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We investigate novel phases that emerge from the interplay of electron correlations and strong spin-orbit
interactions. We focus on describing the topological semimetal, a three-dimensional phase of a magnetic solid,
and argue that it may be realized in a class of pyrochlore iridates (such as Y2Ir2O7) based on calculations using
the LDA + U method. This state is a three-dimensional analog of graphene with linearly dispersing excitations
and provides a condensed-matter realization of Weyl fermions that obeys a two-component Dirac equation. It
also exhibits remarkable topological properties manifested by surface states in the form of Fermi arcs, which
are impossible to realize in purely two-dimensional band structures. For intermediate correlation strengths, we
find this to be the ground state of the pyrochlore iridates, coexisting with noncollinear magnetic order. A narrow
window of magnetic “axion” insulator may also be present. An applied magnetic field is found to induce a
metallic ground state.
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Previously, some of the most striking phenomena in solids,
such as high-temperature superconductivity1 and colossal
magnetoresistance,2 were found in transition-metal systems
involving 3d orbitals with strong electron correlations. Now
it has been realized that in 4d and 5d systems, whose orbitals
are spatially more extended, a regime of intermediate corre-
lation appears. Moreover, they display significant spin-orbit
coupling, which modifies their electronic structure as recently
verified in Sr2IrO4 (Ref. 3). This is a largely unexplored
domain, but already tantalizing new phenomena have been
glimpsed. For example, in the 5d iridium-based magnetic
insulator, Na4Ir3O8 (Ref. 4), a disordered ground state persists
down to the lowest measured temperatures, making it a prime
candidate for a quantum spin liquid.5

It is known that strong spin-orbit interactions can lead to a
novel phase of matter, the topological insulator.6 However, the
bismuth-based experimental realizations uncovered so far have
weak electron correlations. Recently, it was pointed out that
the iridium oxides (iridates) are promising candidates to realize
topological insulators7 and that iridium-based pyrochlores in
particular8 provide a unique opportunity to study the interplay
of Coulomb interactions, spin-orbit coupling, and the band
topology of solids.

The main focus of our work is the pyrochlore iridates,
which have the general formula A2Ir2O7, where A = yttrium
or a lanthanide element. Experiments on these materials
indicate magnetic order.9,10 Thus, the possible phases have
not been treated in the theory of topological insulators, which
assumes time-reversal symmetry. A rather different, but also
unusual phase, the topological semimetal is predicted by our
LSDA + U + SO (where LSDA stands for local-spin-density
approximation and SO stands for spin orbit) calculations in
a range of parameters appropriate to the iridates. This phase
has linearly dispersing excitations at the chemical potential,
analogous to graphene,11 but occurs inside a fully three-
dimensional magnetic solid. The small density of states leads
to a vanishing conductivity at low temperatures. Each mode

in this metal is described by a two-component wave-function
(described by the “Weyl equation,” the two-component analog
of the Dirac equation), describing a point where two bands
touch. The Weyl equation is used in particle physics to describe
the chiral and massless behavior of neutrinos (in limits where
their small mass can be neglected). Hence, we also call it the
“Weyl semimetal.”

Weyl fermions can be assigned a chirality; that is, they are
either left or right handed. These modes cannot be gapped
unless they mix with a fermion of opposite handedness, which
is located at a different point in the Brillouin zone. Thus the
gaplessness of Weyl fermions is absolute provided momentum
is conserved;12 it does not require any fine-tuning or symmetry.
These modes are most robust in systems with magnetic order.
They do not exist at all if both time reversal and inversion
symmetry are present, for example, in bismuth. There, in
contrast, Dirac fermions with four-component wave functions
appear, which are typically gapped.

A key property of the Weyl semimetal phase studied in this
work is its unusual surface states, reminiscent of topological
insulators. Since the bulk fermi surface only consists of a set
of momentum points, surface states can be defined for nearly
every surface momentum and take the shape of “Fermi arcs”
in the surface Brillouin zone that stretch between Weyl points.

