

× V 00
31 (z2) . . . V 20

31 (zN−1)V 00
31 (zN )

〉
, (143)

F1(ημ; zi) = 〈
V 00

22 (η1)V 10
21 (η2)V 00

21 (η3)V 00
21 (η4) V 20

31 (z1)

× V 00
31 (z2) . . . V 20

31 (zN−1)V 00
31 (zN )

〉
. (144)

For the antiholomorphic part, we take Eq. (143) but with the
first two operators exchanged, which is

F̄0(η̄μ; z̄i) = 〈
V 00

21 (η̄1)V 00
22 (η̄2)V 10

21 (η̄3)V 00
21 (η̄4) V 20

31 (z̄1)

× V 00
31 (z̄2) . . . V 20

31 (z̄N−1)V 00
31 (z̄N )

〉
. (145)

For the antiholomorphic sector’s other conformal block, we use
this same string of vertex operators, except with the screening
charge moved from the η3 vertex operator to the η2 vertex
operator. This gives

−F̄1(η̄μ; z̄i) = 〈
V 00

21 (η̄1)V 10
22 (η̄2)V 00

21 (η̄3)V 00
21 (η̄4) V 20

31 (z̄1)

× V 00
31 (z̄2) . . . V 20

31 (z̄N−1)V 00
31 (z̄N )

〉
, (146)

so that combining these different representations gives the
correlation function in Eq. (139).

In other words, we use a representation for the Ising disorder
operators in which we use the vertex operators, not including
possible screening charges, given by

μ(η1,η̄1) = V 00
22 (η1)V 00

21 (η̄1) = e
−i 1

4
√

3
ϕ(η1)+i

√
3

4 ϕ̄(η̄1)

= e
i 1

4
√

3
φ(η1,η̄1)O− 1

2
√

3g

(η1,η̄1) (147)

for the first disorder operator (at the position η1,η̄1) and

μ(η2,η̄2) = V 00
21 (η2)V 00

22 (η̄2) = e
i

√
3

4 ϕ(η2)−i 1
4
√

3
ϕ̄(η̄2)

= e
i 1

4
√

3
φ(η2,η̄2)O 1

2
√

3g

(η2,η̄2) (148)

for the second disorder operator (at the position η2,η̄2). The two
charges appearing in Eqs. (147) and (148) in the holomorphic
and antiholomorphic parts of the vertex operators are the two
allowed charges which can represent the Ising spin, as can be
seen from the table in Eq. (72). Such objects (whose left and
right charges are distinct from each other) can be viewed as
particles in the 2D plasma which carry not only electric charge,
but also magnetic charge, in the sense of Eqs. (A4), (A7), (A8)
in Appendix A.

Meanwhile, the Ising order operators without their screen-
ing charges are represented by purely electric operators,

σ (η3,4,η̄3,4) = V 00
21 (η3,4)V 00

21 (η̄3,4) = ei
√

3
4 ϕ(η3,4)+i

√
3

4 ϕ̄(η̄3,4),

(149)

as are the Ising energy operators (without screening charges),

ε(zi,z̄i) = V 00
31 (zi)V

00
31 (z̄i) = ei

√
3

2 ϕ(zi )+i
√

3
2 ϕ̄(z̄i ), (150)

and the screening operators,

eiα−ϕ(w) eiα−ϕ̄(w̄) = e−i
√

3
2 ϕ(w)−i

√
3

2 ϕ(w̄). (151)
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In this construction we exclusively use the α− = −√
3/2

screening operators. The crucial part of the proposed construc-
tion is that almost all of the operators used here are mutually
local, that is, are single valued when any one is taken around
any other. The exception is when an order operator is taken
around a disorder operator (or vice versa), which results in a
−1. This is easy to check if one uses

eiαrϕ(z)+iαlϕ(z̄) eiβrϕ(w)+iβlϕ(w̄) ∼ (z − w)2αrβr (z̄ − w̄)2αlβl .

(152)

Thus, when one is taken around the other, a phase 4π (αrβr −
αlβl) is acquired. For example, if a disorder operator rep-
resented either by αr = − 1

4
√

3
, αl =

√
3

4 or by αr =
√

3
4 ,

αl = − 1
4
√

3
is taken around the order operator represented by

βr =
√

3
4 , βl =

√
3

4 , this phase is π . (Similarly, when a disorder

operator is taken around an energy operator represented by
βr =

√
3

2 , βl =
√

3
2 , it produces a phase of 2π .)

Of course, we would have obtained the same analytic
continuation properties if we had switched the representations
of the first and second disorder operators, that is, had taken

μ(η1,η̄1) = V 00
21 (η1)V 00

22 (η̄1) = e
i

√
3

4 ϕ(η1)−i 1
4
√

3
ϕ̄(η̄1) (153)

for the first disorder operator (at the position η1,η̄1) and

μ(η2,η̄2) = V 00
22 (η2)V 00

21 (η̄2) = e
−i 1

4
√

3
ϕ(η2)+i

√
3

4 ϕ̄(η̄2)
. (154)

In fact, since this correlation function must be the same if we
exchange the two disorder operators (or exchange the two order
operators), we must take an equal linear combination of both
representations for the disorder operators. Thus, we conclude
that we obtain the correct analytic continuation properties
when operators are taken around other operators or when
identical operators are exchanged if we write

F0(ημ; zi)F̄0(η̄μ; z̄i) − F1(ημ; zi)F̄1(η̄μ; z̄i) = 〈μ(η1,η̄1)μ(η2,η̄2)σ (η3,η̄3)σ (η4,η̄4) ε(z1,z̄1) . . . ε(zN,z̄N )〉
= 〈

V 00
22 (η1)V 00

21 (η2)V 10
21 (η3)V 00

21 (η4) V 20
31 (z1)V 00

31 (z2) . . . V 20
31 (zN−1)V 00

31 (zN )
〉

× 〈
V 00

21 (η̄1)V 00
22 (η̄2)V 10

21 (η̄3)V 00
21 (η̄4)V 20

31 (z̄1)V 00
31 (z̄2) . . . V 20

31 (z̄N−1)V 00
31 (z̄N )

〉
+ 〈

V 00
22 (η1)V 10

21 (η2)V 00
21 (η3)V 00

21 (η4) V 20
31 (z1)V 00

31 (z2) . . . V 20
31 (zN−1)V 00

31 (zN )
〉

× 〈
V 00

21 (η̄1)V 10
22 (η̄2)V 00

21 (η̄3)V 00
21 (η̄4)V 20

31 (z̄1)V 00
31 (z̄2) . . . V 20

31 (z̄N−1)V 00
31 (z̄N )

〉
+ 〈

V 00
21 (η1)V 00

22 (η2)V 10
21 (η3)V 00

21 (η4) V 20
31 (z1)V 00

31 (z2) . . . V 20
31 (zN−1)V 00

31 (zN )
〉

× 〈
V 00

22 (η̄1)V 00
21 (η̄2)V 10

21 (η̄3)V 00
21 (η̄4)V 20

31 (z̄1)V 00
31 (z̄2) . . . V 20

31 (z̄N−1)V 00
31 (z̄N )

〉
+ 〈

V 00
21 (η1)V 10

22 (η2)V 00
21 (η3)V 00

21 (η4) V 20
31 (z1)V 00

31 (z2) . . . V 20
31 (zN−1)V 00

31 (zN )
〉

× 〈
V 00

22 (η̄1)V 10
21 (η̄2)V 00

21 (η̄3)V 00
21 (η̄4)V 20

31 (z̄1)V 00
31 (z̄2) . . . V 20

31 (z̄N−1)V 00
31 (z̄N )

〉
. (155)

If we again pursue Mathur’s strategy and replace the integrations over pairs of contours, such as
∮

dwc

∮
dw̄c, by integrations

over the plane
∫

d2wc, we obtain the following expression for Eq. (155):

F0(ημ; zi)F̄0(η̄μ; z̄i) − F1(ημ; zi)F̄1(η̄μ; z̄i)

= 〈μ(η1,η̄1)μ(η2,η̄2)σ (η3,η̄3)σ (η4,η̄4) ε(z1,z̄1) · · · ε(zN,z̄N )〉

=
∫ N+1∏

c=1

d2wc |η1 − η2|− 1
4

4∏
μ=3

[
(η1 − ημ)−

1
8 (η̄1 − η̄μ)

3
8 (η2 − ημ)

3
8 (η̄2 − η̄μ)−

1
8
]|η3 − η4| 3

4

×
N+1∏
a=1

[
(η1 − wa)

1
4 (η̄1 − w̄a)−

3
4 (η2 − wa)−

3
4 (η̄2 − w̄a)

1
4 |η3 − wa|− 3

2 |η4 − wa|− 3
2
]

×
N∏

i=1

[
(η1 − zi)

− 1
4 (η̄1 − z̄i)

3
4 (η2 − zi)

3
4 (η2 − zi)

− 1
4 |η3 − zi | 3

2 |η4 − zi | 3
2
]

×
N+1∏
a<b

|wa − wb|3
N+1∏
a=1

N∏
i=1

|wa − zi |−3
N∏

i<j

|zi − zj |3 + c.c. (156)

We emphasize that Mathur’s procedure can be applied to this
case because the screening charges have trivial monodromy
with all other vertex operators, including, in particular, those
of the disorder operators. Equation (156) is one of the main
results of this work. It is the correlation function of two

order and two disorder operators in the Ising model obtained
via the Coulomb gas approach. In order to understand why
this expression is correct, it is helpful to observe, first of
all, that the holomorphic and the antiholomorphic parts of
Eq. (156) indeed reduce to the second through fifth lines
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of Eq. (155) while the holomorphic and the antiholomorphic
parts of the complex conjugate [the “c.c.” at the end of
Eq. (156)] reduce to the sixth through ninth lines of Eq. (155).
(The complex conjugate is also necessary to make the
correlation function symmetric.) More importantly, one should
note that the expression inside the integral in Eq. (156) is single
valued if any of wa,w̄a is taken around any other variable or
if any zi,z̄i is taken around any other variable, so that the
integrals over these variables are well defined. However, it
changes sign if η1,η̄1 is taken around η3,η̄3, as well as if η1,η̄1

is taken around η4,η̄4, if η2,η̄2 is taken around η3,η̄3, or if η2,η̄2

is taken around η4,η̄4. This is exactly as we would expect for
the correlation function of Eq. (139). Thus, when the d2wc

integrals are decomposed into sums of products of conformal
blocks, following Ref. 68 as outlined in Appendix B and the
discussion following it, the analytic continuation properties
automatically select the correct combination of conformal
blocks.

Similarly, the two correlation functions in Eqs. (140) and
(141) can be obtained by a simple permutation of the variables
ημ,η̄μ. Thus, all three correlation functions from Eqs. (139)–
(141) can be constructed in this way.

In fact, the analytic continuation properties noted previ-
ously are sufficient to conclude that if Eq. (156) is nonzero, it
is equal to the correlation function we need to compute. Thus, if
one were simply handed Eq. (156), one could verify it without
the arguments of Ref. 68 (although, of course, one would prob-
ably not discover this equation without Ref. 68) by appealing
to these analytic continuation properties and showing that the
expression Eq. (156) is nonzero. In Appendix C we explicitly
evaluate Eq. (156) in the absence of the energy operators. In
this case, there is only one screening operator involved and
only one integral over w, which we calculate. The result of the
evaluation, given in Eq. (C21), explicitly produces the correct
combination of blocks as given in Eq. (156).

It further follows that when the energy operators are in-
cluded, the representation Eq. (156) cannot simply vanish. In-
deed, we can always take the four Ising order and disorder op-
erators far away from the energy operators, and the correlation
function factorizes. It is clearly nonzero in this limit; by analyt-
icity it will remain nonzero at finite separation between them.

Thus, we have the following expression for the overlap
integral of the difference of the product of conformal blocks,
a generalization of Eq. (117),

GF
0,0 − GF

1,1 =
∫ N∏

k=1

d2zk

[
F̄0(η̄μ; z̄i)F0(ημ; zi) − F̄1(η̄μ; z̄i)F1(ημ; zi)

]

=
∫ N∏

k=1

d2zk

N+1∏
c=1

d2wc |η1 − η2|− 1
4

4∏
μ=3

[
(η1 − ημ)−

1
8 (η̄1 − η̄μ)

3
8 (η2 − ημ)

3
8 (η̄2 − η̄μ)−

1
8
] ∏

3�μ<ν�4

|ημ − ην | 3
4

×
N+1∏
a=1

[
(η1 − wa)

1
4 (η̄1 − w̄a)−

3
4 (η2 − wa)−

3
4 (η̄2 − w̄a)

1
4

4∏
μ=3

|ημ − wa|− 3
2

]

×
N∏

i=1

[
(η1 − zi)

− 1
4 (η̄1 − z̄i)

3
4 (η2 − zi)

3
4 (η2 − zi)

− 1
4

4∏
μ=3

|ημ − zi | 3
2

]

×
N+1∏
a<b

|wa − wb|3
N+1∏
a=1

N∏
i=1

|wa − zi |−3
N∏

i<j

|zi − zj |3 + c.c. (157)

This particular expression gives us the integral over d2zk of the correlation function in Eq. (139). The correlation functions in
Eqs. (140) and (141) can be obtained by the simple permutations of the ημ and η̄μ coordinates.

Now we reinterpret Eq. (157) as a partition function of a plasma by matching it against Eq. (A4) and rewriting it as

GF
0,0 − GF

1,1 =
∫ N∏

k=1

d2zk

N+1∏
c=1

d2wc

(
e−�2/T + e−�̄2/T

)
= e−F2/T + e−F̄2/T (158)

�2 = −
N+1∑
a<b

Q2 log |wa − wb| +
N+1∑
a=1

4∑
μ=3

Q2

2
log |wa − ημ| +

N+1∑
a=1

N∑
i=1

Q2 log |wa − zi |

−
N∑

i<j

Q2 log |zi − zj | −
4∑

μ=3

N∑
i=1

Q2

2
log |ημ − zi | −

∑
3�μ<ν�4

Q2

4
log |ημ − ην |

+
N+1∑
a=1

2∑
μ=1

Q2

6
log |wa − ημ| −

2∑
μ=1

N∑
i=1

Q2

6
log |ημ − zi | −

2∑
ν=1

4∑
μ=3

Q2

12
log |ημ − ην | −

(
Q2

36
− g2m2

)
log |η1 − η2|

075303-22



PLASMA ANALOGY AND NON-ABELIAN STATISTICS FOR . . . PHYSICAL REVIEW B 83, 075303 (2011)

+ ig

N+1∑
a=1

Qm arg(η1 − wa) − ig

N∑
i=1

Qm arg(η1 − zi) − ig

4∑
μ=3

Qm

2
arg(η1 − ημ)

− ig

N+1∑
a=1

Qm arg(η2 − wa) + ig

N∑
i=1

Qm arg(η2 − zi) + ig

4∑
μ=3

Qm

2
arg(η2 − ημ), (159)

where T = g, Q = √
3g, and m = 1/

√
3g. We see that �2

is the 2D Coulomb interaction potential for N particles with
electric charge Q at positions zi , N + 1 particles of electric
charge −Q at positions wa , two particles of electric charge
Q/2 at positions η3 and η4, a particle with electric charge
Q/6 and magnetic charge m at position η1, and a particle with
electric charge Q/6 and magnetic charge −m at position η2.
Additionally, there is (implicitly) an electric charge of −Q/3
at infinity, corresponding to the background charge needed to
maintain charge neutrality. Thus, we can interpret F2 as the free
energy of a plasma at temperature T , comprised of N particles
of electric charge Q and N + 1 particles of electric charge
−Q, in the presence of two test particles with electric charge
Q/2 at positions η3 and η4, and two “special” test particles
which carry electric charge Q/6 and magnetic charge ±m at
positions η1 and η2, respectively (as well as a test particle of
electric charge −Q/3 at infinity).

We observe that this plasma screens, just as the plasma
described in Eqs. (118), (119) screened, due to a large number
of ±Q electric charges at T > Tc2 = Q2/4 present in it.
However, when there are magnetic, in addition to electric,
test charges that are at at sufficiently large distances from each
other in the plasma, the free energy F2 will diverge due to the

confinement of magnetic charges, as explained in Appendix D
and in Eq. (D10). As a result, we find that GF

0,0 − GF
1,1 = 0

(up to corrections that vanish exponentially as separations
between ημ become larger than the screening length), just
as we expected.

Constructing a similar plasma mapping for GF
0,1 ± GF

1,0
also results in a corresponding plasma that has test particles
carrying magnetic charges. Thus, we can similarly show that
GF

0,1 ± GF
1,0 = 0, and, consequently, we can conclude that the

overlap integrals for the case of n = 4 satisfy

GF
α,β = C2δα,β + O(e−|ημ−ην |/�2 ). (160)

This result is relevant to 2D chiral p-wave superconductors,
whose real space wave function is the Pfaffian without the
charge sector (Laughlin type factors),46 up to short-range
modifications. Thus, Eq. (160) presents another approach to
computing the non-Abelian statistics of this state, distinct from
that of Refs. 46,47,49,50, and 52.

By a simple extension, we can now prove that the matrix
of overlap integrals for the full wave functions are also
proportional to the identity. Indeed, all we need to do is to
multiply the integrand of Eq. (157) by the charge sector terms
from Eq. (121) to obtain

G0,0 − G1,1 =
∫ N∏

k=1

d2zk[�̄0(η̄μ; z̄i)�0(ημ; zi) − �̄1(η̄μ; z̄i)�1(ημ; zi)]

=
∫ N∏

k=1

d2zk

N+1∏
c=1

d2wc

[
e−(�1+�2)/T + e−(�̄1+�̄2)/T

] = e−F/T + e−F̄ /T (161)

�1 = −
4∑

μ<ν

Q2
1

4M2
log |ημ − ην | −

4∑
μ=1

N∑
i=1

Q2
1

2M
log

∣∣ημ − zi

∣∣− N∑
i<j

Q2
1 log |zi − zj | + Q2

1

8M2

4∑
μ=1

∣∣ημ

∣∣2 + Q2
1

4M

N∑
i=1

|zi |2

(162)

�2 = −
N+1∑
a<b

Q2
2 log |wa − wb| +

N+1∑
a=1

4∑
μ=3

Q2
2

2
log |wa − ημ| +

N+1∑
a=1

N∑
i=1

Q2
2 log |wa − zi |

−
N∑

i<j

Q2
2 log |zi − zj | −

4∑
μ=3

N∑
i=1

Q2
2

2
log |ημ − zi | −

∑
3�μ<ν�4

Q2
2

4
log |ημ − ην |

+
N+1∑
a=1

2∑
μ=1

Q2
2

6
log |wa − ημ| −

2∑
μ=1

N∑
i=1

Q2
2

6
log |ημ − zi | −

2∑
ν=1

4∑
μ=3

Q2
2

12
log |ημ − ην | −

(
Q2

2

36
− g2m2

2

)
log |η1 − η2|

075303-23



PARSA BONDERSON, VICTOR GURARIE, AND CHETAN NAYAK PHYSICAL REVIEW B 83, 075303 (2011)

+ ig

N+1∑
a=1

Q2m2 arg(η1 − wa) − ig

N∑
i=1

Q2m2 arg(η1 − zi) − ig

4∑
μ=3

Q2m2

2
arg(η1 − ημ)

− ig

N+1∑
a=1

Q2m2 arg(η2 − wa) + ig

N∑
i=1

Q2m2 arg(η2 − zi) + ig

4∑
μ=3

Q2m2

2
arg(η2 − ημ), (163)

with T = g, Q1 = √
2Mg, Q2 = √

3g, and m2 = 1/
√

3g.
Again, F can be interpreted as the free energy of a 2D two-
component plasma with two independent types of Coulomb
interactions (denoted by subscripts 1 and 2) comprised of
N particles (corresponding to the electrons) at zi which
carry electric charges Q1 and Q2, N + 1 particles (screening
operators) at wa which carry electric charge −Q2, two fixed
test charges (quasiholes) at η3 and η4 which carry electric
charges Q1/2M and Q2/2, two fixed test charge (quasiholes)
at η1 and η2 which carry electric charges Q1/2M and Q2/6 and
magnetic charge ±m2, and a uniform neutralizing background
of charge density ρ1 = − Q1

2πM�2
B

(and ρ2 = 0, but an electric
charge of −Q2/3 at infinity). As previously mentioned, we
expect such a plasma to be in the screening phase for T >

Tc1 ,Tc2 , where Tc1 = Q2
1/140 and Tc2 = Q2

2/4 are the critical
temperatures above which plasmas 1 and 2 are individually
in their screening fluid phase, so this plasma at temperature
T = g with Q1 = √

2Mg and Q2 = √
3g should be in the

screening phase for M � 70. This has been numerically
confirmed57 for M = 2. When the plasma is in the screening
phase, the free energy F will diverge due to confinement
of magnetic charges, as long as the separation between the
magnetic charges (at η1 and η2) are larger than the screening
length � of the plasma.

