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We analyze the ordered state of nuclear spins embedded in an interacting two-dimensional electron gas
(2DEG) with Rashba spin-orbit interaction (SOI). Stability of the ferromagnetic nuclear-spin phase is governed
by nonanalytic dependences of the electron spin susceptibility χij on the momentum (q̃) and on the SOI coupling
constant (α). The uniform (q̃ = 0) spin susceptibility is anisotropic (with the out-of-plane component χzz being
larger than the in-plane one χxx by a term proportional to U 2(2kF )|α|, where U (q) is the electron-electron
interaction). For q̃ � 2m∗|α|, corrections to the leading U 2(2kF )|α| term scale linearly with q̃ for χxx and are
absent for χzz. This anisotropy has important consequences for the ferromagnetic nuclear-spin phase: (i) the
ordered state—if achieved—is of an Ising type and (ii) the spin-wave dispersion is gapped at q̃ = 0. To second
order in U (q), the dispersion is a decreasing function of q̃, and anisotropy is not sufficient to stabilize long-range
order. However, renormalization in the Cooper channel for q̃ � 2m∗|α| is capable of reversing the sign of the q̃

dependence of χxx and thus stabilizing the ordered state. We also show that a combination of the electron-electron
and spin-orbit (SO) interactions leads to a new effect: long-wavelength Friedel oscillations in the spin (but not
charge) electron density induced by local magnetic moments. The period of these oscillations is given by the SO
length π/m∗|α|.
DOI: 10.1103/PhysRevB.85.115424 PACS number(s): 71.10.Ay, 71.10.Pm, 75.40.Cx

I. INTRODUCTION

Spontaneous nuclear spin polarization in semiconductor
heterostructures at finite but low temperatures has recently
attracted a considerable attention both on the theoretical1–4

and experimental5 sides. Apart from a fundamental interest
in the new type of a ferromagnetic phase transition, the
interest is also motivated by an expectation that spontaneous
polarization of nuclear spins should suppress decoherence in
single-electron spin qubits caused by the hyperfine interaction
with the surrounding nuclear spins,1,2 and ultimately facilitate
quantum computing with single-electron spins.6,7

Improvements in experimental techniques have lead to
extending the longitudinal spin relaxation times in semicon-
ductor quantum dots (QDs) to as long as 1 s.8–10 The deco-
herence time in single electron GaAs QDs has been reported
to exceed 1 μs in experiments using spin-echo techniques
at magnetic fields below 100 mT,11,12 whereas a dephasing
time of GaAs electron-spin qubits coupled to a nuclear bath
has lately been measured to be above 200 μs.13 Still, even
state-of-the-art dynamical nuclear polarization methods14–18

allow for merely up to 60% polarization of nuclear spins,18

whereas polarization of above 99% is required in order to
extend the electron spin decay time only by one order of
magnitude.17 Full magnetization of nuclear spins by virtue
of a ferromagnetic nuclear spin phase transition (FNSPT), if
achieved in practice, promises a drastic improvement over
other decoherence reduction techniques.

The main mechanism of the interaction between nuclear
spins in the presence of conduction electrons is the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction.19 The effective
Hamiltonian of the RKKY interaction between on-site nuclear
spins of magnitude I ,

HRKKY = −1

2

∑
r,r′

J ij (r,r′)I i(r)I j (r′), (1.1)

is parameterized by an effective exchange coupling

J ij (r,r′) = A2

4n2
s

χ ij (r,r′), (1.2)

where A is the hyperfine coupling constant, ns is the number
density of nuclear spins, and

χij (r,r′) = −
∫ 1/T

0
dτ 〈TτS

i(r,τ )Sj (r′,0)〉 (1.3)

is the (static) correlation function of electron spins. [Hereafter,
we will refer to χij (r,r′)—and to its momentum-space Fourier
transform—as to “spin susceptibility,” although it is to be
understood that this quantity differs from the thermodynamic
susceptibility, defined as a correlation function of electron
magnetization, by a factor of μ2

B, where μB is the Bohr
magneton.] It is worth emphasizing that χij (r,r′) contains
all the effects of the electron-electron interaction;1,2 this
circumstance has two important consequences for the RKKY
coupling. First, the electron-electron interaction increases
the uniform spin susceptibility, which should lead to an
enhancement of the critical temperature of the FNSPT, at least
at the mean-field level. Second, stability of the nuclear-spin
ferromagnetic order is controlled by the long-wavelength
behavior of the magnon dispersion ω(q̃) which, in its turn,
is determined by χij (q̃) at q̃ → 0. In a spin-isotropic and
translationally invariant system,