The “axion insulator” phase can emerge when the Weyl
points annihilate in pairs as the correlations are reduced. This
phase shows a topological magnetoelectric effect,13 captured
by the magnetoelectric parameter θ = π , whose value is
protected by the inversion symmetry, which is respected in
our system. The name axion insulator refers to the analogy
with the axion vacuum in particle physics.14

In the pyrochlore iridates both the A and the Ir atoms
are located on a network of corner-sharing tetrahedra.15,16

Pioneering experiments17 revealed an evolution of ground-
state properties with increasing radius of the A ion, which is
believed to tune electron correlations. While A = Pr is metal-
lic, A = Y is an insulator at low temperatures. Subsequently,
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi. (1)

Energy is measured from the chemical potential, q = k − k0

and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, �E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin
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zone. If the Fermi surface were slightly above (below) E0,
then the Fermi surfaces would all be particle- (hole)-like, and
the Kohn-Luttinger theorem would not be satisfied.

Inversion symmetry provides useful information about the
materials we study. Inversion about the origin is given by
r → −r; this is a symmetry of many crystals and, in particular,
of the ones we focus on here. Inversion strongly constrains
many physical properties; in particular, it leads to a quantized
magnetoelectric susceptibility (see Sec. III) and can help pin
the Fermi energy exactly at Weyl points. Finally, because
of inversion symmetry, a few states in the band structure
determine many basic properties of a solid. The symmetry
relates crystal momenta ±k. At special momenta, called
TRIMs (time-reversal invariant momenta), which are invariant
under inversion, the states can be labeled by parity eigenvalues
ξ = ±1. These eigenvalues can be used to identify phase
transitions as parameters of the system are changed. Whenever
the set of eigenvalues associated with occupied states changes,
there must be a phase transition. The highest energy level at a
TRIM in the valence band can cross through the lowest energy
level in the conduction band if their parities are different, and
this changes the set of ξ ’s at that TRIM. Hence, the gap passes
through 0. In fact, more is true: The compound cannot be
insulating on both sides of the transition.21 A pair (or an odd
number of pairs) of Weyl points emerge from or are absorbed
into the TRIM after the parities change (see the Appendix for
a derivation in the context of the iridates).

We now turn to results for a particular family of materials,
the pyrochlore iridates, where we argue that these general ideas
are realized.

II. LDA CALCULATION AND MAGNETIC ORDER

We focus here on our numerical ab initio studies of the
compound Y2Ir2O7. We have also done calculations on iridates
with rare earth atoms (Pr ,Nd,SmEu) at the A site. Changing
the A site has essentially no effect except for changing the
appropriate value of U , the interaction parameter.

The strength of the SO coupling is large for Ir 5d electrons
and leads to insulating behavior in Sr2IrO4 (Ref. 3); we need
to take it into account in order to understand the magnetic and
electronic properties.

a) b)a)(a) b)(b)

FIG. 2. (Color online) The pyrochlore crystal structure showing
the Ir corner sharing tetrahedral network and two of the possible
magnetic configurations. (a) The configuration that is predicted
to occur for iridates, with all-in/all-out magnetic order. (b) An
alternative, the 2-in/2-out configuration.

The system contains four iridium atoms inside each unit
cell forming a tetrahedral network as shown in Fig. 2. We
perform our electronic structure calculations based on local
spin density approximation to density functional theory (DFT)
with the full-potential, all-electron, linear-muffin-tin-orbital
(LMTO) method.22 We use a LSDA + U scheme23 to take
into account the electron-electron interaction between Ir 5d
electrons and vary parameter U between 0 and 3 eV for Ir 5d

electrons to see what effects the on-site Coulomb repulsion
would bring to the electronic structure of iridates. In general,
we expect that U can be somewhere between 1 and 2 eV for the
extended 5d states. We use a 24 × 24 × 24 k mesh to perform
Brillouin-zone integration and switch off symmetry operations
in order to minimize possible numerical errors in studies of
various (non-)collinear configurations. We use experimental
lattice parameters9 in all setups.

With only the Heisenberg interaction (and no SO coupling),
spins in the pyrochlore configuration would be geometrically
frustrated, so we search for the proper magnetic configuration
by starting from a large number (12) of different states. The
collinear ones were (i) ferromagnetic, with moment along
(100), (111), (110), or (120) directions, and (ii) antiferromag-
netic with two moments in a tetrahedron along and the other
two pointed oppositely to the directions above; noncollinear
structures were (iii) the all-in/all-out pattern (all moments
point to or away from the centers of the tetrahedron), (iv)
“2-in/2-out” (two moments in a tetrahedron point to the center
of this tetrahedron, while the other two moments point away
from the center, that is, the spin-ice24 configuration), and (v)
“3-in/1-out” magnetic structures. We show several magnetic
configurations in Fig. 2.