Thus, for sufficiently small M , we have now proved that
G0,0 − G1,1 = 0. By the suitable permutation of ημ,η̄μ, we
similarly obtain G0,1 ± G1,0 = 0. Combining this with the
already proven relation G0,0 + G1,1 = 2C, we have finally
proven Eq. (41)

Gα,β = Cδα,β + O(e−|ημ−ην |/�) (164)

for the four-quasihole wave functions.

IX. n-QUASIPARTICLE FUSION AND BRAIDING

We would now like to go beyond the four-quasihole case
considered so far. At first glance, it might appear that going
beyond four quasiholes is easy. All we need is to consider
correlation functions of a larger number of order and disorder
operators. Indeed, consider a wave function with N electrons
and n quasiholes. As we know, there are 2

n
2 −1 such wave

functions. Therefore, there are 2
n
2 −1 · 2

n
2 −1 = 2n−2 overlap

integrals [the number of entries in the Gα,β overlap matrix
of Eq. (37)]. On the other hand, we can imagine computing
the correlation function of n Ising spins (as well as N Ising
energy operators), as well as correlations with n − 2 order
and 2 disorder operators, n − 4 order and 4 disorder operators
and so on. If n/2 is odd, we should stop at n

2 − 1 disorder and
n
2 + 1 order operators. If n/2 is even, then we should stop at
n/2 disorder and n/2 order operators. The total number of such

correlation functions (which also depend on which operators
are chosen to be order and which are chosen to be disorder) is

( n
2 −1)/2∑
k=0

n!

(n − 2k)!(2k)!
= 2n−2 (165)

if n/2 is odd and

( n
2 −2)/2∑
k=0

n!

(n − 2k)!(2k)!
+ 1

2
· n!

n
2 ! n

2 !
= 2n−2 (166)

if n/2 is even. Either way, the total number of combinations of
conformal blocks one can get in this way [a generalization
of Eqs. (139)–(141) to n σ operators] is exactly equal to
the number of entries in the Gα,β matrix, so computing the
integrals over d2zk via the plasma construction would allow
us to deduce what every entry of Gα,β is for the general case
of n quasiholes.

Suppose we pursue the strategy of the previous sections
to compute Gα,β for an arbitrary number of quasiholes.
Equation (115) is easy to generalize to an arbitrary number
n of quasiholes. Replacing the four quasihole operators in that
expression with n of these operators resulted in Eqs. (127),
(128), (129), (130), which led us to conclude that

TrGF = qC2 + O(e−|ημ−ην |/�2 ) (167)

TrG = qC + O(e−|ημ−ην |/�), (168)

as discussed in Ref. 45. Likewise, Eqs. (157), (158),
(159), (161), (162), (163) can also be generalized to n quasi-
holes by extending the product or sum over 3 � μ < ν � 4 to
3 � μ < ν � n and the products or sums over k = 3,4 to k =
3, . . . ,n. However, this only corresponds to the case of n − 2
order and 2 disorder operators. There are ( n

2 ) such correlation
functions in addition to the correlation function with n order
operators. However, for 2 quasiholes, the correlation function
with 2 order operators is equal to the correlation function with
2 disorder operators by Kramers-Wannier duality. Similarly,
Kramers-Wannier duality reduces the number of distinct
correlation functions with 2 order and 2 disorder operators
from ( 4

2 ) = 6 to 3, as we have seen in the previous section. For
higher n, Kramers-Wannier duality relates distinct correlation
functions and therefore does not lead to any such reduction.

For n = 2, we have a plasma representation for the only
nontrivial correlation function and Gα,β is a 1 × 1 matrix, so
we can compute it. For n = 4, we have a plasma representation
for the 4 nontrivial correlation functions and Gα,β is a 2 × 2
matrix, so we can compute all of its entries. For n = 6, we
have a plasma representation for the 1 + ( 6

2 ) = 16 nontrivial
correlation functions and Gα,β is a 4 × 4 matrix, so we
can compute all of its entries. However, for n = 8, we
have a plasma representation for the 1 + ( 8

2 ) = 29 nontrivial
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correlation functions but Gα,β is an 8 × 8 matrix, so we can
compute fewer than half of its entries. The situation gets worse
with increasing n since 2n−2 grows much faster than 1 + ( n

2 ).
In order to compute all of the entries in Gα,β , we clearly

need to be able to compute correlation functions in which there
are more than two order and more than two disorder operators.
Unfortunately, we do not know how to generalize Eq. (157) to
more than two Ising disorder operators, so we cannot compute
Gα,β by this strategy. The problem is that we use operators with
opposite magnetic charges, Eqs. (147) and (148), to represent
two disorder operators. If we have more than two disorder
operators, then we need more than one operator of each type,
Eq. (147) as well as (148). However, Eq. (147) is not local with
respect to itself, and neither is Eq. (148). This prevents us from
using Eqs. (147) or (148) more than once in any correlation
function.

Another approach is to separate the screening operators into
ones that are applied to ψ vertex operators and ones that are
applied to σ vertex operators and then attempt to apply a pro-
cedure like Mathur’s to change holomorphic-antiholomorphic
pairs of ψ screening operator contour integrals into 2D
integrals over the complex plane. If this could be done, then
the result before performing the σ screening operator contour
integrations would be a plasma with test particles. Among
these test particles are ones corresponding to the holomorphic
and antiholomorphic σ vertex operators’ screening operators,
which, in addition to carrying electric charge −Q2/2 =
−√

3g/4, respectively carry magnetic charge ∓3m2/2 =
∓√

3/4g. Thus, if the holomorphic and antiholomorphic σ

screening operators are not paired up properly, they will give
a vanishing result because of confinement of magnetic charge.
This would give the sought-after orthogonality (exponential in
the separation of quasiparticles) for arbitrary n-quasiparticle
wave functions, since the different conformal blocks (degen-

erate wave functions) correspond to assigning the screening
operators to different σ vertex operators. Unfortunately,
there is a barrier in this approach to applying a Mathur-style
argument, which is that there is a branch cut which prevents
the J terms from canceling in a simple way, and we have not
managed to push the argument past this barrier. We provide
more details on this incomplete approach in Appendix G.

Fortunately, neither of these approaches is really needed.
From the basic underlying structure of a topological phase,
we know that, given a few basic assumptions (which rest on
the assumption of an energy gap), we can deduce the braiding
statistics of arbitrary numbers of quasiparticles, given much
less information about quasiparticle statistics. This is made
precise in the following sections.

A. Braiding in the “qubit basis”

In this section, we use some features special to the MR
Pfaffian state to deduce the braiding properties of an arbitrary
number of quasiholes, given the Berry’s matrices which can
be computed from the 2-, 4-, and 6-quasihole wave functions
by the methods described earlier. We assume that the system is
governed by a three-body Hamiltonian with pinning potentials
as in Eq. (19). The only assumption we make is that there
is a gap between the degenerate set of ground states with n

quasiparticles at fixed positions (determined by the pinning
potentials) and all higher excited states. So long as the gap
remains open, the braiding properties that we discuss cannot
change if the Hamiltonian is modified from Eq. (19) to
something more realistic.

From Ref. 43, we know that when there are n fundamental
(charge e/2M) quasiholes at fixed positions, there is a
degenerate set of states, rather than a unique state, and the
following is a basis of these states:

�(1+r1,3+r2,...,n−1+r n
2

)(2−r1,4−r2,...,n−r n
2

)

≡ Pf

((
η1+r1 − zi

)(
η3+r2 − zi

) · · · (ηn−1+r n
2

− zi

) (
η2−r1 − zj

)(
η4−r2 − zj

) · · · (ηn−r n
2

− zj

)+ (i ↔ j )

zi − zj

)

×
N∏

i<j

(zi − zj )M e
− 1

4

N∑
i=1

|zi |2
, (169)

where rj = 0,1. This double counts the number of states,
since these wave functions are invariant under the inter-
change of indices: (1 + r1,3 + r2, . . . ,n − 1 + r n

2
) ↔ (2 −

r1,4 − r2, . . . ,n − r n
2
). Thus, there are 2

n
2 −1 such states. One

can think of these states as each pair (1,2), (3,4), . . . , (n − 1,n)
of quasiholes being a two-state system, that is, a qubit,
with an overall parity constraint on the n/2 qubits. For the
sake of concreteness, we fix this parity constraint by taking
r n

2
= 0. Note that this is a special feature of this particular

topological phase; in a generic non-Abelian topological phase,
the n-particle Hilbert space will not decompose into such a

tensor product of two-state systems. Each of these two-state
systems can be measured in the following way when the
corresponding pair of quasiparticles is far from all of the others.
Suppose you want to know if rj is 0 or 1. Take η2j−1 to ηn−1.
If �(1+r1,3+r2,...,n−1)(2−r1,4−r2,...,n) now vanishes when any zi

approaches η2j−1 = ηn−1, then rj = 1. If, instead, we take η2j

to ηn−1 and �(1+r1,3+r2,...,n−1)(2−r1,4−r2,...,n) now vanishes when
any zi approaches η2j = ηn−1, then rj = 0.

Consider, in this basis, the effect of a braid group gen-
erator τ2i−1, which executes a counterclockwise exchange
of quasiholes 2i − 1 and 2i. This can be done with all
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of the other particles far away. Since the state in each of
those other two-level systems can be measured while keep-
ing those pairs far away (as described earlier), exchanging
quasiparticle 2i − 1 and 2i must, by locality (which follows
from the assumption of a gap), act as the identity within each
of those two-dimensional vector spaces. Therefore, it must be
of the form

τ2i−1 = 12 ⊗ · · · ⊗ 12 ⊗ B2 ⊗ 12 ⊗ · · · ⊗ 12, (170)

so that it only acts nontrivially on the ith pair. Thus, the
computation of τ2i−1 reduces to the computation of B2. As
we discuss in the next section, the eigenvalues of B2 are the
numbers R

σ1σ1
I2

and R
σ1σ1
ψ2

.
The braid group generator τ2i affects pairs (2i − 1,2i) and

(2i + 1,2i + 2) and must, therefore, take the form

τ2i = 12 ⊗ · · · ⊗ 12 ⊗ B4 ⊗ 12 ⊗ · · · ⊗ 12, (171)

so that it only acts nontrivially on the ith and (i + 1)th
pair. Once again, by locality, we can ignore all of the other
quasiparticle pairs.

Indeed, locality further guarantees that B2 and B4 cannot
depend on the number of other quasiparticle pairs in the system
(since all of the other pairs can be taken far away), so long as
there are enough that there is, indeed, a two-state system on
which B2 can act and a four-state system on which B4 can
act. If there is only a single pair of quasiholes, then there
is a unique state, so at least four quasiparticles are needed
in order to compute B2. The cognoscenti may object at this
point by noting that there is a second state of two quasiholes,
namely, the state with an odd number of electrons. However,

these states do not lie within the same Hilbert space, since
they require their wave functions to have different electron
number. In order to show that B2 can be computed from the
combination of a N even electron number computation and
a N odd electron number computation, we need to use more
powerful consistency arguments, which are discussed within
the next section. Put slightly differently, unless we know in
advance that the MR Pfaffian state is a state of Ising-type
anyons (i.e., unless we assume the answer), there is no reason
to assert that the two eigenvalues of B2 are given by the
Berry’s matrices of two quasiholes with an even or odd number
of electrons. Fortunately, we do not need to make any such
assumptions and can compute B2 from the four-quasihole case
(or the six-quasihole case, though this is overkill). Similarly,
B4 can be computed in a system with six quasiholes, for
which there are the needed four degenerate states and which
is the largest number of quasiholes for which our order-
disorder operator strategy allows us to compute the full Berry’s
matrix.

Thus, the representation matrices for all of the braid group
generators can be obtained from the wave functions with four
and six quasiholes and, therefore, the representation of the
entire braid group can be obtained. (As mentioned earlier, if
we use consistency conditions more effectively, we can reduce
this to two- and four-quasihole wave functions, as discussed
in the next section.)

In order to actually compute the desired matrices B2

and B4, we need to go into the qubit basis defined by the
appropriate conformal blocks in the c = 1/2 + 1 theory, which
are computed in Appendix F:

�(p1,p2,...,pn/2) =

⎛
⎜⎜⎜⎝

n/2∏
i<j

η2i−1,2j−1 η2i,2j

n/2∏
i,j

η2i−1,2j

⎞
⎟⎟⎟⎠

1
8 ⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l

⎫⎬
⎭

−1/2

×
⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l �(1+r1,3+r2,...)(2−r1,4−r2,...)

⎫⎬
⎭

n∏
μ<ν

η
1

4M
μν e

− 1
8M

n∑
μ=1

|ημ|2

. (172)

On the left-hand side of this expression, the indices take the
values pi = 0,1, respectively, and obey the overall parity
constraint that

∑
i pi be even. The preceding arguments

hold for this basis as well, for which, given the plasma
screening arguments for the four- and six-quasiparticle wave
functions, the braiding matrices can be computed from analytic
continuation to be

B2 = eiπ( 1
4M

− 1
8 )
[

1 0

0 i

]
and

B4 = eiπ( 1
4M

+ 1
8 )

√
2

⎡
⎢⎢⎢⎣

1 0 0 −i

0 1 −i 0

0 −i 1 0

−i 0 0 1

⎤
⎥⎥⎥⎦ . (173)

Alternatively, if one used the standard basis, one would
similarly have (for N even)

τ1 = B2 ⊗ 12 ⊗ · · · ⊗ 12, (174)

τ2i = 12 ⊗ · · · ⊗ 12 ⊗ B ′
2 ⊗ 12 ⊗ · · · ⊗ 12, (175)

τ2i−1=12 ⊗ · · · ⊗ 12 ⊗ B ′
4 ⊗ 12 ⊗ · · · ⊗ 12, for i �= 1,n/2,

(176)

τn−1 = 12 ⊗ · · · ⊗ 12 ⊗ B2, (177)

with

B2 = eiπ( 1
4M

− 1
8 )
[

1 0

0 i

]
, B ′

2 = eiπ( 1
4M

+ 1
8 )

√
2

[
1 −i

−i 1

]
,

(178)
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and B ′
4 = eiπ( 1

4M
− 1

8 )

⎡
⎢⎢⎢⎣

1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1

⎤
⎥⎥⎥⎦ ,

where again we can use the four-quasiparticle wave functions
to compute B2 and B ′

2 [which are, respectively, B(1←→2) and
B(2←→3) of Eq. (40)], but must use the six-quasiparticle wave
functions to compute B ′

4.
Comparing the braiding generators in the qubit and standard

bases, we see that τ2i−1 acts on a two-dimensional subspace
in the qubit basis, while τ2i (as well as τ1 and τn−1) acts
on a two-dimensional subspace in the standard basis. Thus,
we can imagine that if we had a way of ensuring a priori
that braiding operations are consistent through changes of
basis (which we can, in fact, show, but only after the six-
quasiparticle computation of this section), then we would only
need to compute braiding transformations on two-dimensional
subspaces, and hence could avoid the need to compute anything
using wave functions with more than four quasiparticles.

B. General considerations

In this section, we use more powerful and general arguments
to show that the braiding properties of anyons can be deduced
from the two- and four- quasiparticle wave functions, provided
we can compute the corresponding Berry’s matrices. Although
these arguments are more general in the sense that they do
not use any special properties of the MR Pfaffian state, the
assumed locality properties, which follow from the existence
of an energy gap, are equivalent to those used in the previous
argument.

The long-distance, low-energy properties of quasiparticles
(e.g., their braiding statistics) in a topological phase are
assumed to be completely specified by an “anyon model,” a.k.a.
a unitary braided tensor category.14,94–97 An anyon model is
characterized by:

1. A finite set C of “topological charges” a,b,c, . . . , which
are conserved quantum numbers specifying the different types
of quasiparticle excitations.

2. Fusion rules specifying how these topological charges
may combine and split, as described by a commutative and
associative fusion algebra

a × b =
∑
c∈C

Nc
abc, (179)

where the integer Nc
ab indicates the distinct number of ways

the charges a and b can combine to produce charge c. For
simplicity, we restrict our attention to the case where there are
no fusion multiplicities, that is, Nc

ab = 0,1, since this is all that
is needed for this paper, but there are more general cases.98

There is a vector space Vab
c with dimVab

c = Nc
ab assigned to

each fusion product, and one can represent the basis states of
these spaces diagrammatically as

(180)
c

ba
= |a, b; c ab

c .

The anyonic states describing a collection of quasiparticles
can be represented by fusion diagrams such as

, (181)

a1 a2 an· · ·

· · ·
c2

cn

where the topological charge aj of the j th quasiparticle is
assigned to the j th end point at the top of the diagram.

3. Associativity of fusion within the fusion state spaces,
which is specified by unitary isomorphisms written diagram-
matically as

(182)

a b c

e

d

=
f

F abc
d ef

a b c

f

d

.

The F -symbols are analogous to 6j -symbols, providing a
change of basis between the basis in which topological charges
a and b are first fused and then their result is fused with c to
the basis in which topological charges b and c are first fused
and then their result is fused with a.

4. Braiding of topological charges enacting unitary transfor-
mations on the state space, which are written diagrammatically
as

. (183)
c

ab

= Rab
c

c

ab

It is also worth mentioning that there is a unique “vacuum”
charge, denoted 0 or I , for which fusion and braiding is trivial.
Furthermore, each topological charge a has a unique conjugate
ā with which it is allowed to fuse to vacuum (in a unique way),
that is, N0

ab = δāb.
In summary, C, Nc

ab, [Fabc
d ]ef , and Rab

c comprise the basic
data which completely specifies an anyon model. Given this
basic data, one can describe the operation representing an
arbitrary fusion and braiding process by using a series of
applications of associativity and braiding (F and R). Hence,
once this basic data of a system’s anyon model is obtained,
they can be used to compute the complete fusion and braiding
statistics of (arbitrary configurations and exchanges of) its
quasiparticles.

In order to provide a coherent description of the fusion
and braiding, this basic data must satisfy certain consistency
relations known as the “polynomial equations” (i.e., the
pentagon and hexagon equations),99 which ensure that any
two series of applications of F and R starting in the same state
space and ending in the same state space are equivalent.100

These consistency relations put strong constraints on the basic
data (up to gauge transformations of the trivalent basis states).
Consequently, it is often possible to start with an incomplete
subset of the basic data and derive the rest using nothing more
than these consistency relations.
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There are several important gauge-invariant quantities
worth describing here. The first is the quantum dimension
of charge a, given by

da = dā = ∣∣[Faāa
a

]
00

∣∣−1
. (184)

Quantum dimensions can be shown to satisfy the relation

dadb =
∑
c∈C

Nc
abdc. (185)

The second is the topological spin of charge a, given by

θa = θā =
∑
c∈C

dc

da

Raa
c = da

[
Faāa

a

]
00

(
Rāa

0

)∗
. (186)

These two (gauge-invariant) quantities are particularly impor-
tant, because it is often the case that the fusion algebra, together
with the quantum dimensions and topological spins (or even a
subset of them) can uniquely identify an anyon model.