ω(q̃) = A2

4ns

I [χ (0) − χ (q̃)], (1.4)

with χij = δijχ , while the magnetization is given by

M(T ) = μNI

[
ns −

∫
q̃∈BZ

dDq̃

(2π )D
1

eω(q̃)/T − 1

]
, (1.5)
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where μN is the nuclear-spin magneton (we set kB = h̄ = 1
throughout the paper). The second term in Eq. (1.5) describes
a reduction in the magnetization due to thermally excited
magnons. In a free two-dimensional electron gas (2DEG), χ (q̃)
is constant for q̃ � 2kF , and thus the magnon contribution to
M(T ) diverges in the q̃ → 0 limit, which means that long-
range order (LRO) is unstable. However, residual interactions
among the Fermi-liquid quasiparticles lead to a nonanalytic
behavior of the spin susceptibility; for q̃ � kF , χ (q̃) = χ (0) +
Cq̃, where both the magnitude and the sign of C depend on
the strength of the electron-electron interaction.20,21 In two
opposite limits, i.e., at weak coupling and near the Stoner
instability,22 the prefactor C is positive which, according to
Eqs. (1.4) and (1.5), means that LRO is unstable. However, C is
negative [and thus the integral in Eq. (1.5) is convergent] near
a Kohn-Luttinger superconducting instability;3,23 also, in a
generic Fermi liquid with neither strong nor weak interactions,
C is likely to be negative due to higher-order scattering
processes in the particle-hole channel.24–26

The spin-wave-theory argument presented above is sup-
ported by the analysis of the RKKY kernel in real space. A
linear-in-q̃ term in χ (q̃) corresponds to a dipole-dipole like,
1/r3 term in χ (r) (see Sec. III). If C > 0, the dipole-dipole
interaction is repulsive, and the ferromagnetic ground state is
unstable and vice versa, if C < 0, the dipole-dipole attraction
stabilizes the ferromagnetic state.

It is worth noting here that even finiteness of the magnon
contribution to the magnetization does not guarantee the
existence of LRO. Although the Mermin-Wagner theorem27 in
its original formulation is valid only for sufficiently short-range
forces and thus not applicable to the RKKY interaction, it
has recently been proven28 that magnetic LRO is impossible
even for the RKKY interaction in D � 2. From the practical
point of view, however, the absence of LRO in 2D is not
really detrimental for suppression of nuclear-spin induced
decoherence. Indeed, nuclear spins need to be ordered within
the size of the electron qubit (a double QD system formed by
gating a 2DEG) as well as its immediate surrounding such that
there is no flow of magnetization. Since fluctuations grow only
as a logarithm of the system size in 2D, it is always possible
to achieve a quasi-LRO at low enough temperatures and on a
scale smaller that the thermal correlation length. In addition,
spin-orbit interaction (SOI)—which is the main subject of this
paper, see below—makes a long-range order possible even
in 2D.28

The electron spin susceptibility in Eq. (1.4) was assumed to
be at zero temperature. First, since the nuclear spin temperature
is finite, the system as a whole is not in equilibrium.
However, a time scale associated with “equilibration” is
sufficiently long to assume that there is no energy transfer
from the nuclear- to electron-spin system. Second, if the
electron temperature is finite, the linear q̃ scaling of χ (q̃)
is cut off at the momentum of order T/vF ≡ 1/LT . For
q̃ � 1/LT , χ (T ,q̃) ∝ T + O(v2

F q̃2/T ) such that ω(q̃) ∝ q̃2

and, according to Eq. (1.5), spin waves would destroy LRO.
However, at low enough temperatures, the thermal length LT

is much larger than a typical size of the electron qubit LQ. (For
example, LT ∼ 1 mm at T ∼ 1 mK.) Therefore q̃ � 1/LQ �
1/LT = T/vF and, indeed, the electron temperature can be
assumed to be zero.

In practically all nuclear-spin systems of current interest,
such as GaAs or carbon-13 nanotubes, spin-orbit interaction
(SOI) plays a vital role. The main focus of the paper is the
combined effect of the electron-electron and spin-orbit (SO)
interactions on the spin susceptibility of 2DEG and, in partic-
ular, on its q̃ dependence, and thus on the existence/stability
of the nuclear-spin ferromagnetic order.