We find that the all-in/all-out configuration is the ground
state. In contrast to other magnetic configurations, during the
self-consistent iterations the spins in the all-in/all-out state
retain their initial input direction; indicating a local energy
minimum. This state is consistent with the absence of mag-
netic hysteresis in experiments.9 Since all states considered
were translationally invariant q = 0 states, the possibility of
complex larger q states cannot be ruled out.

This particular order is, in fact, consistent with the predic-
tions of Ref. 25 for half-integer spins with SO coupling on a
pyrochlore lattice, the strongly insulating limit of the present
problem. The Dzyaloshinsky-Moriya interaction (generated
by the SO coupling) removes the frustration of the Heisenberg
antiferromagnet.

Symmetry dictates the form of Dzyaloshinsky-Moriya
interactions except for the sign, which leads to two cases,
direct and indirect Dzyaloshinsky-Moriya. The all-in/all-out
state is the unique ground state for the former while the indirect
Dzyaloshinsky-Moriya ground state is a coplanar state with the
four spins being either antiparallel or orthogonal.25 In our case,
the indirect Dzyaloshinsky-Moriya pattern also has higher
energy than the all-in/all-out state. This correspondence with
the magnetic structure in the strong correlation limit points to
the simplest magnetic phase diagram of one magnetic structure
spanning a range of correlation strengths.

The next-lowest energy configuration is the ferromagnetic
state. Interestingly, the rotation of magnetization does not
cost much energy despite strong SO interactions. The (111)
direction is found to be the lowest ferromagnetic state, but the
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TABLE I. The spin 〈S〉 and orbital 〈O〉 moment (in μB ) and the
total energy Etot per unit cell (in meV) for several selected magnetic
configurations of Y2Ir2O7 as calculated using the LSDA + U + SO
method with U = 1.5 eV. (Etot is defined relative to the ground
state.) The IDM (indirect Dzyaloshinsky-Moriya) is a coplanar
configuration predicted for one sign of D-M interactions in Ref. 25.

Configuration: (001) (111) 2-in/2-out IDM all-in/all-out

〈S〉 0.08 0.10 0.09 0.06 0.13
〈O〉 0.09 0.10 0.07 0.06 0.12
Etot (meV) 5.47 1.30 3.02 2.90 0.00

energy difference between this and the highest energy (001)
state is just about 4.17 meV per unit cell. Also, all of them
produce a considerable net magnetic moment in contrast to
the experiment.9,17 Our findings are summarized in Table I
for a typical value of U = 1.5 eV, and similar results are
found for other values of U in the range from 0 to 3 eV.
Since the energy difference between the ground state and the
other magnetic orderings is small, modest magnetic fields may
induce a transition into the ferromagnetic state.

Similarly, we note that the honeycomb-lattice
Ir compound—Na2IrO3—initially proposed as a
two-dimensional quantum spin Hall insulator,7 was predicted
by LDA + U to be a magnetically ordered Mott phase,26 for
which some recent experimental support has emerged.27

III. ELECTRONIC PHASES

We now discuss electronic properties of iridates that emerge
from our LSDA + U + SO calculations. A variety of phases
ranging from normal metal at small U to Weyl semimetallic
at intermediate U ∼ 1.5 eV and Mott insulating phase at U

above 2 eV with noncollinear magnetic all-in/all-out ordering
are predicted. Since pressure or chemical substitution may
alter the screening and the electronic bandwidth resulting in
changes in U , we expect that these phases can be observed
experimentally in iridates.

The basic features of the electronic structure can be
understood by noting that each Ir4+ is coordinated by six O2−
forming approximately an octahedron. The Ir 5d orbitals split
into an eg doublet and t2g triplet. Due to the extended nature
of the Ir 5d orbital, the crystal-field splitting between t2g and
eg is large with the eg band to be 2 eV higher than the Fermi
level. The bands near the Fermi level are mainly contributed
by Ir t2g with some mixing with O 2p states. SO coupling has a
considerable effect on these t2g states: It lifts their degeneracy
and produces a quadruplet with Jeff = 3/2 and a higher-energy
Kramers doublet with Jeff = 1/2 (Ref. 3). The five d electrons
of Ir4+ fill the quadruplet, and half fill the remaining Jeff = 1/2
orbital. The latter can also be viewed as a �7 doublet, from the
strong SO limit. Thus, given the four Ir atoms in the unit cell,
we expect eight energy bands near the Fermi energy, which
are at half filling.