Once it is known that the braiding statistics of quasiparticles
is given by analytic continuation of the wave functions given
by CFT conformal blocks, we do not need to explicitly perform
analytic continuation directly on the wave functions. Rather,
one can instead obtain all the basic data directly from known
properties of the CFT. For example, the topological spin is
simply given by θa = ei2πha , where ha is the (holomorphic)
conformal scaling dimension of the primary field correspond-
ing to topological charge a, while the F and R symbols can be
obtained from the operator product expansions (the R symbols
can simply be read off). For a complementary discussion of
how the structure of topological phases can be decoded from
wave functions—in particular, from their pattern of zeros—see
Refs. 101 and 102.

1. Ising

As an example of an application of this consistency, we
consider starting with nothing more than the Ising fusion
algebra

I × I = I, I × ψ = ψ, I × σ = σ,
(187)

ψ × ψ = I, ψ × σ = σ, σ × σ = I + ψ.

This fusion algebra is believed to describe the ν = 1 bosonic
MR state (i.e., M = 1, for which one has the identifications
ψ2 = I0 = I , σ1 = σ , and I2 = ψ0 = ψ) and also the closely
related SU(2)2 Chern-Simons theory (equating I = 0, σ =
1
2 , and ψ = 1). In the next section, we show that this
identification is correct. Given this fusion algebra, one can
solve the consistency conditions to find exactly eight different
anyon models (up to gauge transformations).96,97 These eight
different anyon models are completely distinguished by their
values of θσ = ei2π(2j+1)/16, where j = 0, . . . ,7 for the eight
different theories [e.g., Ising anyons have j = 0 and SU(2)2

has j = 1]. Hence, knowing only the fusion algebra one can
use consistency to determine the theory up to this eightfold
degeneracy of theories.

Since we only need to supplement the Ising fusion algebra
with the value of θσ in order to completely identify the anyon
model describing such a system, we should examine it more
closely to determine what is left to compute. However, we first
note that one can easily determine the quantum dimensions to

be dI = dψ = 1 and dσ = √
2 from Eq. (185). Now we can

write out the definition

θσ = 1√
2

(
Rσσ

I + Rσσ
ψ

) =
√

2
[
Fσσσ

σ

]
II

(
Rσσ

I

)∗
. (188)

From this we see that all we need is Rσσ
I and either Rσσ

ψ or
[Fσσσ

σ ]II .

2. Putative anyon model for the Moore-Read Pfaffian state

One can similarly analyze the anyon model which is
generally assumed to correspond to the MR Pfaffian state. In
the next section, we compute the F and R matrices to show that
this identification is correct. We define the topological charges
through the corresponding CFT operators of the quasiparticles,
which are the product of an Ising sector operator with a U(1)
bosonic charge sector vertex operator

Ij = e
i

j√
2M

ϕ
, ψj = ψe

i
j√
2M

ϕ
, σj = σe

i
j√
2M

ϕ
, (189)

where j must be even for Ij and ψj and odd for σj . From
the construction of wave functions from CFT correlation
functions, we can identify the charge I0 as corresponding to
vacuum (an insertion of this operator leaves the wave functions
unchanged), while ψ2M corresponds to the underlying particle
of the system, e.g. the electron or atom. Consequently, when
M is odd, we identify the bosonic underlying particle with
vacuum, i.e. ψ2M = I0. When M is even, the underlying
particle (the electron) is a fermion, so we cannot identify it
with vacuum (though one can introduce a Z2 grading and put
it in a doublet with vacuum). Instead, for M even we identify
a pair of electrons with vacuum, i.e. ψ2M × ψ2M = I4M = I0.

Furthermore, we can identify σ1 as the label corresponding
to the charge e/2M fundamental quasihole. One can think
of I2 as the e/M Laughlin quasihole obtained by inserting
one flux. Alternatively, on can think of I2 and ψ2 as the
quasiparticles obtained at η1 when one takes η2 → η1 in
the four quasihole wave functions �0 and �1, respectively.
The labels I2k+2, ψ2k+2, and σ2k+1 can then be thought of
as describing quasiparticles obtained by similarly combining
k charge e/M I2 Laughlin quasiholes with quasiparticles of
type I2, ψ2, and σ1, respectively. Thus, we have the fusion rules

Ij × Ik = I[j+k], Ij × ψk = ψ[j+k], Ij × σk = σ[j+k],

ψj × ψk = I[j+k], ψj × σk = σ[j+k], (190)

σj × σk = I[j+k] + ψ[j+k].

where we have defined the shorthand [j ] ≡ jmod4M . For M

odd, one has the additional identifications Ij = ψ[j+2M], ψj =
I[j+2M], and σj = σ[j+2M]. In this way, there are 6M distinct
topological charge types for M even and 3M topological
charge types for M odd. Given these fusion rules, the quantum
dimensions can be found to be dIj

= dψj
= 1 (for j even) and

dσj
= √

2 (for j odd) from Eq. (187). The topological spins are

θIj
= R

Ij Ij

I2j
= [

F
Ij I−j Ij

Ij

]
I0I0

(
R

I−j Ij

I0

)∗
, (191)

θψj
= R

ψj ψj

I2j
= [

F
ψj ψ−j ψj

ψj

]
I0I0

(
R

ψ−j ψj

I0

)∗
, (192)

θσj
= 1√

2

(
R

σj σj

I2j
+ R

σj σj

ψ2j

) =
√

2
[
F

σj σ−j σj

σj

]
I0I0

(
R

σ−j σj

I0

)∗
.

(193)
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As mentioned earlier, the eight consistent anyon models
permitted for the M = 1 MR fusion algebra can be uniquely
distinguished by their value of θσ1 . For M = 2 (corresponding
to the ν = 1/2 fermionic MR state), it was found in Refs. 97,
103 that given the corresponding fusion algebra, there are 32
different possible anyon models that satisfy the consistency
conditions and that these 32 different anyon models can be
uniquely identified by their topological spins. In fact, closer
inspection reveals that they can be uniquely identified merely
by their values of θσ1 and θI2 . Moreover, it can be shown103

that this is true for general M , that is, that θσ1 and θI2 uniquely
identifies the anyon models corresponding to the MR fusion
algebra.

C. Identifying the anyon model

Once the anyon model corresponding to a state is known,
one can use it to compute the braiding statistics of an arbitrary
n-quasiparticle wave function. Thus, we now turn to the wave
functions of the MR Pfaffian state to extract the quantities
necessary to identify the corresponding anyon model.

We now give the charge e/2M quasiholes in this system the
label σ1. At the moment, this labeling is completely innocent,
but we note that σ1 has the same quantum dimension as the
similarly named quasiparticle of the previous section since
dσ1 = √

2 and, as discussed in Sec. IX A, there are (
√

2)n states
for n even quasiparticles. Now consider the wave functions �0

and �1 defined in Eq. (26). These wave functions are linear
combinations of the wave functions in Eq. (28). Suppose that,
in �0, we bring the σ1 quasiholes at η1 and η2 close together
and take the quasiholes at η3 and η4 far away. Then there is
a localized excitation at η1 ≈ η2. Let us call this localized
excitation I2. Suppose we do the same thing with �1; we call
the resulting excitation ψ2. A priori, we do not know if I2 and
ψ2 are distinct excitations or are topologically-equivalent (or,
perhaps, are different superpositions of excitations). However,
from the four-quasiparticle braiding matrices computed in
Sec. VIII through plasma analogy arguments, we know that
if the quasihole at η3 is taken around the excitation at η1 ≈ η2,
the resulting phase in �1 differs from that in �0 by −1. Thus,

it is correct to assign two different labels to the corresponding
excitations; the labels I2 and ψ2 are as good a choice as any.

We now compute the F -symbols and the fusion algebra.
This can be done with four-quasihole wave functions. The F -
symbol is a unitary transformation between two different bases
of the two-dimensional Hilbert space of four quasiparticle
states. One basis is given by �0 and �1, in which the σ1

quasiparticles at η1 and η2 fuse to I2 and ψ2, respectively.
From the computation of matrix elements in Sec. VIII, we see
that these wave functions provide an orthonormal basis:

〈�0|�0〉 = 〈�1|�1〉 = 1 , 〈�0|�1〉 = 〈�1|�0〉 = 0.

(194)

(Strictly speaking, we have shown that �0 and �1 are
orthogonal and have the same norm, which is simply an
ημ-independent constant in the limit that the ημ are all far
apart. Thus, to normalize them, we need to divide both wave
functions by their common norm.) The second orthonormal
basis is given by |� ′

0,1〉, in which the σ1 quasiparticles at
η1 and η4 fuse to I2, ψ2. Since 1, 2, 3, and 4 are an
arbitrary labeling of the quasiparticles, the states in which
1 and 4 fuse to I2, ψ2 are given by changing the labels to
obtain:

� ′
0,1 (η1,η2,η3,η4; z1, . . . ,zN )

=
4∏

μ<ν

η
1

4M
− 1

8
μν

(η13η24)
1
4√

1 ± √
x

[�(13)(24)

± √
x�(12)(34)]e

− 1
8M

4∑
μ=1

|ημ|2
. (195)

Then, using the identity Eq. (29), we have

� ′
0,1 =

4∏
μ<ν

η
1

4M
− 1

8
μν

(η13η24)
1
4√

1 ± √
x

[(
1 ± 1√

x

)
�(13)(24)

∓
(

1 − x√
x

)
�(14)(23)

]
e
− 1

8M

4∑
μ=1

|ημ|2
. (196)

Therefore,

� ′
0 ± � ′

1 =
4∏

μ<ν

η
1

4M
− 1

8
μν (η13η24)

1
4

[(
1 + 1√

x√
1 + √

x
±

1 − 1√
x√

1 − √
x

)
�(13)(24) − (1 − x)√

x

(
1√

1 + √
x

∓ 1√
1 − √

x

)
�(14)(23)

]
e
− 1

8M

4∑
μ=1

|ημ|2

=
4∏

μ<ν

η
1

4M
− 1

8
μν (η13η24)

1
4

[(√
1 + √

x√
x

∓
√

1 − √
x√

x

)
�(13)(24) − (1 − x)√

x

(√
1 − √

x ∓
√

1 + √
x√

1 − x

)
�(14)(23)

]
e
− 1

8M

4∑
μ=1

|ημ|2

=
4∏

μ<ν

η
1

4M
− 1

8
μν (η13η24)

1
4

(√
1 + √

x ∓
√

1 − √
x√

x

) [
�(13)(24) ± √

1 − x �(14)(23)
]
e
− 1

8M

4∑
μ=1

|ημ|2

=
√

2
4∏

μ<ν

η
1

4M
− 1

8
μν

(η13η24)
1
4√

1 ± √
1 − x

[
�(13)(24) ± √

1 − x �(14)(23)
]
e
− 1

8M

4∑
μ=1

|ημ|2

=
√

2 �0,1. (197)

075303-29



PARSA BONDERSON, VICTOR GURARIE, AND CHETAN NAYAK PHYSICAL REVIEW B 83, 075303 (2011)

Thus, from Eq. (197), we conclude that:

[
Fσ1σ1σ1

σ3

]
ab

= 1√
2

[
1 1

1 −1

]
ab

(198)

where a,b = I2,ψ2. One can similarly compute all the F -
symbols directly from wave functions with no more than four
quasiparticles.

We note that we computed the F -symbols directly from
the wave functions, with no appeal to orthogonality or the
plasma analogy, so it might at first appear that orthogonality
played no role here. However, it is important to establish that
the associativity encoded in the F -symbols is unitary, since
we are describing quantum mechanical systems. For this, the
orthogonality result (obtained from the plasma analogy) is
crucial, since it establishes that the wave functions in question
provide orthonormal bases that are related by this F -symbol,
which can thus be interpreted as a unitary change of basis
transformation.

We now compute the R-symbols. With the definitions of
I2 and ψ2 given earlier, we can read these off from the
four-quasihole wave functions �0 and �1, since our plasma
analogy has shown that the braiding statistics is simply given
by analytic continuation of the wave functions. Thus, as found
in Eq. (30) for the counterclockwise exchange η1 ←→ η2, we
have R

σ1σ1
I2

= eiπ( 1
4M

− 1
8 ), Rσ1σ1

ψ2
= eiπ( 1

4M
+ 3

8 ). We note that these
R-symbols can also be obtained from the analytic continuation
of the wave functions � ′

0 and � ′
1 in Eq. (196) corresponding

the counterclockwise exchange η2 ←→ η3. However, once we
know that the braiding statistics is given by explicit analytic
continuation of the wave functions, we can save ourselves
the trouble of explicitly computing the R-symbols from wave
functions, since we know the analytic continuation of the
wave functions is determined by the CFT through its operator
product expansion.

Generalizing this to quasiparticles of type σj by appropri-
ately modifying the U(1) charge sector vertex operators, we
similarly obtain

R
σj σk

Ij+k
= eiπ( jk

4M
− 1

8 ), (199)

R
σj σk

ψj+k
= eiπ( jk

4M
+ 3

8 ). (200)

Similarly, one can compute the remaining R-symbols from
analytic continuation by additionally introducing quasiparti-
cles carrying topological charge Ij and/or ψk into the wave
function, since the screening properties can easily be shown to
still apply (as long as M is not too large). The results are

R
Ij Ik

Ij+k
= eiπ

jk

4M , (201)

R
ψj ψk

Ij+k
= −eiπ

jk

4M , (202)

R
Ij ψk

ψj+k
= R

ψkIj

ψj+k
= eiπ

jk

4M , (203)

R
σj Ik

σj+k
= R

Ikσj

σj+k
= eiπ

jk

4M , (204)

R
σj ψk

σj+k
= R

ψkσj

σj+k
= eiπ( jk

4M
− 1

2 ). (205)

As previously mentioned, there is some ambiguity in these
quantities, since they are not all gauge invariant. However, we
can use them to obtain

θIj
= ei2π

j2

8M , (206)

θψj
= ei2π( j2

8M
+ 1

2 ), (207)

θσj
= ei2π( j2

8M
+ 1

16 ). (208)

In fact, wave functions with at most two σ quasiparticles
are sufficient to compute the R-symbols, provided that they
are allowed to also include quasiparticles that can carry either
of the Ising charges I or ψ (which will not change any of the
plasma arguments). In particular, consider the wave functions
(for N even electrons) with two σ1 quasiholes at η1 and η2

and either quasiparticle of type I2 or ψ2 at η3. These two
wave functions can, respectively, be obtained from the four
σ1 quasihole wave functions �0 and �1 by taking η4 → η3.
Clearly, since η3 and η4 can be taken to be far away from
η1 and η2, locality dictates that the braiding statistics factors
R

σ1σ1
I2

and R
σ1σ1
ψ2

obtained by exchanging η1 ←→ η2 in the wave
functions with two σ1 quasiholes will be the same as those
obtained from the wave functions with four σ1 quasiholes.

We saw an effect similar to this at the end of Sec. VII, where
we considered wave functions with two σ1 quasiholes (and no
other quasiparticles) when the number of electrons N was
either even or odd. There we found the two different braiding
factors R

σ1σ1
I2

and R
σ1σ1
ψ2

for N even and odd, respectively. This
is, of course, related to the same properties discussed here.
In particular, each electron has topological charge ψ2M , so
changing between even and odd N for wave functions with
two σ1 quasiholes has a similar effect as changing between the
type I2 and ψ2 (at fixed N ) of an additional quasiparticle, as
described in the previous paragraph. However, the cases of N

even and odd necessarily belong to different Hilbert spaces,
since the number of electrons in the system is different. Hence,
one could not have simply taken those results as proof of the
non-Abelian statistics, since doing so would have required
making additional assumptions about the nature of the state,
essentially equivalent to assuming the answer.

X. ORTHOGONALITY FOR UNMATCHED
QUASIPARTICLES

It is often assumed that the overlap between two wave
functions that do not have the same types of quasiparticles at
(nearly) the same locations should vanish. For example, such
an orthogonality postulate is used104 (sometimes implicitly) in
the determination of the braiding statistics and other properties
of hierarchical states, such as the Abelian Haldane-Halperin
(HH) hierarchy states,105,106 which are built on the ν = 1/m

Laughlin states, and the BS hierarchy states,69 which can
be built on arbitrary states, notably providing a non-Abelian
hierarchy over the ν = 1/2 MR and anti-Pfaffian states. In
fact, this orthogonality is of paramount importance, since
it is necessary to establish the interpretation of the wave
functions as describing anyonic quasiparticles. Without it, we
would be missing the notion of a specific, distinguishable
localized conserved quantum number (topological charge)
associated with the quasiparticle coordinate, that is, property
(i) of anyon models in Sec. IX B, and thus the rest of the
properties (fusion, braiding, etc.) that we can derive would
lack a proper interpretation beyond some algebraic relations
between certain special wave functions. In this section, we
prove this orthogonality using the plasma analogy.
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First we consider the wave functions in terms of their
Coulomb gas CFT formalism. Next we recognize that, as
described in Appendices A and D, the chiral vertex operators
can be expressed in terms of electric and magnetic Coulomb
charges. Specifically,

eiαϕ(z) = ei α
2 φ(z,z̄)O α

2g
(z,z̄) (209)

corresponds to a particle carrying electric charge q = α/2 and
magnetic charge m = α/2g. Similarly,

eiαϕ̄(z̄) = ei α
2 φ(z,z̄)O− α

2g
(z,z̄) (210)

corresponds to a particle carrying electric charge q = α/2 and
magnetic charge m = −α/2g. If the corresponding holomor-
phic and antiholomorphic vertex operators have coinciding
positions, they produce an operator eiαϕ(z)eiαϕ̄(z̄) = eiαφ(z,z̄)

corresponding to a particle carrying electric charge α and no
magnetic charge. If quasiparticle coordinates are not matched
up appropriately between two wave functions, then, in the
plasma analogy, they will leave stray (uncanceled) magnetic
charges in the plasma. Since magnetic charge is confined in
screening plasmas, this makes it clear that the overlap between
wave functions described by a plasma analogy will vanish
unless they have matching quasiparticles at nearly coinciding
positions. More specifically, the overlaps will be zero up to
O(e−r/�) corrections, where r is the largest separation between
unmatched quasiparticles (i.e., between magnetic charges in
the plasma).

With this orthogonality established, one might wonder
whether a stronger result can be established. Indeed, one can
attain stronger results for holes in the ν = 1 filled Landau
level and for single Laughlin-type quasihole wave functions.
We explain this in more detail in Appendix H, but note the
results here that

G(η̄μ,η′
μ) = C1

∑
π∈Sn

(−1)π
n∏

μ=1

e− 1
4 (|ηπ(μ)|2+|η′

μ|2−2η̄π(μ)η
′
μ)

= C1(2π )n
∑
π∈Sn

(−1)π
n∏

μ=1

δ2
LLL(ηπ(μ) − η′

μ)

(211)

for n holes in the ν = 1 filled Landau level, and

G(η̄,η′) = C1e
− 1

4M
(|η|2+|η′|2−2η̄η′) = C1(2πM)δ2

LLLM
(η − η′)

(212)

for a Laughlin-type quasihole in any ν = 1/M quantum Hall
state with plasma analogy (for example, this holds for the I2

excitation of the MR state).
Based on these examples, we conjecture that the overlap

of wave functions that are not properly matched up in the
U(1) boson charge sector will actually vanish with Gaussian,
rather than exponential, falloff. This is expected to result from
the neutralizing background that gives rise to the Gaussian
terms in the wave functions. We also expect that the overlaps
will behave effectively as delta-functions, projected into the
appropriate subspace, while keeping track of the braiding
statistics due to analytic continuation of the wave functions.