The precise behavior of these electronic states depends on
the magnetic configuration. Our band structure calculations
for collinear alignments of moments show metallic bands,
a result that disagrees with the insulating behavior found
experimentally. Increasing U cannot solve this problem, and

FIG. 3. (Color online) Evolution of electronic band structure of
Y2Ir2O7 shown along high-symmetry directions, calculated using the
LSDA + U + SO method with three different values of U equal
(a) 0 (metallic), (b) 1.5 eV, and (c) 2 eV (insulator with small
gap). The Weyl point that is present in case (b), is not visible along
high-symmetry lines.

even a quite large U (= 5 eV) cannot open a band gap for
the collinear configuration. On the other hand, we find that the
electronic states for the noncollinear all-in/all-out magnetic
state depend strongly on the actual value of U used in the
calculation. In particular, we predict that when U is less than
1 eV, the ground state is a normal metal while if U is about
1.8 eV or larger, we find the band structure to be insulating
with an energy gap whose value depends on U .

Weak correlations. An interesting recent study proposed
a tight-binding model for the nonmagnetic phase of the
iridates, which was a topological insulator,8 a natural phase
on the pyrochlore lattice.8,28 Our LDA studies of the realistic
electronic structures contradict this; instead, we find a metallic
phase [see Fig. 3(a)]. One can understand the discrepancy
by analyzing the structure of energy levels at the � point
(Brillouin zone center) for the low-energy eight-band complex,
composed of the four Jeff = 1/2 states. In Ref. 8, these appear
with degeneracies 4, 2, 2 (in order of increasing energy),
which after filling with four electrons results in an insulating
band structure. Our study of the nonmagnetic state using
the LDA + SO method (with no U ) results, on the other
hand, in the sequence 2, 4, 2 of degeneracies, which is
necessarily metallic assuming four levels are filled. A similar
sequence of degeneracies was found in Ref. 19, where the
simplified tight-binding model of Ref. 8 was extended to
account for the nonoctahedral oxygen environment. It was
shown that changing the geometry tunes one between the
two degeneracy sequences. This effect is automatically built
into our LDA calculations since the microscopic structure
is used. According to Ref. 19, the noninsulating 2, 4, 2
sequence could ultimately lead to a topological insulator via a
symmetry-breaking structural transition or uniaxial pressure.

Strong correlations and the Mott limit. When U > 1.8 eV,
an insulating band structure is obtained with the all-in/all-out
magnetic configuration, as shown in Fig. 3(c). Indeed, the
band structure remains qualitatively similar on increasing U

to large values, where a site-localized moment is expected as
in a Mott insulator. This can be further verified by calculating
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FIG. 4. (Color online) Semimetallic nature of the state at U =
1.5 eV according to the LSDA + U + SO method. (a) Calculated
energy bands in the plane Kz = 0 with band parities shown; (b) energy
bands in the plane kz = 0.6π/a, where a Weyl point is predicted to
exist. The lighter-shaded plane is at the Fermi level. (c) Locations
of the Weyl points in the three-dimensional Brillouin zone (Ref. 29)
(nine are shown, indicated by the circled + or − signs).

the parity eigenvalues. Note that all the magnetic structures
considered above preserve inversion (or parity) symmetry. In
the Brillouin zone [see Fig. 4(c)] of the fcc lattice the TRIMs
correspond to the � = (0, 0, 0), and X, Y,Z [=2π/a(1, 0, 0)
and permutations] points and four L points [π/a(1, 1, 1) and
equivalent points]. The TRIM parities of the top four occupied
bands, in order of increasing energy, are shown in Table II.
Note that, although by symmetry all L points are equivalent,
the choice of inversion center at an iridium site singles out one
of them, L′. With that choice the parities at L′ and the other
three L points are the opposite of one another. The parities
of the all-in/all-out state remains unchanged above U > Uc ∼
1.8 eV and is shown in the top row under U = 2 eV. This
pattern of parities helps to understand the nature of the phase:
The parities are the same as for a site-localized picture of this
phase, where each site has an electron with a fixed moment
along the ordering direction. Due to the possibility of such a
local description of this magnetic insulator, we term it the Mott
phase.