This leads us to a general orthogonality postulate for quantum
Hall states of the form

Gα,β

(
η̄μa

,η′
μa

)∼ Bα,β

(
η̄μa

,η′
μa

)∑
a∈C

∑
π∈Sna

na∏
μ=1

δ2
(
ηπ(μa )−η′

μa

)
,

(213)

where there are na quasiparticles of type (topological charge)
a at coordinates ημa

in one wave function and at η′
μa

in the other wave function (the delta-functions are only
between quasiparticles of matching topological charge), and
Bα,β(η̄μa

,η′
μa

) is a term that only keeps track of the braiding
statistics due to exchange of the quasiparticles. For example,
Laughlin-type quasiholes would have

B(η̄μ,η′
μ) =

n∏
μ<ν

[
(η̄μ − η̄ν)(η′

μ − η′
ν)

|ημ − ην ||η′
μ − η′

ν |

] 1
M

. (214)

Equation (213) clearly cannot be exact, since the right-hand
side does not obey the necessary analytic properties mandated
by the wave functions one is taking overlaps between, but we
expect the answer with the correct analytic properties to have
this effective form with respect to quasiparticle wave functions,
up to exponentially suppressed corrections.

XI. BRAIDING IN THE ANTI-PFAFFIAN AND
BONDERSON-SLINGERLAND HIERARCHY STATES

In Refs. 35 and 36, it was pointed out that the particle-hole
conjugate of the MR Pfaffian state is a distinct state and that,
in the absence of Landau level mixing, it must be equal in
energy to the MR state. Upon inclusion of Landau level mixing,
the anti-Pfaffian state appears to be lower in energy.107,108

A candidate wave function for this state can be obtained by
particle-hole conjugation109 of the MR wave function.

In Ref. 69, it was shown that one can construct hierarchical
states over the MR and anti-Pfaffian ν = 1/2 states, and that
these Bonderson-Slingerland (BS) hierarchy states provide
candidates for all the (remaining) observed second Landau
level plateaus. Moreover, it was numerically demonstrated70

that the BS candidate for ν = 12/5 is a competitive state, along
with the RR and HH candidates.

Here we show that the wave function orthogonality results
obtained in this paper for the MR wave functions imply the
same orthogonality for the anti-Pfaffian and BS hierarchy
wave functions obtained from them. Hence, the braiding
statistics of these states are similarly obtained through analytic
continuation of the wave functions.

We begin by demonstrating that orthogonality of any two
wave functions implies the orthogonality of their particle-
hole conjugate wave function. For a general wave function
�(ημ; zi) with quasiholes, one generates its particle-hole
conjugate wave function109 by filling one Landau level,
introducing N1 holes at coordinates ξa , and projecting the
holes onto the wave functions � by multiplying by �̄(η̄μ; ξ̄a)
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and integrating over the holes’ coordinates:

�(p−h)(η̄μ; zi)

=
∫ N1∏

c=1

d2ξc �̄(η̄μ; ξ̄a) ×
N1∏
a<b

(ξa − ξb)

×
N1∏
a=1

N∏
i=1

(ξa − zi)
N∏

i<j

(zi − zj ) e
− 1

4

N1∑
a=1

|ξa |2
e
− 1

4

N∑
i=1

|zi |2
.

(215)

In this expression, one must obey the constraint

N = (ν−1 − 1)N1 − S + 1 + N
(qh)
φ , (216)

where ν and S are respectively, the filling fraction and shift
of �, while N

(qh)
φ is the number of fluxes associated with the

quasiholes of �.
Consider the overlap for two arbitrary particle-hole con-

jugate wave functions with quasiparticles (at matching posi-
tions):

G
(p−h)
α,β (ημ,η̄μ)

=
∫ N∏

k=1

d2zk �̄(p−h)
α (ημ; z̄i)�

(p−h)
β (η̄μ; zi) (217)

=
∫ N∏

k=1

d2zk

N1∏
c=1

d2ξc d2ξ ′
c �α(ημ; ξa)�̄β(η̄μ; ξ̄ ′

a)

×
N1∏
a<b

(ξ̄a − ξ̄b)(ξ ′
a − ξ ′

b)
N1∏
a=1

N∏
i=1

(ξ̄a − z̄i)(ξ
′
a − zi)

×
N∏

i<j

|zi − zj |2e
− 1

4

N1∑
a=1

|ξa |2
e
− 1

4

N1∑
a=1

|ξ ′
a |2

e
− 1

2

N∑
i=1

|zi |2
. (218)

Now we use Eq. (211) to re-write this as

G
(p−h)
α,β (ημ,η̄μ)

=
∫ N1∏

c=1

d2ξc d2ξ ′
c �α(ημ; ξa)�̄β(η̄μ; ξ̄ ′

a)

×
[
C1 (2π )N1

∑
π∈SN1

(−1)π
N1∏
a=1

δ2
LLL(ξπ(a) − ξ ′

a)

]

= C1 (2π )N1

∫ N1∏
c=1

d2ξc�α(ημ; ξa)�̄β(η̄μ; ξ̄a)

= C1 (2π )N1 Gβ,α(η̄μ,ημ), (219)

where Gβ,α(η̄μ,ημ) is the overlap of the original two wave
functions �β and �α (with N1 electrons).

It is now trivial to apply Eq. (219) to the anti-Pfaffian state,
using our previously obtained results for Gα,β of the MR state.
(For the MR state at ν = 1/2, one has S = 3 and N

(qh)
φ = n/2

for n fundamental charge e/4 non-Abelian quasiholes.)
A similar, but slightly more complicated, argument applies

to hierarchical wave functions, such as those of the Haldane-
Halperin (HH) states105,106 and Bonderson-Slingerland (BS)
states.69 In particular, the wave functions for these states can
be constructed by projecting Abelian quasiparticles of the
Laughlin, MR, or anti-Pfaffian state into a Laughlin state, in
a manner similar to how holes of the filled Landau level were
projected onto a wave function to generate its particle-hole
conjugate. One can then similarly use the results from Sec. X
on orthogonality of wave functions with quasiparticles in
different positions and the orthogonality postulate of Eq. (213).

For concreteness, let us first examine the ν = 2/7 HH
hierarchy state. Wave functions of this state with n charge
−e/7 quasiparticles at positions ημ are given by

�HH2/7 (η̄μ; zi)

=
∫ N1∏

c=1

d2uc

n∏
μ<ν

(η̄μ − η̄ν)3/7
n∏

μ=1

N1∏
a=1

(η̄μ − ūa)

×
N1∏
a<b

(ūa − ūb)7/3 e
− 1

28

n∑
μ=1

|ημ|2

e
− 1

12

N1∑
a=1

|ua |2

×
N1∏
a<b

(ua − ub)1/3
N1∏
a=1

N∏
i=1

(ua − zi)

×
N∏

i<j

(zi − zj )3e
− 1

12

N1∑
a=1

|ua |2− 1
4

N∑
i=1

|zi |2
(220)

=
∫ N1∏

c=1

d2uc�̄(η̄μ; ūa)� 1
3
(ua; zi) (221)

where � 1
3
(ua; zi) is the ν = 1/3 Laughlin wave function with

N1 = 1
2 (N − n) + 1 charge e/3 quasiholes at coordinates ua ,

which are projected into a Laughlin-type wave function

�(ημ; ua) =
n∏

μ<ν

(ημ − ην)3/7
n∏

μ=1

N1∏
a=1

(ημ − ua)

×
N1∏
a<b

(ua − ub)7/3e
− 1

28

n∑
μ=1

|ημ|2

e
− 1

12

N1∑
a=1

|ua |2

(222)

with n quasiholes at ημ. Taking the inner product and using
Eq. (213), we obtain

G(HH)(ημ,η̄μ) =
∫ N∏

k=1

d2zk�̄
HH2/7 (ημ; z̄i)�

HH2/7 (η̄μ; zi)

=
∫ N∏

k=1

d2zk

N1∏
c=1

d2u′
cd

2uc �(ημ; u′
a)�̄ 1

3
(ū′

a; z̄i)�̄(η̄μ; ūa)� 1
3
(ua; zi)
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=
∫ N1∏

c=1

d2u′
cd

2uc �(ημ; u′
a)�̄(η̄μ; ūa)G 1

3
(ūa,ua)

∼
∫ N1∏

c=1

d2u′
cd

2uc �(ημ; u′
a)�̄(η̄μ; ūa)

[
B(ū′

a,ua)
∑

π∈SN1

N1∏
a=1

δ2(u′
π(a) − ua)

]

=
∫ N1∏

c=1

d2uc �(ημ; ua)�̄(η̄μ; ūa)

= G�(η̄μ,ημ), (223)

where G�(η̄μ,ημ) is the overlap for the Laughlin-type state’s
wave functions �, which, by the plasma analogy argument, is
a constant, up to corrections that are exponentially suppressed
in the separations |ημ − ην | between quasiholes. Hence, the
inner product is equal to a constant, up to exponentially
suppressed corrections. From this, it follows that the Berry’s
connection for transporting the quasiparticles at ημ is trivial
(up to Aharonov-Bohm terms) and the braiding statistics of the
HH hierarchy states are similarly obtained from direct analytic
continuation of the wave function. The braiding statistics phase
of e−i3π/7 for a counterclockwise exchange of a pair of the
charge −e/7 quasiparticles in the ν = 2/7 HH state can easily
be read off the wave function in Eq. (220).

Now, let us examine the slightly more complicated case
of the ν = 2/5 BS hierarchy state69 formed by condensing
Laughlin-type quasiparticles (i.e. I2 excitations) of the ν =
1/2 MR state. Wave functions of this state with n charge e/5
non-Abelian quasiholes at positions ημ are given by

�
BS2/5
α (ημ; zi) =

∫ N1∏
c=1

d2uc �̄(η̄μ; ūa)�MR
α (ημ; ua; zi)

(224)

where

�MR
α (ημ; ua; zi) =

N1∏
a<b

(ua − ub)1/2
n∏

μ=1

N1∏
a=1

(ημ − ua)1/4

×
N1∏
a=1

N∏
i=1

(ua − zi)e
− 1

8

N1∑
a=1

|ua |2

× �MR
α (ημ; zi) (225)

are the ν = 1/2 MR wave functions with n charge e/4 σ1

quasiholes at ημ and N1 = 1
2N + 1 charge e/2 I2 Laughlin

quasiholes at ua [�MR
α (ημ; zi) are the MR wave functions

with n charge e/4 quasiparticles defined previously in this
paper], and the N1 Laughlin quasiholes are projected into the
Laughlin-type wave function

�(ημ; ua) =
n∏

μ<ν

(ημ − ην)1/40
n∏

μ=1

N1∏
a=1

(ημ − ua)1/4

×
N1∏
a<b

(ua − ub)5/2e
− 1

80

n∑
μ=1

|ημ|2

e
− 1

8

N1∑
a=1

|ua |2
(226)

with n quasiholes at ημ. We take the inner product and use
Eq. (213) to obtain

G
(BS)
α,β (η̄μ,ημ)

=
∫ N∏

k=1

d2zk�̄
BS2/5
α (η̄μ; z̄i)�

BS2/5

β (ημ; zi)

=
∫ N∏

k=1

d2zk

N1∏
c=1

d2u′
cd

2uc �(ημ; u′
a)�̄MR

α (η̄μ; ū′
a; z̄i)

× �̄(η̄μ; ūa)�MR
β (ημ; ua; zi)

∼
∫ N1∏

c=1

d2u′
cd

2uc �(ημ; u′
a)�̄(η̄μ; ūa)

×
[
B(ū′

a,ua)
∑

π∈SN1

N1∏
a=1

δ2(u′
π(a) − ua)

]
GMR

α,β (η̄μ,ημ)

= GMR
α,β (η̄μ,ημ)

∫ N1∏
c=1

d2uc �(ημ; ua)�̄(η̄μ; ūa)

= GMR
α,β (η̄μ,ημ)G�(η̄μ,ημ), (227)

where G�(η̄μ,ημ) is the overlap for the Laughlin-type state’s
wave functions �. Hence, the inner product is equal, up to an
overall constant and exponentially suppressed corrections, to
that of the MR state times that of the Laughlin-type state (which
is simply constant). From this, it follows that the Berry’s
connection is trivial (up to Aharonov-Bohm terms) and the
braiding statistics of the BS hierarchy states are similarly ob-
tained from direct analytic continuation of the wave functions.

XII. STATES BASED ON OTHER CFTs

The Coulomb gas formalism66,67 that we used to describe
the Ising CFT in this paper can similarly be used to describe
any of the CFT minimal models M(p,p′), so we can use
the methods developed in our paper to analyze the braiding
statistics of candidate quantum Hall states constructed from
such CFTs. Unfortunately, this becomes more complicated
in general, since the structure of general minimal models is
more complex than that of the Ising CFT (which is M(4,3))
and requires both types of screening operators to describe
quasiparticles, which can create obstacles to applying Mathur’s
procedure68 or result in rather complicated plasmas about
which little is known. However, we can make a few preliminary
statements regarding certain cases.
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A. The M(5,4) state

One may attempt to construct a quantum Hall state from
the M(5,4) CFT, using the ε′′ = φ(4,1) = φ(1,3) operator with
scaling dimension hε′′ = 3/2 for the particles (electrons or
bosons) in the same way the Ising ψ operator was used for the
MR state.52 Specifically, the ε′′(zi) operator from the M(5,4)
sector is paired with an ei

√
M/2ϕ(zi ) operator from a U(1) charge

sector, and then the correlation function of an even number N

of such operators produces a “ground-state” wave function at
ν = 1/M . (We note that M � 3 is necessary for the resulting
wave function not to diverge as zi → zj .)

In the Coulomb gas formulation of the M(5,4) CFT,
the ε′′ operator corresponds to vertex operators with α4,1 =
− 3

2α− =
√

9
5 or α1,3 = −α+ = −

√
5
4 (and appropriate screen-

ing operators). Using the α1,3 representation, we can apply
the plasma analogy for this ground-state exactly as we did
for the MR ground-state, resulting in a 2D two-component
plasma of N charge Q2 = −√5g particles at zi (corresponding
to the electrons/bosons) and N charge −Q2 particles at wa

(corresponding to α+ screening operators) at temperature T =
g. This plasma has coupling constant �2 = Q2

2/T = 5, which
is greater than the critical value �c2 = 4 above which such plas-
mas are not in the screening phase (as previously discussed).

Including the U(1) charge sector, we expect the resulting
combined plasma to be screening in the U(1) charge sector
for sufficiently small M , but not screening in the M(5,4)
sector. This can be used to demonstrate that the pair correlation
functions of such states exhibit long-ranged correlations, and
hence do not describe gapped states. The braiding statistics
of quasiparticle excitations for such states is ill-defined, so
whether or not we can construct an analogous plasma for wave
functions with quasiparticles is irrelevant.

B. The M( p, p − 1) states

One may attempt to construct a quantum Hall state
from the unitary M(p,p − 1) CFT for p > 5, using the
Abelian φ(p−1,1) = φ(1,p−2) operator with scaling dimension
h(p−1,1) = (p − 2)(p − 3)/4 for the particles (electrons or
bosons) in the same way the Ising ψ operator was used for
the MR state. In this case, this operator from the M(p,p − 1)
sector is paired with an ei

√
M/2ϕ(zi ) operator from a U(1)

charge sector, where M is an even or odd integer depending
on whether h(p−1,1) is integer or half-integer. The correlation
function of an even number N of such operators produces a
“ground-state” wave function at ν = 1/M .

In the Coulomb gas formulation of the M(p,p − 1)
CFT, the φ(p−1,1) operator corresponds to vertex operators

with αp−1,1 = −p−2
2 α− = p−2

2

√
p−1
p

or α1,p−2 = −p−3
2 α+ =

−p−3
2

√
p

p−1 (and appropriate screening operators). We can

apply the plasma analogy for this ground-state similar to how
we did for the MR ground-state, except in this case, the plasma
analogy construction for the ground-state necessarily results
in a two-component plasma where the different particle types
carry charges of unequal magnitudes. Specifically, using the
α1,p−2 representation results in a 2D two-component plasma of

N charge Q2 = −
√

p(p−3)2g

p−1 particles at zi (corresponding to

the electrons/bosons) and p−3
2 N charge − 2

p−3Q2 particles at
wa (corresponding to α+ screening operators) at temperature
T = g.

Little appears to be known about the screening properties
of plasmas with particles carrying charges of unequal magni-
tudes. Examining these plasmas coupling constants, the larger
charges have Q2

2/T = p(p − 3)2/(p − 1) and the smaller
charges have ( 2

p−3 )2Q2
2/T = 4p/(p − 1). Since both of these

are greater than �c2 = 4 (the critical value of the coupling
constant for the two-component plasma with charges of equal
magnitude) for p > 4, we expect (by comparison to the case
with charges of equal magnitude) that these plasmas are not in
their screening phase at temperature T = g. Including the U(1)
charge sector, we again expect the resulting combined plasma
to be screening in the U(1) charge sector for sufficiently small
M , but not screening in the M(5,4) sector, and consequently
that these wave function do not describe gapped states.

C. The Gaffnian state

One may also attempt to construct a quantum Hall state from
the non-unitary M(5,3) CFT, using the ψ = φ(4,1) = φ(1,2)

operator with scaling dimension hψ = 3/4 for the particles
(electrons or bosons) in a similar way, producing the so-called
Gaffnian wave functions.110 In this case, the ψ(zi) operator
from the M(5,3) sector is paired with an ei

√
(2M+1)/4ϕ(zi )

operator from a U(1) charge sector, and then the correlation
function of an even number N of such operators produces the
ground-state wave function at ν = 2/(2M + 1).

In the Coulomb gas formulation of the M(5,3) CFT, the ψ

operator corresponds to vertex operators with α4,1 = − 3
2α− =√

27
20 or α1,2 = − 1

2α+ = −
√

5
12 (and appropriate screening op-

erators). In this case, a similar plasma analogy construction for
the ground-state results in a two-component plasma where the
different particle types carry charges of unequal magnitudes.
Specifically, using the α4,1 representation for the ψ operator
results in a 2D two-component plasma of N charge Q2 =√

27g/5 particles at zi (corresponding to the electrons/bosons)
and 3N/2 charge −2Q2/3 particles at wa (screening operators)
at temperature T = g. Alternatively, using the α1,2 representa-
tion for the ψ operator results in a 2D two-component plasma
of N charge Q̃2 = −√5g/3 particles at zi (corresponding
to the electrons/bosons) and N/2 charge −2Q̃2 particles at
wa (screening operators) at temperature T = g. We can also
construct the analogous plasma for Gaffnian wave functions
with up to two fundamental quasiholes. These quasiholes carry
non-Abelian charge σ , which corresponds to vertex operators

with α2,1 = − 1
2α− =

√
3

20 in the Coulomb gas formulation.
These map to test particles with charge Q2/2 in the analogous
plasma resulting from the α4,1 representation of ψ .

Examining these two plasmas coupling constants for their
larger charges we have Q2

2/T = 27/5 and (2Q̃2)2/T = 20/3,
which are greater than �c2 = 4 (the critical value of the
coupling constant for the two-component plasma with charges
of equal magnitude), whereas the smaller charges of these
plasmas give (2Q2/3)2/T = 12/5 and Q̃2

2/T = 5/3, which
are less than �c2 = 4. Hence, it is difficult to make a prediction
by comparing to the two-component plasma with charges
of equal magnitude. Whether or not these plasmas are in
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their screening phase is an interesting question that will be
addressed in future research.57

If these plasmas do not screen, then we expect that including
the U(1) charge sector will result in a combined plasma that
screens in the U(1) charge sector for sufficiently small M ,
but not in the M(5,3) sector. This could then be used to
demonstrate that pair correlation functions of such states have
long-ranged correlations, and hence do not describe gapped
states. However, if these plasmas are in the screening phase for
parameters corresponding to the Gaffnian wave functions, then
something must go awry elsewhere, as the braiding statistics
resulting from analytic continuation of the wave functions
with quasiparticles would result in a non-unitary anyon model,
which cannot describe a topological phase.

D. The Read-Rezayi States

The next step in extending our work would be an adaptation
of our plasma analogy construction to the Read-Rezayi
Zk-parafermion states.71 To accomplish this, we need a
Coulomb gas formulation of the Zk-parafermion CFTs. Such
a construction, based on the related Coulomb gas construction
for the SU(N )k Wess-Zumino-Witten models, is known rather
well,111–117 but it has not yet been developed to a point where an
explicit representation of the overlaps of the desired wave func-
tions (with excitations) can be written as a partition function
of a 2D plasma. We suggest this as a subject for future work.

XIII. DISCUSSION

In this paper, we have constructed a new representation
for the matrix elements between different MR Pfaffian four-
quasihole and six-quasihole states. This representation allowed
us to conclude that the Berry’s matrix is trivial in the basis given
by conformal blocks in a c = 1/2 + 1 CFT. This result implies
that this CFT encapsulates the topological properties of this
quantum Hall state—in other words, that this CFT can be used
to compute braiding, fusion, etc., for quasiparticles in the MR
Pfaffian state34,42,43 and, by a straightforward extension, the
anti-Pfaffian state35,36 and BS hierarchy states built on these.69

This was, of course, the hope right from the beginning,34 but
there was no proof, although there is strong evidence coming
from a variety of arguments and numerical calculations, as we
review in what follows. Our paper provides a proof.

We now consider the relation of our proof to previous
results. In Ref. 43, a method was proposed to calculate the
desired matrix elements, in terms of correlation functions in a
perturbed CFT. The basic idea is that the integrals in Eq. (1)
can be written as the correlation functions of the operators
corresponding to quasiholes if the operators which correspond
to electrons are put into the action of the CFT and treated
as a perturbation. For instance, TrG for n = 4 quasiholes,
defined in Eq. (126), is given by the product of the Ising
model correlation function in Eq. (107) and the charge sector
correlation function in Eq. (121):

TrG =
∫ N∏

k=1

d2zk

〈
σ (η1,η̄1)ei 1

2
√

2M
φ(η1,η̄1)

σ (η2,η̄2)ei 1
2
√

2M
φ(η2,η̄2)

σ (η3,η̄3)ei 1
2
√

2M
φ(η3,η̄3)

σ (η4,η̄4)ei 1
2
√

2M
φ(η4,η̄4)

× ε(z1,z̄1)ei
√

M
2 φ(z1,z̄1) · · · ε(zN,z̄N )ei

√
M
2 φ(zN ,z̄N )e

−i 1
2π

√
2M

∫
d2z φ(z,z̄)

〉
. (228)

Here, we have made the abbreviation φ(z,z̄) ≡ ϕ(z) + ϕ̄(z̄). This can be rewritten in the form

TrG =
∫ N∏

k=1

d2zk

〈
Oq(η1,η̄1)Oq(η2,η̄2)Oq(η3,η̄3)Oq(η4,η̄4)Oe(z1,z̄1) · · · Oe(zN,z̄N )e−i 1

2π
√

2M

∫
d2z φ(z,z̄)

〉
, (229)

where
Oq(η,η̄) = σ (η,η̄)ei 1

2
√

2M
φ(η,η̄) and Oe(z,z̄) = ε(z,z̄)ei

√
M
2 φ(z,z̄). (230)

This can now be rewritten in the following form [Eq. (8.3) of Ref. 43]:

TrG = lim
t→0

dN

dtN

〈
Oq(η1,η̄1)Oq(η2,η̄2)Oq(η3,η̄3)Oq(η4,η̄4)et

∫
d2z Oe(z,z̄)e

−i 1
2π

√
2M

∫
d2z φ(z,z̄)

〉

= lim
t→0

dN

dtN

〈
Oq(η1,η̄1)Oq(η2,η̄2)Oq(η3,η̄3)Oq(η4,η̄4)e−i 1

2π
√

2M

∫
d2z φ(z,z̄)

〉
L→L+tOe

. (231)

This equation implies that we should view t
∫

d2z Oe(z,z̄)
as a perturbation of the Lagrangian of the Ising model + a
nonchiral boson and compute the correlation function of four
Oq operators in this perturbed theory. By taking N derivatives
of the correlation function with respect to the coupling
constant t for this perturbation, a correlation function with N

electron operators is obtained and, therefore, matrix elements
for N -electron wave functions. The integrals in Eq. (1) are
exponentially decaying at long distances if the renormalization

group (RG) flow of the perturbed CFT is to a massive fixed
point. Although this approach is highly suggestive, it is unclear
how to show that the perturbed theory indeed flows to a massive
fixed point. In Ref. 43, it was suggested that the perturbation
has negative scaling dimension since correlation functions
of Oe increase with distance as a result of the background
charge. However, it was pointed out in Ref. 52 that Oe

should be viewed as an operator of positive scaling dimension
(which is, in fact, an irrelevant perturbation for M � 2), with
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the background charge merely shifting the charge neutrality
condition. Thus, it is not clear how to show that the perturbation
in Eq. (231) is relevant. This is even a problem if this method
is applied to the Laughlin states. Since all quantum Hall wave
functions have a (Laughlin-like) bosonic charge sector, they
all suffer the same complication. Furthermore, a leading-order
RG calculation can show that the initial flow goes away from
the conformal theory, but it is much harder to predict the fixed
point at which the flow ends; it is necessary for the infrared
fixed point to be massive in order for this approach to succeed.
For these reasons, a Coulomb gas approach was initiated in
Ref. 45; this approach has been brought to fruition here.

The method of Ref. 43 was recently discussed again by
Read in an important paper.52 It was shown there that this
method can be applied more straightforwardly to the case of a
chiral p-wave superconductor, which is described by the Ising
CFT. This state has no charge sector and the perturbed Ising
CFT is simply a free massive Majorana fermion. This result is
important because it allows one to directly compute Rσσ

I and
Rσσ

ψ , the two possible phases that result when two hc/2e vor-
tices with fusion channel I and ψ , respectively, are exchanged
in a counterclockwise fashion. This is a significant advance
compared to approaches relying on the BCS wave function for
this state,46,47,49,50 which have only derived the ratio Rσσ

I /Rσσ
ψ .

Reference 52 also presents an alternative calculation, based on
a bosonization procedure related to the one which we use in
Appendix F. This calculation gives all of the needed matrix
elements for two, four, and six quasiholes for a chiral p-wave
superconductor (i.e., pure Ising CFT with no charge sector).

A recent Monte Carlo evaluation53 of the matrix elements
between MR Pfaffian two-quasihole states with even- and
odd numbers of electrons is consistent with R

σ1σ1
I2

= 1 (which
was already obtained in an earlier numerical calculation48)
and R

σ1σ1
ψ2

= i for relatively large system sizes N ∼ 150.
Numerical diagonalization54 of the three-body Hamiltonian in
the presence of pinning potentials for the quasiparticles is also
consistent, for small systems (N ∼ 16), with these R-matrices
and also with the fusion rules of the c = 1/2 + 1 CFT. (The
calculations of Refs. 53 and 54 are very similar, in principle.
The difference—aside from the difference in system sizes—is
that wave function overlaps are computed by Monte Carlo
evaluation of overlap integrals in Ref. 53. In Ref. 54, different
wave functions are computed in an orbital basis by exact
diagonalization of the Hamiltonian with pinning potentials;
the overlaps are then obtained from the inner products of the
corresponding vectors in this basis.)

It should be straightforward to extend the numerical
calculations of Refs. 48, 53, and 54 to compute the F -matrices
as well and, thereby, fully determine the braiding properties
of quasiholes using the logic of Sec. IX B. It should also be
possible to extend those numerical calculations to the six-
quasihole case and, thereby, fully determine braiding without
making any assumptions beyond the gap.

Finally, quasiparticle braiding has recently been
computed51 using coherent states in bases obtained from the
“thin-torus” quasi-one-dimensional limit of the ν = 1 bosonic
version of the MR Pfaffian state. The key step in this derivation
is changing between the basis obtained from the limit in which
the torus is thin in one direction to the dual basis obtained from

the limit in which it is thin in the other direction. The relation
between these two bases (which one might recognize as the
modular S-duality) is constrained by their properties under
magnetic translation. The change of basis is not computed
directly, but rather is determined by consistency. However,
this only determines the change of basis and subsequent
braiding relations up to an 8-fold degeneracy. This is precisely
the same eightfold degeneracy of anyon models that are
consistent with the Ising fusion algebra (i.e., are solutions
to the pentagon and hexagon equations),118 as described in
Sec. IX B. Thus, the results obtained by this method are
equivalent to assuming no more than the fusion algebra (or,
equivalently, the modular S-matrix119) and locality.

It should be noted that an alternative approach to quasi-
particle braiding in this state relies on a mapping between
the MR Pfaffian state and a chiral p-wave superconductor.
Wave function analytic continuation has been computed in
the latter state directly from the BCS wave function,46,47,49,50

and the Berry’s matrix has been computed50 up to an overall
phase (these studies find the ratio Rσσ

ψ /Rσσ
I = i but cannot

determine Rσσ
I itself; in this respect, our calculation gives more

information, as does the calculation of Ref. 52). However, the
mapping between the MR Pfaffian state and a chiral p-wave
superconductor42 is not exact. While the approximate mapping
between the two is highly suggestive, the relationship between
the two states is, strictly speaking, established by computing
quasiparticle braiding in both and comparing the result (i.e.,
comparing universal quantities in both states). This is done by
comparing the results of this paper with the combined results
of Refs. 46, 47, 49, and 50. Finally, the statistics of vortices in
the non-Abelian phase of Kitaev’s honeycomb lattice model,96

which exhibits Ising topological order, has recently been
computed through an explicit numerical computation of the
Berry’s matrix.120
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APPENDIX A: THE FREE BOSON AND
THE COULOMB GAS

This section sets the conventions and the normalizations for
free bosons used throughout this paper.

Consider a free boson field (compact such that φ ≡ φ + 2π )
with the action

S = g

4π

∫
d2z (∇φ)2 . (A1)

The value of g is often not particularly important. In the CFT
Coulomb gas formalism convention that we follow, we set
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g = 1/4. The correlation function of φ is given by, up to an
additive constant

〈 φ(z,z̄) φ(w,w̄) 〉 = − ln |z − w|
g

. (A2)

The electric operators are given by eiqkφ(zk,z̄k ). Their correlation
function is〈∏

k

eiqkφ(zk,z̄k )

〉
= exp

(
1

g

∑
k<l

qkql ln |zk − zl|
)

, (A3)

where one must have charge neutrality
∑

k qk = 0.
We can also consider magnetic operators. They can be

thought of as vortices in the field φ, such that φ changes by
2πm when going around a magnetic charge m. Let us denote
magnetic operators by Om. For electric operators located
at positions zk and magnetic operators at positions wa , the
correlation function is121〈∏

k

eiqkφ(zk,z̄k )
∏
a

Oma
(wa,w̄a)

〉

= exp

(
1

g

∑
k<l

qkql ln |zk − zl| + g
∑
a<b

mamb ln |wa−wb|

+ i
∑
k,a

qkma arg (zk − wl)

)
, (A4)

where
∑

k qk = ∑
a ma = 0.

Throughout the paper, we also use the holomorphic field
ϕ(z), such that

〈ϕ(z)ϕ(w)〉 = − ln(z − w)

2g
. (A5)

We can write φ(z,z̄) ≡ ϕ(z) + ϕ̄(z̄) and treat φ(z,z̄) as the sum
of two independent fields ϕ(z) and ϕ̄(z̄). As a result,〈∏

k

eiαkϕ(zk )

〉
=
∏
k<l

(zk − zl)
αkαl

2g . (A6)

We notice that, just as exp [iqφ(z,z̄)] =
exp {iq [ϕ(z) + ϕ̄(z̄)]}, we also have Om(z,z̄) =
exp {img [ϕ(z) − ϕ̄(z̄)]}. Hence, we can write

eiαϕ(z) = ei α
2 φ(z,z̄)O α

2g
(z,z̄), (A7)

eiαϕ̄(z̄) = ei α
2 φ(z,z̄)O− α

2g
(z,z̄) . (A8)

In other words, the holomorphic/antiholomorphic vertex op-
erator with coefficient α corresponds to an operator carrying
electric charge q = α/2 and magnetic charge m = ±α/2g.

For further reference, we also show how to calculate the
important correlation function〈∏

k

eiαkϕ(zk )eiρ
∫

d2z ϕ(z)
〉

=
∏
k<l

(zk − zl)
αkαl

2g e

1
2g

∑
k

αkρ
∫

d2z log(zk−z)
, (A9)

where now we can have
∑

k αk �= 0, since there is a back-
ground charge density ρ that can be used to maintain charge
neutrality through ρ

∫
d2z = −∑k αk . The integral over the

logarithm can be calculated under the following assumptions.
First of all, we take the domain over which z is integrated
to be a disk. This means the imaginary part of the logarithm
integrates to zero for symmetry reasons. As for its real part,
we observe that

∇2 log |z| = 2πδ2(z,z̄), (A10)

where ∇2 is the Laplacian and δ2(z,z̄) is the 2D δ function. This
allows us to calculate this integral by solving the corresponding
Laplace equation

∇2
w

∫
d2z log |w − z| = 2π, (A11)

which gives ∫
d2z log |w − z| = π

2
|w|2 . (A12)

Taken together, this gives〈∏
k

eiαkϕ(zk )eiρ
∫

d2z ϕ(z)
〉
=
∏
k<l

(zk − zl)
αkαl

2g e

πρ

4g

∑
k

αk |zk |2
. (A13)

For the charge sector of quantum Hall states, we had elec-
trons with α = Q1 = √

2Mg and a neutralizing background
charge density ρ1 = − Q1

2πM
that gives rise to the Gaussian

factors.

APPENDIX B: MATHUR’S PROCEDURE FOR RELATING
PRODUCTS OF CONTOUR INTEGRALS

TO 2D INTEGRALS

The purpose of this appendix is to review Mathur’s trick
which expresses sums of products of conformal blocks in terms
of a 2D integral (i.e., as the classical Boltzmann weight for a
plasma). Consider a 2D integral of the form∫

D

d2w
∑
α,β

f̄α(w̄)Qαβfβ(w) (B1)

We will assume that f̄α(w̄)Qαβfβ(w) is single-valued in D so
that this integral is well-defined. Let us suppose that D is a
simply-connected region with no singularities. Then, we can
re-write the integral over the interior of D in the form∫

D

d2w f̄α(w̄)Qαβfβ(w)

=
∫

D

d2w f̄α(w̄)Qαβ

∂

∂w

(∫ w

P

dw′fβ(w′)
)

, (B2)

where P is any point in the interior of D. Since there are no
singularities in D, the integral from P to w is independent of
the path. Then, since f̄α(w̄) depends only on w̄ and not w,∫

D

d2w f̄α(w̄)Qαβfβ(w)

=
∫

D

d2w
∂

∂w

(∫ w

P

dw′f̄α(w̄)Qαβfβ(w′)
)

= i

2

∮
∂D

dw̄

∫ w

P

dw′f̄α(w̄)Qαβfβ(w′)

= i

2

∮
∂D

dw̄ f̄α(w̄)Qαβ

(∫ w

P

dw′fβ(w′)
)

. (B3)
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−

2
z  =0

0
z 1

C1

C2

S2

S′2−

z

FIG. 2. The plane is divided into annuli, such as the annulus A2

shown here, bounded by C2, S2, −C2, −S ′
2, as described in the text.

The penultimate step involves an integration by parts. Since
x = (w + w̄)/2, y = (w − w̄)/2i, the complex derivative is
defined by ∂g ≡ ∂g/∂w = (∂xg − i∂yg)/2. Thus,∫

D

d2w ∂g =
∫

D

dx dy (∂xg − i∂yg)/2 = i

2

∮
∂D

dw̄ g (B4)

We are interested in integrals of the form Eq. (B1) in which
fα(w), f̄α(w̄) are conformal blocks. Thus, we expect them to
depend on the coordinates z1,z2, . . . ,zm of all of the other
fields besides the one at w, and it will be singular when
w approaches any zk . In the expressions that concern us, w

is the coordinate of a screening charge and the zk are the
coordinates of the other screening charges, the electrons, and
the quasiholes. In order to avoid these singularities, we split
the complex plane into annuli Ak with inner and outer radii
|zk−1| and |zk|. We additionally define the points z0 = 0 and

zm+1 = ∞, so that the annuli cover the entire complex plane.
Each of these annuli contains no singularities. However, they
are not simply-connected. Therefore, we cut the annulus Ak

open along a line from zk−1 and zk , as shown in Fig. 2. We then
have a simply-connected region bounded by the union of the
curves Ck , Sk , −Ck−1, −S ′

k . The circular contour −Ck−1 runs
from P 3

k to P 4
k , while Ck runs from P 1

k to P 2
k . Then according

to Eq. (B3),∫
Ak

d2w f̄α(w̄)Qαβfβ(w)

= i

2

∮
∂Ak

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′)

= i

2

∫
Ck

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′)

+ i

2

∫
Sk

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′)

+ i

2

∫
−Ck−1

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′)

+ i

2

∫
−S ′

k

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′). (B5)

Let us now define

JC ≡
∑
α,β

∫ P ′

P

dw̄ f̄α(w̄)Qαβ

∫ w

P

dw′fβ(w′) (B6)

(IC)α ≡
∫ P ′

P

dw fα(w) (B7)

where C is a contour from P to P ′. Then, we can re-write
the four terms on the right-hand side of the second equality in
Eq. (B5) in the form

∑
α,β

∫
Ck

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′) = JCk
(B8)

∑
α,β

∫
Sk

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′) =
∑
α,β

∫
Sk

dw̄ f̄α(w̄)Qαβ

(∫ P 2
k

P 1
k

dw′fβ(w′) +
∫ w

P 2
k

dw′fβ(w′)

)

=
∑
α,β

(
ĪSk

)
α
Qαβ

(
ICk

)
β

+ JSk
(B9)

∑
α,β

∫
−Ck−1

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′) = −
∑
α,β

∫
Ck−1

dw̄ f̄α(w̄)Qαβ

(∫ P 4
k

P 1
k

dw′fβ(w′) +
∫ w

P 4
k

dw′fβ(w′)

)

= −
∑
α,β

(
ĪCk−1

)
α
Qαβ

(
IS ′

k

)
β

− JCk−1 (B10)

∑
α,β

∫
−S ′

k

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′) = −
∑
α,β

∫
S ′

k

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w′) = −JS ′
k

(B11)

Thus, we have

∑
α,β

∫
Ak

d2w f̄α(w̄)Qαβfβ(w) = i

2

[
JCk

− JCk−1

]+ i

2

[
JSk

− JS ′
k

]+ i

2

∑
α,β

[(
ĪSk

)
α
Qαβ

(
ICk

)
β

− (
ĪCk−1

)
α
Qαβ

(
IS ′

k

)
β

]
(B12)
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When we sum over the different annuli Ak , the JCk
− JCk−1

terms will cancel. Now consider the terms in the second set of
square brackets on the right-hand-side of Eq. (B12). If fα(w)
is taken in a counterclockwise direction from a point w on S ′

k

to the corresponding point on Sk , then it is transformed by the
monodromy matrix M:

[fα(w)]Sk
=
∑

β

Mαβ[fβ(w)]S ′
k

(B13)

This monodromy is unitary (at least for the unitary CFTs),
so M−1 = M†. Since f̄α(w̄)Qαβfβ(w) is single-valued, M

satisfies

M†QM = Q. (B14)

Here, we have used matrix notation and suppressed the indices.
Consequently, JSk

= JS ′
k
. This leaves only the terms in the third

set of square brackets on the right-hand-side of Eq. (B12), to
which we now turn.