Intermediate correlations. For the same all-in/all-out mag-
netic configuration, at smaller U = 1.5 eV, the band structure

TABLE II. Calculated parities of states at TRIMs for several
electronic phases of the iridates. Only the top four filled levels are
shown, in order of increasing energy.

Phase � X, Y,Z L′ L (×3)
U = 2.0, all-in (Mott) ++++ + − − + + − − − −+++
U = 1.5, all-in (Dirac) ++++ + − − + + − − + −++ −

along high-symmetry lines [see Fig. 3(b)] also appears to be
insulating, and at first sight one may conclude that this is
an extension of the Mott insulator. However, a closer look
using the parities reveals that a phase transition has occurred.
At the L points, an occupied level and an unoccupied level
with opposite parities have switched places. It can readily
be argued that only one of the two phases adjacent to the
U where this crossing happens can be insulating (see the
Appendix). Since the large U phase is found to be smoothly
connected to a gapped Mott phase, it is reasonable to assume
the smaller U phase is the noninsulating one. This is also
borne out by the LSDA + U + SO band structure. A detailed
analysis perturbing about this transition point (also in the k · p
subsection) allows us to show that this phase is expected to be
a Weyl semimetal with 24 Weyl nodes in all.

Indeed, in the LSDA + U + SO band structure at U =
1.5 eV, we find a three-dimensional Dirac crossing located
within the �-X-L plane of the Brillouin zone. This is illustrated
in Fig. 4 and corresponds to the k vector (0.52,0.52,0.3)2π/a.
There also are five additional Weyl points in the proximity of
the point L related by symmetry (three are just inside each of
the two opposite hexagonal faces of the Brillouin zone, which
are identified with one another) When U increases, these points
move toward each other and annihilate all together at the L

point close to U = 1.8 eV. This is how the Mott phase is born
from the Weyl phase. Since we expect that for Ir 5d states the
actual value of the Coulomb repulsion should be somewhere
within the range 1 eV < U < 2 eV, we thus conclude that the
ground state of the Y2Ir2O7 is most likely the semimetallic
state with the Fermi surface characterized by a set of Weyl
points but in proximity to a Mott insulating state. Both phases
can be switched to a normal metal if Ir moments are collinearly
ordered by a magnetic field.

Possible axion insulator phase. At lower values of U a
second gapped phase with special properties may appear. This
phase can be characterized in terms of its magnetoelectric re-
sponse. Recall that in the presence of time-reversal symmetry,
topological insulators are nonmagnetic band insulators with
protected surface states.6 When the surface states are elimi-
nated by adding, for example, magnetic moments only on the
surface, a quantized magnetoelectric response is obtained:13

A magnetic field induces a polarization, P = θ e2

2πh
B, with the

coefficient θ only defined modulo 2π . The values of θ are
limited by time reversal, which transforms θ → −θ . Apart
from the trivial solution θ = 0, the ambiguity in the definition
of θ allows also for θ = π , and this occurs in topological
insulators θ = π . In magnetic insulators, θ is in general no
longer quantized.30 However, when inversion symmetry is
retained, θ is quantized again. An insulator with the value
θ = π may be termed an axion insulator.

What is the appropriate description of the pyrochlore
iridates? As described elsewhere,21 the condition for θ = π

insulators with only inversion symmetry, when deduced from
the parities, turns out to be the same as the Fu-Kane formula,
for time-reversal symmetric insulators;31,32 that is, if the total
number of filled states of negative parity at all TRIMs taken
together is twice an odd integer, then θ = π . Otherwise, θ = 0.

For the Mott insulator, at large U , the charge physics must
be trivial and so we must have θ = 0. Next, since the Weyl
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (kx,ky) (and arbitrary
kz) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (λ,kz) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (c) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

semimetal phase is gapless in the bulk, θ is ill defined. As
U is lowered further, the Weyl points shift, with nodes of
opposite chirality approaching one another. If at lower values
of U the Weyl points meet and annihilate again, the resulting
phase will have θ = π . The parities will be the same as in the
Weyl semimetal, since the Weyl points would have annihilated
away from TRIMs. From Table II we can see that indeed
this corresponds to θ = π , since there are 14 negative-parity
filled states, while the Mott insulator corresponds to θ = 0,
having 12 negative-parity filled states. Indeed, the presence
of the intervening Weyl phase can be deduced from the
requirement that θ has to change between these two quantized
values. Similarly, when time-reversal symmetry is present but
inversion absent, a gapless phase must intervene when a change
in topology occurs.33

Unfortunately, within our LSDA + U + SO calculation, a
metallic phase intervenes on lowering U � 1.0 eV, before the
Weyl points annihilate to give the axion insulator. We point
out this possibility nevertheless, since LDA systematically
underestimates the stability of such gapped phases. Moreover,
it provides an interesting example of a pair of insulators, a Mott
insulator and a smaller U “Slater” insulator, with the same
magnetic order, but which are nevertheless different phases,
which cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semimetal. In the semimetal phase, there
are 24 Weyl points. Near each L point there are 3 Weyl
points related by the threefold rotation, which have the same
chiral charge, as well as the inverse images with opposite
chirality. Thus, there are 24 Weyl points, where the valence
and conduction band line up, in the whole Brillouin zone.
Since all are at the same energy by symmetry, the chemical
potential must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of magnitude
smaller than in graphene. We briefly note that this Weyl
semimetal is a gapless state with power-law forms for various
properties, which will be described in more detail elsewhere.
For example, the density of states N (E) ∝ E2. The small
density of states makes this an insulator at zero temperature
and frequency (as seen experimentally for Y2Ir2O7). The

ac conductivity for a single node with isotropic velocity
v in the free particle limit of the clean system is σ (	) =
e2

12h

|	|
v

. Furthermore, novel magnetoconductance phenomena
are expected in Weyl semimetals, as a consequence of the
Adler-Bell-Jackiw anomaly of Weyl fermions,34 which will
be discussed in future work. Additionally, a Weyl metal must
automatically have surface states, as explained in the next
section.

IV. SURFACE STATES

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(k) = ∑N

n=1 i〈unk|∇k|unk〉, where N is the
number of occupied bands. As usual, the Berry flux is defined
as F = ∇k × A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x,k0y) of each
Weyl point.

The argument is based on the band topology around the
Weyl points. Consider a curve in the surface Brillouin zone
encircling the projection of the bulk Weyl point, which is tra-
versed counterclockwise as we vary the parameter λ : 0 → 2π ;
kλ = [kx(λ),ky(λ)] [see Fig. 5(a)]. We show that the energy ελ

of a surface state at momentum kλ crosses E = 0 at some value
of λ. Consider H (λ,kz) = H (kλ,kz), which can be interpreted
as the gapped Hamiltonian of a two-dimensional system (with
λ and kz as the two momenta). The two periodic parameters
λ, kz define the surface of a torus in momentum space. The
Chern number of this two-dimensional band structure is given
by the Berry curvature integration: 1

2π

∫
Fdkzdλ, which, by

the Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by summing
the chiralities of the enclosed Weyl nodes. Consider the case
when the net chirality is unity, corresponding to a single
enclosed Dirac node. Then, the two-dimensional subsystem
is a quantum Hall insulator with unit Chern number. When the
system is given a boundary at z = 0, we expect a chiral edge
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state for this subsystem [see Fig. 5(b)]. Hence, this surface state
crosses zero energy somewhere on the surface Brillouin zone
kλ0 . Such a state can be obtained for every curve enclosing
the Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl point
momenta [see Fig. 5(c)]. An arc beginning on a Weyl point
of chirality c has to terminate on a Weyl point of the opposite
chirality. Clearly, the net chirality of the Weyl points within
the (λ, kz) torus was a key input in determining the number of
these states. If Weyl points of opposite chirality line up along
the kz direction, then there is a cancellation and no surface
states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a Dirac
(or Weyl) node is found to occur at the momentum
(0.52,0.52,0.30)2π/a (in the coordinate system aligned with
the cubic lattice of the crystal) and equivalent points (see
Fig. 4). They can be thought of as occurring on the edges of a
cube, with a pair of Dirac nodes of opposite chirality occupying
each edge, as, for example, the points (0.52,0.52,0.30)2π/a

and (0.52,0.52,−0.30)2π/a. For the case of U = 1.5 eV, the
sides of this cube have the length 0.52(4π/a). Thus, the (111)
and (110) surfaces would have surface states connecting the
projected Weyl points [see Fig. 6 for the (110) surface states
and the theoretical expectation for the (111) surface]. If, on
the other hand, we consider the surface orthogonal to the (001)
direction, Weyl points of opposite chirality are projected to the
same surface momentum along the edges of the cube. Thus,
no protected states are expected for this surface.