Since there are no singularities in Ak ,(
ICk

)
α

+ (
ISk

)
α

− (
ICk−1

)
α

− (
IS ′

k

)
α

= 0 (B15)

Meanwhile, (
ISk

)
α

=
∑

β

Mαβ

(
IS ′

k

)
β

(B16)

Combining these two equations, we have

IS ′
k
= (1 − M)−1

(
ICk

− ICk−1

)
,

(B17)
ISk

= (M† − 1)−1
(
ICk

− ICk−1

)
.

Substituting these expressions into the third set of square
brackets on the right-hand side of Eq. (B12), we find that
the cross terms cancel so that we are left with

∫
d2w

∑
α,β

f̄α(w̄)Qαβfβ(w) =
∑
k,α,β

∫
Ak

d2w f̄α(w̄)Qαβfβ(w)

= i

2

∑
k

[−ĪCk
Q(1 − Mk)−1ICk

+ ĪCk−1Q(1 − Mk)−1ICk−1

]
(B18)

= i

2

∑
k

[−ĪCk
Q(1 − Mk)−1ICk

+ ĪCk
Q(1 − Mk+1)−1ICk

]
. (B19)

We have added a subscript k to M in this equation to
emphasize that this is the monodromy matrix which results
from deforming S ′

k to Sk , and regrouped terms to obtain the
form in the last line. This expression is Eqs. (2.4) and (2.19)
of Ref. 68, where there is a slight typo in Mathur’s Eq. (2.19),
in that the index i − 1 there should actually be i + 1. Note
that, by construction, both the left- and right-hand sides of
this expression are single-valued. By applying Eqs. (B18) and
(B19) repeatedly to each screening charge integral, we obtain
the desired sum of products of contour integrals.

We now specialize to the case of the Ising CFT in order
to demonstrate some of the technical subtleties of applying
Mathur’s procedure. Consider the squared norm of the corre-
lation function of two ψ fields (or, equivalently, the correlation
function of two energy operators). The generalization to N ψ

fields (where N is even) gives the square of the Pfaffian, which
is a factor in the square of the ground-state wave function.
The basic structure is already apparent for just two ψ fields,
however, so we will begin with this simple case. Let us put the
two ψ operators at 0, z. We will call the screening operator
coordinates w1, w2. There is a single conformal block, so,
with appropriate choice of normalization, we can simply take
Q = 1. When a screening operator eiα−ϕ is taken around a ψ’s
vertex operator eiα31ϕ = e−iα−ϕ or around another screening
operator, it changes by −1. Thus, the monodromy Mk is ±1,
depending on whether an even or odd number of operators is
contained within Ck . Consider the left-hand side of Eq. (97)

for two ψ fields∫
d2w1 d2w2

∣∣〈e−iα−ϕ(z)eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)
〉∣∣2

=
∫

d2w1 d2w2 |z|3 |w1 − w2|3
2∏

i=1

(|z − wi |−3 |wi |−3
)
.

(B20)

We can show that it is equal to the right-hand side of Eq. (97)
by applying Eq. (B19). First, we use Eq. (B19) to reduce the
w2 integral for fixed w1. There are two cases, 0 < |w1| < |z|
and |w1| > |z|. For |w1| < |z|, Eq. (B19) tells us that:∫

d2w2

∣∣〈e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)〉∣∣2
|w1|<|z|

= i

2

[
(1 − Mz)

−1 − (1 − M1)−1
]
ĪCw1

ICw1

+ i

2

[
(1 − M∞)−1 − (1 − Mz)

−1
]
ĪCz

ICz
(B21)

Here, Cw1 is the circle |w| = |w1| − ε and Cz is the circle
|w| = |z| − ε. M1 is the monodromy of the holomorphic
conformal block〈

e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)
〉

(B22)

when w2 encircles the origin with 0 < |w2| < |w1|. Since such
a circle encloses the ψ field at the origin’s vertex operator,
e−iα−ϕ(0), we have M1 = −1. Mz is the monodromy when
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w2 encircles the origin with |w1| < |w2| < |z|. Since such a
circle encloses both the ψ field at the origin’s vertex operator,
e−iα−ϕ(0), and the screening operator eiα−ϕ(w1), this monodromy
is Mz = 1. Finally, M∞ is the monodromy when w2 encircles
the origin with |w2| > |z|; since such a circle encloses the
the ψ fields’ vertex operators, e−iα−ϕ(0) and e−iα−ϕ(z), and the
screening operator eiα−ϕ(w1), this monodromy is M∞ = −1.

Clearly, there will be divergent terms due to Mz = 1.
However, these divergence terms cancel, and so can be
regulated (e.g. by adding small values to the vertex operators’
charges that are taken to zero at the end). We will do
this by letting q = e−i4πα2

− = −1 and q0 = 1 − δ where δ

will be taken to zero at the end. Hence, for |w1| < |z|, we
have

∫
d2w2

∣∣〈e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)
〉∣∣2

|w1|<|z|

= i

2
[δ−1 − (1 − q)−1]

∣∣∣∣∣
〈∮

Cw1

dw2 e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣∣
2

+ i

2
[(1 − q)−1 − δ−1]

∣∣∣∣
〈∮

Cz

dw2 e−iα−ϕ(z) eiα−ϕ(w2) eiα−ϕ(w1) e−iα−ϕ(0)

〉∣∣∣∣
2

. (B23)

For |w1| > |z|, we obtain a similar expression, but with Mz = M∞ = −1 and M1 = 1 − δ:∫
d2w2

∣∣〈e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)
〉∣∣2

|w1|>|z|

= i

2
[(1 − q2)−1 − (1 − q)−1]

∣∣∣∣
〈∮

Cz

dw2 eiα−ϕ(w1) e−iα−ϕ(z) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣
2

+ i

2
[(1 − q)−1 − (1 − q2)−1]

∣∣∣∣∣
〈∮

Cw1

dw2 eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(z) e−iα−ϕ(0)

〉∣∣∣∣∣
2

(B24)

We can now perform the w1 integral. For instance,

∫
|w1|<|z|

d2w1

∣∣∣∣∣
〈∮

Cw1

dw2 e−iα−ϕ(z) eiα−ϕ(w1)eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣∣
2

= i

2
[−(1 − q)−1]

∣∣∣∣
〈∮

Cz

dw1

∮
Cz

dw2 e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣
2

+ J -terms. (B25)

Since w2 is always enclosed when w1 encircles the origin (by definition, C1 is the circle at radius |w1| − ε), the winding of w1

around w2 contributes to the monodromy, in addition to the winding of w1 around 0 and w2 around 0, giving the total combined
monodromy of M = q. When w1 lies on the contour Cz, the contour Cw1 becomes the same contour (but point split, so that it is
at infinitesimally smaller radius.) The J -terms cancel off, and so can be neglected.

Similarly, we get

∫
|w1|>|z|

d2w1

∣∣∣∣∣
〈∮

Cw1

dw2 eiα−ϕ(w1)eiα−ϕ(w2) e−iα−ϕ(z) e−iα−ϕ(0)

〉∣∣∣∣∣
2

= i

2
[(1 − q3)−1]

∣∣∣∣
〈∮

Cz

dw1

∮
Cz

dw2 e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣
2

+ J -terms (B26)

∫
|w1|<|z|

d2w1

∣∣∣∣
〈∮

Cz

dw2 e−iα−ϕ(z) eiα−ϕ(w2) eiα−ϕ(w1)e−iα−ϕ(0)

〉∣∣∣∣
2

= i

2
[−(1 − q)−1]

∣∣∣∣
〈∮

Cz

dw1

∮
Cz

dw2 e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣
2

+ J -terms (B27)

∫
|w1|>|z|

d2w1

∣∣∣∣
〈∮

Cz

dw2 eiα−ϕ(w1)e−iα−ϕ(z) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣
2

= i

2
[(1 − q)−1]

∣∣∣∣
〈∮

Cz

dw1

∮
Cz

dw2 e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣
2

+ J -terms. (B28)
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Putting this all together, we find∫
d2w1 d2w2

∣∣〈e−iα−ϕ(z)eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)
〉∣∣2

= 1

4

(
q1/2 − q−1/2

)−1 (
q3/2 − q−3/2

)−1

×
∣∣∣∣
〈∮

Cz

dw1

∮
Cz

dw2 e−iα−ϕ(z) eiα−ϕ(w1) eiα−ϕ(w2) e−iα−ϕ(0)

〉∣∣∣∣
2

(B29)

= 1

16

∣∣〈V 20
31 (z)V 00

31 (0)
〉∣∣2 (B30)

where we used q = −1 and the definition of screened vertex
operators to obtain the last line (notice that the divergent terms
canceled prior to taking δ → 0). This is precisely the two-ψ
version of Eq. (97). We note that we could have derived the
same result with the ψ fields at two arbitrary points z1 and
z2. In that case, one would produce screening charge contours
at both radii |z1| and |z2| using this procedure. In the end, the
terms with screening charge contours at the smaller radius will
vanish due to Felder’s rules, so one will again be left with both
screening charges attached to the ψ field’s vertex operator that
is at the larger radius. The derivation here allowed us to avoid
some extra steps by situating one of the ψ fields at the origin.

From the preceding derivation, we can now see how the
general N -ψ case works. Since the monodromy for taking a
screening operator around a ψ operator is −1, there will only
be a non-trivial contribution from the contour associated with
every second ψ operator. Consequently, as in Eq. (B29), there
will be two screening operator contour integrals attached to
every second ψ operator, precisely as on the right-hand side
of Eq. (97).

Turning to conformal blocks with σ fields, we consider
first the combination that gives us the trace of the overlap
matrix, namely the correlation function of σ (η,η̄) operators
and N energy operators. For this combination, Qαβ = δαβ . The
monodromy matrices are again diagonal: the monodromy for a
screening charge to go around a ψ operator is −1; to go around
a σ operator, it is ±i. In a similar manner to the steps that led to
Eq. (B29), the diagonality of Q and M simplifies matters and
leads to Eq. (115). Correlation functions with both order and
disorder operators, which give us the off-diagonal elements
and the difference between the diagonal elements of the over-
lap matrix, are a little more complicated because Q is no longer
diagonal. They are considered in detail in the next appendix.

APPENDIX C: CORRELATION FUNCTION OF TWO
ORDER AND TWO DISORDER OPERATORS

IN THE ISING MODEL

As explained in Sec. VIII we can take advantage of Eqs.
(143)–(149) to represent the correlation function of two order
and two disorder operators in the Ising model in terms of the
following Coulomb gas correlator

〈μ(η1,η̄1)μ(η2,η̄2)σ (η3,η̄3)σ (η4,η̄4)〉
=
∫

d2w〈e− i

4
√

3
ϕ(η1)+i

√
3

4 ϕ̄(η̄1)
e
i

√
3

4 ϕ(η2)− i

4
√

3
ϕ̄(η̄2)

ei
√

3
4 ϕ(η3)+i

√
3

4 ϕ̄(η̄3)

× e−i
√

3
2 ϕ(w)−i

√
3

2 ϕ̄(w̄) ei
√

3
4 ϕ(η4)+i

√
3

4 ϕ̄(η̄4)〉 + c.c. (C1)

Evaluating the correlation function results in the following
expression, which is the particular case of Eq. (156) with
N = 0:

〈μ(η1,η̄1)μ(η2,η̄2)σ (η3,η̄3)σ (η4,η̄4)〉
= (η13η14)−

1
8 (η̄13η̄14)

3
8 (η23η24)

3
8 (η̄23η̄24)−

1
8

× |η1 − η2|− 1
4 |η3 − η4| 3

4

×
∫

d2w{[(w − η1)(w̄ − η̄2)]
1
4 [(w − η2)(w̄ − η̄1)]−

3
4

× |w − η3|− 3
2 |w − η4|− 3

2 } + c.c. (C2)

Our goal is to calculate the integral over w and show that
the result of integration indeed coincides with this correlation
function, as given, for example, in Ref. 58.

The first step of the calculation, as standard in practical
calculations of four point correlation functions, is to use global
conformal invariance to assign specific values to three of the
variables:

η1 = ∞, η2 = 1, η3 = x, η4 = 0. (C3)

x remains arbitrary and is effectively the only free parameter
upon which the correlation function depends. Without loss
of generality, we take x to be a real variable (which can be
analytically continued to the complex plane later if needed)
satisfying

0 < x < 1. (C4)

When taking the limit η1 → ∞, we multiply the correlation
function Eq. (C2) by (η1η̄1)

1
8 to ensure a finite result, since

the conformal dimension of the order and disorder operators
is 1/16. This results in the following expression for the
correlation function

〈μ(∞,∞)μ(1,1)σ (x,x̄)σ (0,0)〉
= (1 − x)

3
8 (1 − x̄)−

1
8 |x| 3

4

×
∫

d2w (1 − w)−
3
4 (1 − w̄)

1
4 |x − w|− 3

2 |w|− 3
2

+ (1 − x̄)
3
8 (1 − x)−

1
8 |x| 3

4

×
∫

d2w (1 − w̄)−
3
4 (1 − w)

1
4 |x − w|− 3

2 |w|− 3
2 (C5)

We now introduce the following convenient notation

f1 = (1 − x)
3
8 x

3
8 (1 − w)−

3
4 (x − w)−

3
4 w− 3

4 (C6)

f2 = (1 − x)−
1
8 x

3
8 (1 − w)

1
4 (x − w)−

3
4 w− 3

4 , (C7)

as well as the following matrix

Q =
(

0 1
1 0

)
. (C8)

Then Eq. (C5) can be rewritten in the following compact way
using matrix notation

〈μ(∞,∞)μ(1,1)σ (x,x̄)σ (0,0)〉 =
∫

d2w f̄ Qf. (C9)

We are now in a position to use the techniques developed by
Mathur in Ref. 68 specifically to compute integrals of this sort.
In that paper, it was shown that an expression in the form of
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FIG. 3. The integration contours in Eq. (C11).

Eq. (C9) can be rewritten in the form of Eq. (B19). Hence,
Eq. (C9) becomes

〈μ(∞,∞)μ(1,1)σ (x,x̄)σ (0,0)〉
= i

2
[−Ī (1)Q(1 − M1)−1I (1) + Ī (1)Q(1 − M2)−1I (1)

− Ī (2)Q (1 − M2)−1 I (2) + Ī (2)Q (1 − M3)−1 I (2)].

(C10)

Here I (1) and I (2) are contour integrals defined according to

I (1)
α =

∮
|w|=x

dw fα , I (2)
α =

∮
|w|=1

dw fα. (C11)

The contours of integration are shown in Fig. 3. M1, M2 and
M3 are the analytic continuation matrices of the functions f ,
defined in the following way: Take the function f just above
the real axis and analytically continue it over w along a big
circle centered at zero to the values just below the real axis.
The new value fC is then given by

fC = M1f, 0 < w < x; fC = M2f, x < w < 1;
(C12)

fC = M3f, x > 1.

In this case, these matrices are diagonal and can be calculated
in a straightforward fashion, to give

M1 =
(

i 0
0 i

)
, M2 =

(−1 0
0 −1

)
, M3 =

(−i 0
0 −i

)
.

(C13)

All that remains is to compute the integrals of Eq. (C11)
and substitute them into Eq. (C10) to find the answer. The
appropriate integrals are computed by deforming the contours
from |w| = x to 0 < w < x, and from |w| = 1 to 1 < w < ∞.
The resulting integrals are then standard and can be expressed
in terms of hypergeometric functions.66,122 We find:

I
(1)
1 = (1 − x)

3
8 x

3
8

∮
|w|=x

dw (1 − w)−
3
4 (x − w)−

3
4 w− 3

4

= (1 − x)
3
8 x

3
8

(
−1 + e−i 3π

2

)
×
∫ x

0
dw (1 − w)−

3
4 (x − w)−

3
4 w− 3

4

=
√

2ei 3π
4 (1 − x)

3
8 x− 1

8

∫ 1

0
dζ ζ− 3

4 (1 − ζ )−
3
4 (1 − xζ )−

3
4

=
√

2ei 3π
4 (1 − x)

3
8 x− 1

8
�
(

1
4

)
�
(

1
4

)
�
(

1
2

) F

(
3

4
,
1

4
;

1

2
; x

)

=
√

2ei 3π
4 (1 − x)−

1
8 x− 1

8
�
(

1
4

)
�
(

1
4

)
�
(

1
2

) F

(
−1

4
,
1

4
;

1

2
; x

)

= ei 3π
4

�
(

1
4

)
�
(

1
4

)
�
(

1
2

) (1 − x)−
1
8 x− 1

8

√
1 + √

1 − x, (C14)

I
(1)
2 = (1 − x)−

1
8 x

3
8

∮
|w|=x

dw (1 − w)
1
4 (x − w)−

3
4 w− 3

4

= (1 − x)−
1
8 x

3
8

(
−1 + e−i 3π

2

)
×
∫ x

0
dw (1 − w)

1
4 (x − w)−

3
4 w− 3

4

=
√

2ei 3π
4 (1 − x)−

1
8 x− 1

8

∫ 1

0
dζ ζ− 3

4 (1 − ζ )−
3
4 (1 − xζ )

1
4

=
√

2ei 3π
4 (1 − x)−

1
8 x− 1

8
�
(

1
4

)
�
(

1
4

)
�
(

1
2

) F

(
−1

4
,
1

4
;

1

2
; x

)

= ei 3π
4

�
(

1
4

)
�
(

1
4

)
�
(

1
2

) (1 − x)−
1
8 x− 1

8

√
1 + √

1 − x (C15)

I
(2)
1 = (1 − x)

3
8 x

3
8

∮
|w|=1

dw (1 − w)−
3
4 (x − w)−

3
4 w− 3

4

= (1 − x)
3
8 x

3
8

(
1 − e−i 3π

2

)
×
∫ ∞

1
dw (1 − w)−

3
4 (x − w)−

3
4 w− 3

4

=
√

2e−i π
4 (1 − x)

3
8 x

3
8 e−i 3π

2

×
∫ 1

0
dζ ζ

1
4 (1 − ζ )−

3
4 (1 − xζ )−

3
4

=
√

2ei π
4 (1 − x)

3
8 x

3
8
�
(

5
4

)
�
(

1
4

)
�
(

3
2

) F

(
3

4
,
5

4
;

3

2
; x

)

= ei π
4
�
(

1
4

)
�
(

1
4

)
�
(

1
2

) (1 − x)−
1
8 x− 1

8

√
1 − √

1 − x, (C16)

I
(2)
2 = (1 − x)−

1
8 x

3
8

∮
|w|=1

dw (1 − w)
1
4 (x − w)−

3
4 w− 3

4

= (1 − x)−
1
8 x

3
8

(
1 − e−i 3π

2

)
×
∫ ∞

1
dw (1 − w)

1
4 (x − w)−

3
4 w− 3

4

=
√

2e−i π
4 (1 − x)−

1
8 x

3
8 e−i π

2

×
∫ 1

0
dζ ζ− 3

4 (1 − ζ )
1
4 (1 − xζ )−

3
4

= −
√

2ei π
4 (1 − x)−

1
8 x

3
8
�
(

1
4

)
�
(

5
4

)
�
(

3
2

) F

(
3

4
,
1

4
;

3

2
; x

)

= −ei π
4
�
(

1
4

)
�
(

1
4

)
�
(

1
2

) (1 − x)−
1
8 x− 1

8

√
1 − √

1 − x. (C17)

We define the conformal blocks

F0 ≡ ei 3π
4

�
(

1
4

)
�
(

1
4

)
�
(

1
2

) √
2(1 − x)−

1
8 x− 1

8

√
1 + √

1 − x

=
√

2I
(1)
1 =

√
2I

(1)
2 , (C18)
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F1 ≡ ei π
4
�
(

1
4

)
�
(

1
4

)
�
(

1
2

) √
2(1 − x)−

1
8 x− 1

8

√
1 − √

1 − x

=
√

2I
(2)
1 = −

√
2I

(2)
2 . (C19)

This is the conventional definition of the Ising CFT’s
conformal blocks, up to the overall phases, which are
unimportant here since they cancel with their conjugates, and

the overall constant
�

(
1
4

)
�

(
1
4

)
�

(
1
2

) √
2, which causes no problems

since it enters as a common factor to both blocks. Employing
vector notation, we can now write

I (1) =
√

2

(
F0

F0

)
, I (2) =

√
2

(
F1

−F1

)
. (C20)

Substituting Eqs. (C8), (C13), (C20) into Eq. (C10), we
finally find

〈μ(η1,η̄1)μ(η2,η̄2)σ (η3,η̄3)σ (η4,η̄4)〉 = F̄0F0 − F̄1F1. (C21)

This is indeed the right answer for this correlation function.
Not only does it match the expected form in Eqs. (139), (140),
and (141), it also coincides with the explicit expression for
this correlation function worked out in Ref. 58.