To verify these theoretical considerations, we have con-
structed a tight-binding model which has features seen in our
electronic structure calculations for Y2Ir2O7. The calculated
(110) surface band structure for the slab of 128 atoms together
with the sketch of the obtained Fermi arcs is shown in Fig. 6.
This figure shows Fermi arcs from both the front and the back
face of the slab, so there are twice as many arcs coming out of
each Weyl point as predicted for a single surface.

The tight-binding model considers only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms form
a tetrahedral network (see Fig. 2), each pair of nearest-
neighboring atoms forms a corresponding σ -like bond whose
hopping integral is denoted as t and another two π -like
bonds whose hopping integrals are denoted as t ′. To sim-
ulate the appearance of the Weyl point it is essential to
include next-nearest-neighbor interactions between t2g orbitals
which are denoted as t ′′. With the parameters t = 0.2, t ′ =
0.5t , t ′′ = −0.2t , the value of the on-site spin-orbit coupling
equal to 2.5t and the applied on-site “Zeeman” splitting of 0.1t

between states parallel and antiparallel to the local quantization
axis of the all-in/all-out configuration we can roughly model
the bulk Weyl semimetal state; when this model is solved on a
lattice with a boundary, the surface states shown in the figure
appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the low-
temperature state of Y2Ir2O7 (and also possibly of A =
Eu, Sm, and Nd iridates) is a Weyl semimetal, with all-
in/all-out magnetic order. This is broadly consistent with the

FIG. 6. (Color online) Surface states. The calculated surface
energy bands correspond to the (110) surface of the pyrochlore
iridate Y2Ir2O7. A tight-binding approximation has been used to
simulate the bulk band structure with three-dimensional Weyl points
as found by our LSDA + U + SO calculation. The plot corresponds
to diagonalizing 128 atoms slab with two surfaces. The upper inset
shows a sketch of the deduced Fermi arcs connecting projected
bulk Weyl points of opposite chirality. The inset below sketches the
theoretically expected surface states on the (111) surface at the Fermi
energy (surface band structure not shown for this case).

interconnection between insulating behavior and magnetism
observed experimentally.9,10 It is also consistent with being
proximate to a metallic phase on lowering the correlation
strength, such as A = Pr (Ref. 17). In the clean limit, a three-
dimensional Weyl semimetal is an electrical insulator and can
potentially account for the observed electrical resistivity. The
noncollinear magnetic order proposed has Ising symmetry
and could undergo a continuous ordering transition. The
observed “spin-glass”-like magnetic signature could perhaps
arise from defects like magnetic domain walls. A direct probe
of magnetism is currently lacking and would shed light on this
key question. At lower values of U , the system may realize
an “axion insulator” phase with a magnetoelectric response
θ = π , although within our calculations (which are known to
underestimate stability of such gapped phases) a Fermi surface
appears before this happens.

In summary, a theoretical phase diagram for the physical
system is shown in Fig. 1 as a function of U and applied
magnetic field, which leads to a metallic state beyond a critical
field. The precise nature of these phase transformations is not
addressed in the present study.

Note: An experimental paper35 appeared recently in which
it is found that the spins in a related compound (Eu2Ir2O7) form
a regularly ordered state rather than a spin-glass, consistent
with our results. It would be interesting to learn whether this
compound is a Weyl metal or not.
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APPENDIX: EFFECTIVE k · p THEORY AND
INTERVENING WEYL SEMIMETAL PHASE

We have been using inversion symmetry which allows us
to track wave-function parities of occupied states at TRIMs.
Near electronic phase transitions where these parities change, a
low-energy k · p theory helps to understand qualitative features
of the neighboring phases. Consider a pair of states at the L

point which have opposite parity and cross each other as we
tune U . We want to understand what happens to the band
structure.

The L point has three symmetries which do not change its
crystal momentum. First, of course, is inversion, and we can
label states by the eigenvalues P = ±1. The second is 120◦
rotations about a line joining L-�. There are three possible
eigenvalues which we call s = −1/2, 1/2, 3/2. So any state
at this point can be labeled by {P, s}. The third symmetry
is described below. Now consider writing the effective 2 × 2
Hamiltonians for the pair of states just above and below the
Fermi energy:

(i) At the L point. Since we have inversion symmetry and
the two states have distinct eigenvalues P = ±1, they cannot
mix. Hence, the effective Hamiltonian is

H (L) = �σz,

where the coefficient � changes sign when the levels pass
through each other. (Parity is represented by σz.) For the system
in question, � changes from positive to negative as U increases
(below the transition, the occupied state is odd according to
Table I). Note that the s quantum number of the two levels is
irrelevant here.

(ii) Along the �-L direction. We still have the quantum
number s, but not P , since inversion changes the momentum.
Denoting by qz the deviation of the momentum along this
line from the L point, we have two cases. If the s quantum
number of the two levels is different, they still cannot mix,

so the effective Hamiltonian is H = (� + q2
z

2m1
)σz. Now, when

m1� < 0 there are two values qz = ±√−2m1�, where there

are nodes along this �-L line. One can see such crossings
between other pairs of modes, which must have different spins,
in the data [Figs. 3(b) and 3(c)]. However, if the states have the
same s quantum number they can mix, once you move away
from L. This is the case for the levels that switch places in the
transition we are interested in, the one near U = 1.8 eV in our
study of Y2Ir2O7. Now the effective Hamiltonian could be

H (� − L) =
(

� + q2
z

2m1

)
σz + βqzσy.

Now the spectrum is E = √
(q2

z − |�|)2 + q2
z , for � < 0, so

despite a level crossing there is no node along the �-L line for
any value of �.

(iii) General point in BZ. In the latter case, does this mean
there are no Dirac points? No, we just need to move off
the �-L line. Let the deviation be q⊥, a 2 vector. The fact
that the two levels have opposite parity means we need an
odd function of q⊥ to induce a matrix element between the
levels. Also, the rotation transforms q⊥ as a vector but does
not affect σx and σy (the two-component wave function is
not an ordinary spinor since both components have the same
“spin” s). Consequently, only the combinations q3

⊥ cos 3θ and
q3

⊥ sin 3θ , which are invariant under the rotation, can appear in
the Hamiltonian. Here θ is the angle between q⊥ and the plane
containing �-L-K (see Fig. 4); thus, the allowed form for the
q⊥ coupling is �H = c1q

3
⊥ cos 3θσy + c2q

3
⊥ sin 3θσx . (Note

that the coupling of the cos and sin to σy and σx , respectively,
is dictated by a third symmetry of the all-in/all-out magnetic
order: namely, reflection in the �-L-K plane followed by time
reversal. We adjust the phases so that both states have an
eigenvalue of +1 for this antiunitary transformation.) Putting

this all together with an additional effective mass term q2
⊥

2m2
σz,

we have the effective Dirac Hamiltonian near the L point:

H (q) =
(

� + q2
z

2m1
+ q2

⊥
2m2

)
σz + (βqz + c1q

3
⊥ cos 3θ )σy

+ c2q
3
⊥ sin 3θσx.

Note that this has the form A(q)σz + B(q)σy + C(q)σx . For a
node, A = B = C = 0. According to the electronic structure
calculations for Y2Ir2O7, m2 < 0 and m1 > 0. The Dirac nodes
then are determined by (i) C = 0 → θ = pπ/3 and (ii) using
this, B = 0 → qz = ±c1q

3
⊥/β, depending on whether we look

at p = odd or p = even. Finally, using these relations we have
for the A = 0 equation:

� + c2
1

q6
⊥

2β2m1
− q2

⊥
2|m2| = 0.

For small � there is a small solution; thus, q2
⊥ ≈ 2|m2|�.

Note that this has a solution only for � > 0, that is, before the
gap gets inverted at the L point on increasing U . Thus, in this
scenario, there is a Weyl point only in the small U phase. These
Weyl points are arranged as in Fig. 4. If m2 is positive, there
is a transition from the θ = π magnetic axion insulator to the
Weyl semimetal on increasing U , contradicting its evolution
into a Mott insulator.
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