APPENDIX D: SCREENING IN A TWO-DIMENSIONAL
TWO-COMPONENT PLASMA

In this section, we examine the screening properties of a 2D
two-component plasma using field theoretical analysis (see,
e.g. Ref. 123). The interaction energy of a number of electric
charges qk located at positions zk in 2D is given by

� = −
∑
i<j

qiqj ln |zi − zj |. (D1)

Suppose we have a 2D plasma of a large but equal number of
electric charges of magnitude q and −q at temperature T . The
partition function of this plasma can be written as

Z =
∫ ∏

k

d2zk e−�/T =
∫ ∏

k

d2zk e

1
T

∑
i<j

qiqj ln |zi−zj |
,

(D2)

where qk are either q or −q.
With the help of Eq. (A3), we observe that this same

partition function can be rewritten as

Z =
∫ ∏

k

d2zk

〈∏
l

eiqlφ(zl ,z̄l )

〉
, (D3)

while making the identification

T = g. (D4)

This identification of T with g is not particularly necessary. We
could have multiplied all the electric charges by an arbitrary
factor and simultaneously multiplied the temperature by the
square of this factor. This would keep the partition function in
Eq. (D3) exactly the same. However, T = g is a convenient
choice that we use in this paper.

The partition function of such a plasma is most easily
computed in the grand canonical ensemble, using methods

developed originally in the context of the Kosterlitz-Thouless
transition.89 For completeness, we present the derivation here.
The partition function in the grand canonical ensemble looks
like

Z =
∞∑

n=1

∑
ql=±q

1

n!

∫ n∏
k=1

d2zk

〈
exp

[
i

n∑
l=1

qlφ(zl,z̄l)

]〉
λn.

(D5)

Here λ is the fugacity, the parameter whose logarithm gives
the chemical potential of the charges. We can now sum over
qk = ±q and over n to find124

Z =
∫
Dφ e− g

4π

∫
d2z(∇φ)2+2λ

∫
d2z cos(qφ)∫

Dφ e− g

4π

∫
d2z(∇φ)2 . (D6)

The behavior of this plasma depends crucially on whether
λ is a relevant or irrelevant perturbation. Since the correlation
function

〈eiqφ(z,z̄) e−iqφ(w,w̄)〉 = |z − w|−q2/g, (D7)

the dimension of this perturbation is

�λ = 2 − q2

2g
. (D8)

The perturbation is relevant if �λ > 0 or, equivalently, q <√
4g. Otherwise, it is irrelevant.
If the perturbation is irrelevant, then the plasma does not

screen. If it is relevant, the plasma screens. In the latter case,
the correlation function of two electric operators is a constant
if they are farther away from each other than the correlation
(screening) length �2 of the plasma∫

Dφ eiq1φ(z1,z̄1)eiq2φ(z2,z̄2) e− g

4π

∫
d2z(∇φ)2+2λ

∫
d2z cos(qφ)

∼ C2 + O(e−|z1−z2|/�2 ), (D9)

where C2 is a constant independent of z1 and z2. To see this,
we simply observe that if λ is a relevant perturbation, typical
values of φ are restricted to the minima of cos (qφ), and so φ

fluctuates very little about this value.
Indeed, upon identifying g with the temperature of the

plasma, we see that it is at high temperature that the plasma
screens. At low temperature, charges of opposite magnitude
bind strongly pairwise to form neutral dipoles and hence the
plasma does not screen. The transition temperature between
these two phases is seen to be Tc2 = q2/4.

Additionally, one can consider the behavior of the magnetic
operators in the screening phase. Their correlator goes to zero
at large distances:∫

Dφ Om(z1,z̄1)O−m(z2,z̄2) e− g

4π

∫
d2z(∇φ)2+2λ

∫
d2z cos(qφ)

∼ O(e−|z1−z2|/�2 ). (D10)

This corresponds to the well known fact that magnetic charges
are confined in the electrically-screening phase. To see why
this is so, recall that the operatorOm(z,z̄) creates a vortex in the
field φ, so that φ winds by 2πm in going around (z,z̄). As was
pointed out earlier, φ is restricted to the minima of cos (qφ) in
the screening phase. Therefore, the two magnetic charges m

and −m are necessarily connected by a region across which φ
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changes by 2πm. Since φ must leave the minima of cos (qφ)
to do this, it is energetically favorable for this region to be as
small as possible. Consequently, this region will take the form
of a string connecting the magnetic charges, with φ rapidly
changing by 2πm as it crosses the string perpendicularly. The
energy cost of such a configuration is proportional to the length
of the string and the magnetic charges are thus confined. In
order that the integrand of the partition function for the plasma
(of electric charges ±q) be single-valued when there are test
particles with magnetic charges ±m included, the charges
must satisfy a Dirac quantization condition: qm ∈ Z. (This
condition is satisfied for the plasmas with magnetic charges
that arise in our plasma analogy mapping for the MR state.)
This makes it clear that φ can pass from one minima of cos (qφ)
to another as φ changes by 2πm. If one does not satisfy the
Dirac quantization condition, one must introduce a branch cut
or deal with the multi-valued integrand in some other manner.
It is not clear whether this can provide something physically
meaningful, but, if so, the confinement argument still applies to
these (fractionally quantized) magnetic charges in the plasma.

APPENDIX E: DEBYE SCREENING LENGTH OF
GENERAL PLASMAS

The considerations of the previous Appendix tell us whether
or not a two-component plasma screens. When a plasma does
screen (either one or two component, or even more general
plasmas with multiple types of Coulomb interactions), we
would like to know what its screening length is. Deep within
the screening phase, we can use the Debye-Hückel theory.125

We review this theory here, and generalize it to plasmas with
multiple types of Coulomb interactions. We consider the case
where there are m different types of Coulomb interactions
and S different particle species. The j th species particles have
density nj

(−→r ) and carry the kth type of Coulomb charge q
(k)
j .

We start with the Poisson equation

∇2φ(k)(−→r ) = − 1

ε0
ρ(k)(−→r ) (E1)

for the kth electric potential φ(k)(−→r ) and charge density
ρ(k)(−→r ). We take the convention in which the Coulomb energy
in D spatial dimensions between two point charges q1 and q2

at −→r 1 and −→r 2, respectively, takes the form

� =
⎧⎨
⎩

−q1q2 log |−→r 1 − −→r 2| for D = 2,

q1q2

|−→r 1−−→r 2|D−2
for D � 3,

(E2)

which corresponds to

ε0 =
⎧⎨
⎩

1
2π

for D = 2,

�( D−2
2 )

4πD/2 for D � 3.

(E3)

Next, we assume that the system is in thermal equilibrium,
so the particle densities are given by a Boltzmann distribution
with respect to the Coulomb energies

nj (−→r ) = n
(0)
j exp

[
− 1

T

m∑
k=1

q
(k)
j φ(k)(−→r )

]
, (E4)

where n
(0)
j is the homogeneous density of the j th species of

particles (far away from test particles).
Charge neutrality for the kth type of Coulomb charge can

be obtained either by balancing charge among the different
species of particles to sum to zero (i.e.

∑S
j=1 q

(k)
j n

(0)
j = 0)

or through a uniform neutralizing background charge density
[i.e. ρ

(k)
neutralizing(−→r ) = −∑S

j=1 q
(k)
j n

(0)
j ]. In either case, charge

neutrality allows us to write

ρ(k)(−→r ) =
S∑

j=1

q
(k)
j

[
nj (−→r ) − n

(0)
j

]
, (E5)

giving zero charge density where the potential vanishes.
Combining Eqs. (E1), (E4), and (E5), we obtain the

generalized Poisson-Boltzmann equation

∇2φ(k)(−→r )

= 1

ε0

S∑
j=1

q
(k)
j n

(0)
j

{
1 − exp

[
− 1

T

m∑
l=1

q
(l)
j φ(l)(−→r )

]}
.

(E6)

This differential equation for φ(k) is obviously non-linear, but
is approximately linear when and where the plasma is weakly
coupled (i.e. the Coulomb energies are small compared to the
temperature) so that

∑m
l=1 q

(l)
j φ(l)(−→r ) � T . In this regime, we

can expand the exponential

exp

[
− 1

T

m∑
l=1

q
(l)
j φ(l)(−→r )

]
� 1 − 1

T

m∑
l=1

q
(l)
j φ(l)(−→r ) (E7)

to obtain the linear approximation of Eq. (E6)

∇2φ(k)(−→r ) �
m∑

l=1

�klφ
(l)(−→r ) (E8)

�kl = 1

ε0T

S∑
j=1

n
(0)
j q

(k)
j q

(l)
j , (E9)

which generalizes the Debye-Hückel equation. � is a symmet-
ric, real, positive-definite matrix, so all of its eigenvalues λa

(where a = 1, . . . ,m) are positive. It is now straightforward to
solve this differential equation by changing to a basis in which
� is diagonal, giving m independent diffusion equations

∇2φ̃(a)(−→r ) � λaφ̃
(a)(−→r ), (E10)

where φ̃(a) = ∑
k Sakφ

(k), for S the similarity transformation
that diagonalizes �, i.e., S�S−1 = diag[λ1, . . . ,λm]. Requir-
ing the potentials φ(k) to go to zero at infinity, we know
the solutions must generally have an exponentially decaying
behavior, with decay lengths �a = λ

−1/2
a . We define the longest

decay length to be the Debye screening length of the plasma

�D ≡ max
a

{
λ−1/2

a

}
. (E11)

We now consider several examples relevant to this paper.
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A. The one-component plasma

For a one-component plasma, there is one species of
particles with charge Q and a neutralizing background, which
gives

� = n(0)Q2

ε0T
. (E12)

For the ν = 1/M Laughlin states, the corresponding plasma
is a 2D one-component plasma with T = g and Q = √

2Mg.
This gives

� = 2

�2
B

(E13)

where n(0) = ν/2π�2
B is the electron density of the quantum

Hall fluid. Thus, the Debye screening length for a Laughlin
state is �1 = �B/

√
2.

B. The two-component plasma

For a two-component plasma, there are two species of
particles with charge Q and −Q, respectively, which gives

� = 2n(0)Q2

ε0T
. (E14)

For the p-wave superconductor, the corresponding plasma
is a 2D two-component plasma with T = g and Q = √

3g.
This gives

� = 12πn(0) (E15)

where n(0) is the fermion density. Thus, the Debye screening
length is �2 = [12πn(0)]−1/2.

C. The Moore-Read Pfaffian states’ plasma

For the ν = 1/M MR Pfaffian states, the corresponding
2D plasma has temperature T = g, two types of Coulomb
interactions, and two particle species: the first with charge
Q(1) = √

2Mg and Q(2) = √
3g, the second with charge

−Q(2) = −√
3g. There is also a neutralizing background for

Coulomb charge of type 1. This gives

� = 2πn(0)

T

[
(Q(1))2 Q(1)Q(2)

Q(1)Q(2) 2(Q(2))2

]

= 1

�2
B

[
2

√
6/M√

6/M 6/M

]
, (E16)

where n(0) = ν/2π�2
B is the electron density of the quantum

Hall fluid, which must also be the density of the screening
charges. The two eigenvalues of this � are λ± = (M + 3 ±√

M2 + 9)/M�2
B . Thus, the Debye screening length is

�D =
(

M

M + 3 − √
M2 + 9

)1/2

�B. (E17)

For M = 2 this is �D ≈ 1.2 �B .

APPENDIX F: CONFORMAL BLOCKS OF n σ FIELDS AND
N ψ FIELDS: A BASIS OF n QUASIHOLE WAVE

FUNCTIONS IN WHICH BRAIDING PROPERTIES
ARE MANIFEST

In this section, we compute the conformal blocks which
correspond to n-quasihole (and N -electron) wave functions.126

The four-quasihole case was computed in Ref. 43; here we
extend this result to arbitrary even n. From the previous
discussion, it is clear that we only need these conformal
blocks in the two-, four-, and six-quasihole cases. However,
for completeness, we compute them for arbitrary numbers
of quasiholes. These wave functions have the nice property
of furnishing, through their explicit analytic continuation,
representations of the n-quasihole braid groups.

The basic strategy is to use Refs. 127 and 128 to compute

〈σ1σ2 σ1σ2 · · · σ1σ2 ψ1ψ1 · · · ψ1〉 . (F1)

Here, we have two chiral Majorana fermions ψ1, ψ2 with
their two spin fields σ1, σ2. Since σ1 and σ2 are completely
independent, this is equal to the product of

〈σ1 σ1 · · · σ1 ψ1ψ1 · · · ψ1〉 (F2)

and
〈σ2 · · · σ2〉 (F3)

The bosonization formulas derived in Refs. 127 and 128
allow us to compute all of the conformal blocks of Eqs. (F1)
and (F3), thereby giving us the desired conformal blocks of
Eq. (F2). According to Refs. 127 and 128, if we have two
chiral Majorana fermions, ψ1, ψ2, we can combine them into
a single Dirac fermion which can be bosonized,

eiϕ = ψ1 + iψ2 (F4)

so that ψ1 = cos ϕ. Bosonizing chiral spin fields is trickier.
The individual spin fields do not have a simple expression, but
the product of two factors of σ1σ2 can be written in the form

σ1(η1) σ2(η1) σ1(η2)σ2(η2)

= eiϕ(η1)/2 e−iϕ(η2)/2 ± e−iϕ(η1)/2 eiϕ(η2)/2 (F5)

In a conformal block in which a given set of fields σ1σ2 · σ1σ2

fuse to 1 · 1 we take the + sign; if they fuse to ψ1 · ψ2, we take
the − sign.

Thus, we can compute the square of a conformal block of
n σ fields by computing

〈σσ · · · σ 〉2
(p1,p2,...,pn/2) =

∑
ri=0,1

(−1)r·p〈ei(−1)r1 (ϕ1−ϕ2)/2

× ei(−1)r2 (ϕ3−ϕ4)/2 · · · ei(−1)rn/2 (ϕn−1−ϕn)/2〉 (F6)

We have employed the shorthand ϕμ ≡ ϕ(ημ) and (−1)r·p ≡
(−1)

∑
j rj pj . The subscript (p1,p2, . . . ,pn/2) on the left-hand

side is used to specify the conformal block of this correlation
function which we are computing: pi = 0,1 denotes that the
(2i − 1)th and 2ith σ fields fuse to I or ψ , respectively.
There is an overall parity constraint

∑
ipi ≡ 0(mod 2) for

Eq. (F6), since there are no additional ψ field insertions in
this correlation function. The two values ri = 0,1 correspond
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to whether we have used the first or second term on the
right-hand-side of Eq. (F5) in the bosonic correlation function

on the right-hand-side of Eq. (F6) (which is equivalent to the
usage of ri = 0,1 in Sec. IX). Thus, we have

〈σσ · · · σ 〉2
(p1,p2,...,pn/2) =

⎛
⎜⎜⎜⎝

n/2∏
i<j

η2i−1,2j−1 η2i,2j

n/2∏
i,j

η2i−1,2j

⎞
⎟⎟⎟⎠

1
4 ⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l

⎫⎬
⎭ (F7)

where

xk,l ≡ η2k−1,2l η2l−1,2k

η2k−1,2l−1 η2k,2l

(F8)

This generalizes the formulas for the four-σ conformal blocks in Ref. 58, which has only two terms in curly brackets.
Now consider the correlation function

〈σ1σ2 σ1σ2 · · · σ1σ2 ψ1ψ1 · · · ψ1〉 (F9)

with N Majorana fermion fields ψ1 = cos ϕ. We will initially consider the even N electron number case and briefly mention the
odd N case at the end of this section. This can be computed in the same way as before by choosing half of the fermions to be eiϕ ,
the other half to be e−iϕ , and then summing over all permutations, which gives the Pfaffian. Hence, we obtain:

〈σ1σ2 σ1σ2 · · · σ1σ2 ψ1ψ1 · · ·ψ1〉(p1,p2,...,pn/2) =

⎛
⎜⎜⎜⎝

n/2∏
i<j

η2i−1,2j−1 η2i,2j

n/2∏
i,j

η2i−1,2j

⎞
⎟⎟⎟⎠

1
4 ⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l �̃(1+r1,3+r2,...)(2−r1,4−r2,...)

⎫⎬
⎭

(F10)

where

�̃(1+r1,3+r2,...)(2−r1,4−r2,...) ≡ Pf

{
1

zi − zj

(
η1 − zi

η2 − zi

η2 − zj

η1 − zj

)1
2 −r1

(
η3 − zi

η4 − zi

η4 − zj

η3 − zj

)1
2 −r2

· · · + (i ↔ j )

}
(F11)

Including the charge sector of the ν = 1/M MR Pfaffian wave functions and dividing by 〈σσ · · · σ 〉(p1,p2,...,pn/2), we finally obtain:

�(p1,p2,...,pn/2) =

⎛
⎜⎜⎜⎝

n/2∏
i<j

η2i−1,2j−1 η2i,2j

n/2∏
i,j

η2i−1,2j

⎞
⎟⎟⎟⎠

1
8⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l

⎫⎬
⎭

−1/2

×
⎧⎨
⎩
∑

ri=0,1

(−1)r·p
n/2∏
k<l

x
|rk−rl |/2
k,l �(1+r1,3+r2,...)(2−r1,4−r2,...)

⎫⎬
⎭

n∏
μ<ν

η
1

4M
μν e

− 1
8M

n∑
μ=1

|ημ|2
, (F12)

where

�(1+r1,3+r2,...)(2−r1,4−r2,...) ≡ �̃(1+r1,3+r2,...)(2−r1,4−r2,...) ×
n∏

μ=1

N∏
i=1

(ημ − zi)
1/2

N∏
i<j

(zi − zj )Me
− 1

4

N∑
i=1

|zi |2

= Pf

((
η1+r1 − zi

)(
η3+r2 − zi

) · · · (ηn−1+r n
2
− zi

)(
η2−r1 − zj

)(
η4−r2 − zj

) · · · (ηn−r n
2
− zj

)+ (i ↔ j )

zi − zj

)

×
N∏

i<j

(zi − zj )M e
− 1

4

N∑
i=1

|zi |2
(F13)

are electron wave functions with normalizations that do not
explicitly contain the quasiholes’ braiding statistics. This equa-
tion expresses the 2

n
2 −1 basis vectors �(p1,p2,...,pn/2) with N even

in terms of the 2
n
2 −1 basis vectors �(1+r1,3+r2,...)(2−r1,4−r2,...).

The basis vectors �(1+r1,3+r2,...)(2−r1,4−r2,...) are intuitive and
easy to write down (and were, therefore, written down in
Ref. 43). However, they are not orthonormal and their braiding
properties are complicated. Meanwhile, according to the result
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shown in this paper that Berry’s matrices are trivial in the
conformal block basis, the basis vectors �(p1,p2,...,pn/2) have
simple braiding properties given by the branch cuts in their
definition Eq. (F12).

In order to compute wave functions for an odd number N

of electrons, we can compute the wave function for N − 1
electrons and n + 2 quasiholes as before, and then obtain the
desired wave function by taking ηn+1 → ηn+2 ≡ z1, dividing
by the appropriate power of ηn+1 − ηn+2, and correcting the
charge sector terms so that z1 corresponds to an electron
coordinate:

�(p2,...,pn/2)(η1, . . . ,ηn; z1, . . . ,zN )

≡
n∏

μ=1

(ημ − z1)
M−1
2M

N∏
i=2

(z1 − zi)
M−1 e− M−1

4M
|z1|2

× lim
ε→0

ε−( 1
4M

+ 3
8 ) �(p1,...,pn/2,1)(η1, . . . ,ηn,ηn+1

= z1 + ε,ηn+2 = z1; z2, . . . ,zN ) (F14)

The pis which index the odd N electron number wave function
on the left-hand side satisfy the parity constraint

∑n/2
i=1 pi ≡

1(mod 2).

APPENDIX G: INCOMPLETE DIRECT APPROACH TO
PLASMA ANALOGY FOR n QUASIPARTICLES

In this section, we present a more direct approach to
constructing the plasma analogy for n quasiparticle wave
functions. Unfortunately, the argument is incomplete, but
presenting the argument serves to clarify the obstacle in
proceeding in this manner, and why we needed to use the
methods involving disorder operators.

We consider the conformal blocks with n σ operators
(which correspond to n fundamental quasiholes). There are
2

n
2 −1 such conformal blocks, which we denote by

Fα(ημ; zi)

= 〈σ (η1)σ (η2) · · · σ (ηn−1)σ (ηn)ψ(z1) · · ·ψ(zN )〉α (G1)

where α = (π1, . . . ,πn/2), for πj = 0,1 with the overall
constraint that πn/2 = 0 for N even and πn/2 = 1 for N odd.
We can represent these in the following way (defining π0 = 0):

F(π1,...,πn/2)(ημ; zi) =
〈

n/2∏
j=1

V
1−πj−1,0

21 (η2j−1)V
πj ,0

21 (η2j )V 20
31 (z1)V 00

31 (z2) · · · V 20
31 (zN−1)V 00

31 (zN )

〉
(G2)

=
n/2∏
j=1

∮
Crj

dwj

∮
Cz1

du1

∮
Cz1

du2

∮
Cz3

du3

∮
Cz3

du4 . . .

∮
CzN−1

duN−1

∮
CzN−1

duN

×
〈

n/2∏
j=1

V 00
21 (η2j−1)ei(1−πj−1)α−φ(wj )V 00

21 (η2j )eiπj α−φ(wj+1)

×V 00
31 (z1)eiα−φ(u1)eiα−φ(u2)V 00

31 (z2) · · ·V 00
31 (zN−1)eiα−φ(uN−1)eiα−φ(uN )V 00

31 (zN )

〉
(G3)

=
n/2∏
j=1

∮
Crj

dwj

∮
Cz1

du1

∮
Cz1

du2

∮
Cz3

du3

∮
Cz3

du4 · · ·
∮

CzN−1

duN−1

∮
CzN−1

duNf(π1,...,πn/2)(wa; ui ; ημ; zi),

(G4)

where Cx is the contour at radius |x| centered on the origin, rj = η2j−1−πj−1 and we have defined

f(π1,...,πn/2) =
〈

n/2∏
j=1

V 00
21 (η2j−1)ei(1−πj−1)α−φ(wj )V 00

21 (η2j )eiπj α−φ(wj+1)

×V 00
31 (z1)eiα−φ(u1)eiα−φ(u2)V 00

31 (z2) · · · V 00
31 (zN−1)eiα−φ(uN−1)eiα−φ(uN )V 00

31 (zN )

〉
. (G5)

There are N screening operators with coordinate ui for the
ψ fields and n/2 screening operators with coordinates wa

for the σ fields, and the conformal blocks are determined
by the placement of the wa σ screening charge contours.
Specifically, πj = 0,1 indicates that the contour for wj is at

radius |η2j−1−πj−1 |. Strictly speaking, fα does not encode the
fusion channel without the knowledge of these contours, but
we will nonetheless use the subscript label to remind us of the
contour placements.
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We want to compute the overlap

Gα,β

(
η̄μ,η′

μ

) =
∫ N∏

k=1

d2zkF̄α(η̄μ; z̄i)Fβ(ημ; zi)

=
∫ N∏

k=1

d2zk

n/2∏
j=1

∮
Crj

dw̄j

∮
Cr′

j

dw′
j

∮
Cz1

du′
1

∮
Cz1

du′
2

∮
Cz3

du′
3

∮
Cz3

du′
4 . . .

∮
CzN−1

du′
N−1

∮
CzN−1

du′
N

×
∮

Cz1

dū1

∮
Cz1

dū2

∮
Cz3

dū3

∮
Cz3

dū4 · · ·
∮

CzN−1

dūN−1

∮
CzN−1

dūN f̄α(w̄a; ūi ; η̄μ; z̄i)fβ(w′
a; u′

i ; ημ; zi) (G6)

=
n/2∏
j=1

∮
Crj

dw̄j

∮
Cr′

j

dw′
j�α,β(w̄a,w

′
a; η̄μ,ημ) (G7)

where r ′
j = η2j−1−π ′

j−1
corresponds to β = (π ′

1, . . . ,π
′
n/2), and

�α,β

(
w̄a,w

′
a; η̄μ,ημ

) =
∫ N∏

k=1

d2zk

∮
Cz1

du′
1

∮
Cz1

du′
2

∮
Cz3

du′
3

∮
Cz3

du′
4 . . .

∮
CzN−1

du′
N−1

∮
CzN−1

du′
N

×
∮

Cz1

dū1

∮
Cz1

dū2

∮
Cz3

dū3

∮
Cz3

dū4 . . .

∮
CzN−1

dūN−1

∮
CzN−1

dūN f̄α(w̄a; ūi ; η̄μ; z̄i)fβ(w′
a; u′

i ; ημ; zi).

(G8)

Now let us see if we can convert the pairs of u′
i , ūi contour

integrals into d2ui integrals. If we can do so, then we can
deduce the properties of �α,β and Gα,β via plasma analogy.
We follow Mathur’s steps, starting from the integral∫

d2u1 · · ·
∫

d2uNf̄α(w̄j ; ūi ; η̄μ; z̄i)fβ(w′
j ; ui ; ημ; zi).

(G9)

In this case, we are not considering screening operators of
non-Abelian fields, and thus monodromies will not take one to
a different conformal block, so we do not need the bilinear form
notation. Also, we are not restricting our attention to diagonal
components, so the plasma potential will not be monodromy
invariant (i.e. not single valued), but this is not necessarily a
problem as long as we keep track of monodromies. We will
show that this expression decomposes into∫

d2u1 · · ·
∫

d2uNf̄α(w̄a; ūi ; η̄μ; z̄i)fβ(w′
a; ui ; ημ; zi)

= (terms with contours all at radii |zi |)
+ (terms with at least one contour at radius

∣∣ημ

∣∣)
+ J -terms at branch cuts. (G10)

The terms with the contours all at the radii |zi | are equal to
�α,β

(
w̄a,w

′
a; η̄μ,ημ

)
(up to some constant). This is because the

contributions to this term from integrals with contours on the
wrong zi will vanish, leaving only �α,β . This is known from
Ref. 67, since contours in the unallowed configurations give
rise to overall multiplicative terms with canceling phases. The
terms with at least one contour at ημ will vanish after taking
the

∏n/2
j=1

∮
Crj

dw̄j

∮
Cr′

j

dw′
j contour integrations, because this

results in unallowed configurations of screening contours (i.e.
too many screening charges on the V21 operators). Most

of the J -terms will cancel each other, just as in Mathur’s
construction, except for the ones on either side of a branch
cut. The branch cuts occur when wa �= w′

a . (We note that w1

and w′
1 can actually be treated the same as the ui screening

charges, since its contour placement is uniquely specified.) We
want to show that, in the end, the J -terms vanish or cancel, at
least after performing the dw′

a and dw̄a integrations.
If we could make the J -terms vanish, then Eq. (G7) would

become

Gα,β (η̄μ,η′
μ) =

n/2∏
j=1

∮
Crj

dw̄j

∮
Cr′

j

dw′
j �̃α,β (w̄a,w

′
a; η̄μ,ημ)

(G11)

where one can now apply the plasma analogy to

�̃α,β(w̄a,w
′
a; η̄μ,ημ)

=
∫ N∏

k=1

d2zkd
2ukf̄α(w̄a; ūi ; η̄μ; z̄i)fβ(w′

a; ui ; ημ; zi)

=
∫ N∏

k=1

d2zkd
2uke

−�̃/T = e−F . (G12)

Here, T = g and �̃ describes the 2D Coulomb interaction
between N charge Q = √

3g particles at zi , N charge −Q

particles at ui , n charge Q/2 particles at ημ, n
2 particles with

electric charge −Q/2 and magnetic charge m = √
3/4g at

wa , and n
2 particles with electric charge −Q/2 and magnetic

charge −m at w′
a . Hence, F is the free energy of a classical

2D two-component plasma at temperature T of N charge Q

particles and N charge −Q particles, with n charge Q/2 test
particles at ημ, n

2 test particles with electric charge −Q/2
and magnetic charge m at wa , and n

2 test particles with electric
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charge −Q/2 and magnetic charge −m at w′
a . By confinement

of magnetic charge in a screening plasma, we know that
Eq. (G12) will vanish unless wa = w′

a , which shows that the
result is proportional to δαβ , as desired, since α �= β requires
wa �= w′

a for at least one a.
We now proceed by seeing what happens for a single

u screening charge. We partition the plane into a number
of annular regions Dl such that the positions of the other
coordinates where there are potentially singularities or branch
cuts are left outside of Dl . Leaving the other coordinates
implicit, we have for a region D∫

D

d2uf̄α (ū) fβ (u) = i

2

∫
∂D

dūf̄α (ū) f̂β (u) (G13)

where

f̂β(u) =
∫ u

P

du′fβ(u′). (G14)

We define

JC
αβ =

∫ P ′

P

dūf̄α (ū) f̂β (u) (G15)

IC
β =

∫ P ′

P

dufβ (u) (G16)

for C a contour running from P to P ′. Now taking the same
steps as Mathur, we get∫

D

d2uf̄α (ū) fβ (u)

= i

2

[
J

C1
αβ + Ī S1

α I
C1
β + J

S1
αβ − Ī C2

α I
S2
β − J

C2
αβ − J

S2
αβ

]
(G17)

= i

2

[
J

C1
αβ − J

C2
αβ + J

S1
αβ − J

S2
αβ − (1 − Mα)−1 Ī C1

α I
C1
β

− (1 − Mβ)−1Ī C2
α I

C2
β + Mα − Mβ

(1 − Mα)(1 − Mβ)
Ī C2
α I

C1
β

]
(G18)

where we used I
C1
β + I

S1
β − I

C2
β − I

S2
β = 0 and I

S1
β = MβI

S2
β ,

and now Mα and Mβ are not equal for the regions Dl between
wj+1 to w′

j+1 (i.e. from radius |η2j | − ε to |η2j+1| − ε) when
πj �= π ′

j , but are otherwise equal. This is not a problem,
because (as previously mentioned) this only gives us an extra
term with a contour at η2j and one at η2j+1, but these give
a vanishing result when one evaluates the dw̄j+1 and dw′

j+1
contour integrals.

The J -terms are however a more difficult problem. We
know that these will cancel as long as wj = w′

j , since then

J
S1
αβ = J

S2
αβ and J

C1
αβ from region Dl is equal to J

C2
αβ from region

Dl+1. However, when wj �= w′
j , there is a branch cut running

between wj+1 and w′
j+1 and the J -term on the two sides of

the cut do not cancel each other. Thus, we are stuck with a J

term integrated around these branch cuts, and no obvious way
to cancel them out.

APPENDIX H: EXPLICIT EXAMPLES OF
ORTHOGONALITY FOR UNMATCHED QUASIPARTICLES

In this appendix, we provide the derivation of the overlap
Eq. (211) for wave functions describing the ν = 1 filled

Landau level with n holes and of the overlap Eq. (212) for wave
functions describing an arbitrary quantum Hall state (that has
a plasma analogy) with one Laughlin-type quasihole.

A. ν = 1 integer quantum Hall state

We first consider the ν = 1 filled Landau level state, which
can be solved exactly. The wave function for one filled Landau
level of N electrons with n holes is

�1(ημ; zi) =
n∏

μ<ν

(ημ − ην)
n∏

μ=1

N∏
i=1

(ημ − zi)

×
N∏

i<j

(zi − zj ) e
− 1

4

n∑
μ=1

|ημ|2− 1
4

N∑
i=1

|zi |2
. (H1)

Taking the inner product of two such wave functions with holes
not necessarily at the same positions, one finds

G(η̄μ,η′
μ) =

∫ N∏
k=1

d2zk�̄1(η̄μ; z̄i)�1(η′
μ; zi)

=
∫ N∏

k=1

d2zk

n∏
μ<ν

[(η̄μ − η̄ν)(η′
μ − η′

ν)]

×
n∏

μ=1

N∏
i=1

[(η̄μ − z̄i)(η
′
μ − zi)]

×
N∏

i<j

|zi − zj |2 e
− 1

4

n∑
μ=1

(|ημ|2+|η′
μ|2)− 1

2

N∑
i=1

|zi |2

= C1

∑
π∈Sn

(−1)π
n∏

μ=1

e− 1
4 (|ηπ(μ)|2+|η′

μ|2−2η̄π(μ)η
′
μ)

= C1(2π )n
∑
π∈Sn

(−1)π
n∏

μ=1

δ2
LLL(ηπ(μ) − η′

μ), (H2)

where C1 is the (unspecified) normalization constant. For
this, we note that one can think of wave function with N

electrons and n holes as one filled Landau level of N + n

particles, which is a Slater determinant state. Thus, the
integral over the N electron coordinates zi gives the 2n-point
particle correlation function, which factorizes into a product
of 2-point functions summed over permutations, as per Wick’s
theorem. Finally, we used the fact that the (normalized) 2-point
function,130

1

2π
e− 1

4 (|z|2+|z′ |2−2z̄z′) = δ2
LLL(z − z′) (H3)

is the lowest Landau level projection of the delta-function, in
the sense that

∫
d2z δ2

LLL(z − z′)f (z)e− 1
4 |z|2 = f (z′)e− 1

4 |z′|2 (H4)
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for any holomorphic function f (z). We also note that

e− 1
4 (|z|2+|z′|2−2z̄z′) = e− 1

4 |z−z′ |2e
1
4 (z̄z′−zz̄′) = e− 1

4 |z−z′ |2ei 1
2 Im[z̄z′],

(H5)

so the two-point function has Gaussian decay with the distance
between z and z′. Hence, we find that

‖�1(ημ; zi)‖2 = C1 + O
(
e−|ημ−ην |2/4�2

B

)
. (H6)

This is a somewhat stronger result than given by the plasma
analogy, which nominally involves O(e−|ημ−ην |/�1 ) corrections.

One could also arrive at the result of Eq. (H2) by noting
that

�(η̄μ,η′
μ) =

∫ N∏
k=1

d2zk

n∏
μ=1

N∏
i=1

[(η̄μ − z̄i)(η
′
μ − zi)]

×
N∏

i<j

|zi − zj |2 e
− 1

2

N∑
i=1

|zi |2
(H7)

is holomorphic in η′
μ, antiholomorphic in ημ, and

�(η̄μ,η′
μ) = �(η̄μ,η′

π(μ)) = �(η̄π(μ),η
′
μ) = �(η̄′

μ,ημ) (H8)

for any π ∈ Sn. By the plasma analogy, we know that
G(η̄μ,ημ) = C1 + O(e−|ημ−ην |/�1 ) and thus can uniquely ob-
tain the result of Eq. (H2), i.e. that

G(η̄μ,η′
μ) =

n∏
μ<ν

[(η̄μ − η̄ν)(η′
μ − η′

ν)]

× e
− 1

4

n∑
μ=1

(|ημ|2+|η′
μ|2)

�(η̄μ,η′
μ)

�(η̄μ,η′
μ) = C1

n∏
μ<ν

[(η̄μ − η̄ν)(η′
μ − η′

ν)]−1

×
∑
π∈Sn

(−1)π
n∏

μ=1

e
1
2 η̄π(μ)η

′
μ, (H9)

where C1 can now be identified as the undetermined constant
from the plasma analogy by using only the plasma analogy
and the analytic properties of �.

B. Laughlin-type quasihole

For the ν = 1/M Laughlin states, Laughlin demonstrated
such an orthogonality for the single quasihole wave function

using the plasma analogy and analyticity.77 Specifically, he
showed that

G(η̄,η′) =
∫ N∏

k=1

d2zk�̄ 1
M

(η̄; z̄i)� 1
M

(η′; zi)

=
∫ N∏

k=1

d2zk

N∏
i=1

[(η̄ − z̄i)(η
′ − zi)]

×
N∏

i<j

|zi − zj |2M e
− 1

4M
(|η|2+|η′|2)− 1

4

N∑
i=1

|zi |2

= C1e
− 1

4M
(|η|2+|η′|2−2η̄η′), (H10)

where C1 = ‖� 1
M

(η; zi)‖2. For this, he noted that, except

for the Gaussian factors exp(− 1
4M

|η|2 − 1
4M

|η′|2), the inner
product is holomorphic in η′ and antiholomorphic in η,
and the plasma analogy indicates that G(η̄,η) = C1. These
properties uniquely determine the result of the inner product.
One similarly has that

1

2πM
e− 1

4M
(|η|2+|η′|2−2η̄η′) = δ2

LLLM
(η − η′) (H11)

is a projection of the δ function into a lowest Landau level with
a re-scaled magnetic length of �

(M)
B = √

M�B , i.e.∫
d2η δ2

LLLM
(η − η′)f (η) e− 1

4M
|η|2 = f (η′)e− 1

4M
|η′|2 (H12)

for any holomorphic function f (η).
The same argument applies to wave functions with one

Laughlin-type quasihole for any state with a plasma analogy
(e.g. the I2 excitation in the MR state). Specifically, one has

G(η̄,η′) =
∫ N∏

k=1

d2zk�̄ 1
M

(η̄; z̄i)� 1
M

(η′; zi)

=
∫ N∏

k=1

d2zk

N∏
i=1

[(η̄ − z̄i)(η
′ − zi)]

× e− 1
4M

(|η|2+|η′|2)|� 1
M

(zi)|2

= C1e
− 1

4M
(|η|2+|η′|2−2η̄η′), (H13)

where � 1
M

(zi) is the ground-state wave function and � 1
M

(η; zi)
the wave function with one Laughlin-type quasihole at η.

It is difficult to generalize these methods of obtaining
explicit overlap results that go beyond the qualitative behavior
obtained in Sec. X for cases that involve multiple Laughlin-
type quasiparticles or different types of quasiparticles.
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Theory (Springer-Verlag Inc., New York, 1997).
60B. Blok and X.-G. Wen, Nucl. Phys. B 374, 615 (1992).
61M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
62B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
63F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
64E. Witten, Commun. Math. Phys. 121, 351 (1989).
65R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
66V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B 240, 312 (1984).
67G. Felder, Nucl. Phys. B 317, 215 (1989).
68S. D. Mathur, Nucl. Phys. B 369, 433 (1992).
69P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 125323

(2008).
70P. Bonderson, A. E. Feiguin, G. Möller, and J. K. Slingerland,
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