The interplay between the electron-electron and SOIs is
of crucial importance here. Although the SOI breaks spin-
rotational invariance and thus may be expected to result in
an anisotropic spin response, this does not happen for the
Rashba and Dresselhaus SOIs alone: the spin susceptibility
of free electrons is isotropic [up to exp(−EF /T ) terms]
as long as both spin-orbit-split subbands remain occupied.4

The electron-electron interaction breaks isotropy, which can
be proven within a Fermi-liquid formalism generalized for
systems with SOI.29 Specific models adhere to this general
statement. In particular, χzz > χxx = χyy for a dense electron
gas with the Coulomb interaction.30

In this paper, we analyze the q̃ dependence of the
spin susceptibility in the presence of the SOI. The natural
momentum-space scale introduced by a (weak) Rashba SOI
with coupling constant α (|α| � vF ) is the difference of the
Fermi momenta in two Rashba subbands:

qα ≡ 2m∗|α|, (1.6)

where m∗ is the band mass of 2DEG. Accordingly, the
dependence of χij on q̃ is different for q̃ above and below
qα; in the latter case, it is also different for the out-of-plane
and in-plane components. To second order in electron-electron
interaction with potential U (q), the out-of-plane component is
independent of q̃ for q̃ � qα:

δχzz(q̃,α) = 2χ0u
2
2kF

|α|kF

3EF

. (1.7a)

On the other hand, the in-plane component scales linearly with
q̃ even for q̃ � qα:

δχxx(q̃,α) = δχyy(q̃,α)

= χ0u
2
2kF

( |α|kF

3EF

+ 4

9π

vF q̃

EF

)
, (1.7b)

In Eqs. (1.7a) and (1.7b), uq ≡ m∗U (q)/4π , kF is the Fermi
momentum, EF = k2

F /2m∗ is the Fermi energy, χ0 = m∗/π
is the spin susceptibility of a free 2DEG, and δχij denotes a
nonanalytic part of χij . For qα � q̃ � kF , the spin suscepti-
bility goes back to the result of Ref. 20 valid in the absence of
the SOI:

δχij (q̃,α = 0) = δij

2

3π
χ0u

2
2kF

vF q̃

EF

. (1.8)

Note that the subleading term in q̃ in Eq. (1.7b) differs by a
factor of 2/3 from the leading term in q̃ in Eq. (1.8). There
is no contradiction, however, because Eqs. (1.8) and (1.7b)
correspond to the regions of q̃ � qα and q̃ � qα , respectively.

Equations (1.7a) and (1.7b) show that the uniform spin
susceptibility is anisotropic: δχzz(0,α) = 2δχxx(0,α). This
implies that the RKKY coupling is stronger if nuclear spins
are aligned along the normal to the 2DEG plane, and thus
the nuclear-spin order is of the Ising type. In general, a 2D
Heisenberg system with anisotropic exchange interaction is
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FIG. 1. (Color online) A normalized dispersion of the out-of-
plane spin-wave mode ω̃(q̃) = ω(q̃)/(A2Iχ0/4ns) as a function
of the momentum. To second order in interaction (lower curve)
ω(q̃) is necessarily negative for m|α| � q̃ � kF , and thus LRO is
unstable. Solid parts of the curves corresponds to actual calculations;
dashed parts are interpolations between various asymptotic regimes.
Renormalization effects in the Cooper channel reverse the slope of
ω(q̃) (upper curve) and stabilize LRO.

expected to have a finite-temperature phase transition.31 In an
anisotropic case, the dispersion of the out-of-plane spin-wave
mode is given by2,32

ω(q̃) = A2

4ns

I [χzz(0) − χxx(q̃)], (1.9)

with q̃ ⊥ ẑ. Ising-like anisotropy implies a finite gap in the
magnon spectrum. In our case, however, the situation is
complicated by the positive slope of the linear q̃ dependence
of the second-order result for χxx(q), which according to
Eq. (1.9) translates into ω(q̃) decreasing with q̃. Combining
the asymptotic forms of χij from Eqs. (1.7a), (1.7b), and
(1.8) together, as shown in Fig. 1, we see that ω(q̃) is
necessarily negative in the interval qα � q̃ � kF , and thus
LRO is unstable. Therefore anisotropy alone is not sufficient to
ensure the stability of LRO: in order to reverse the sign of the q̃

dependence, one also needs to invoke other mechanisms, aris-
ing from higher orders in the electron-electron interaction. We
show that at least one of these mechanisms—renormalization
in the Cooper channel—is still operational even for q̃ � qα

and capable of reversing the sign of the q̃ dependence is the
system is close to (but not necessarily in the immediate vicinity
of) the Kohn-Luttinger instability.

We note that the dependences of δχij on q̃ in the presence
of the SOI is similar to the dependences on the temperature
and magnetic field,4 presented below for completeness:

δχzz(T ,α) = 2χ0u
2
2kF

[ |α|kF

3EF

+ O(T 3)

]
,

δχzz(Bz,α) = 2χ0u
2
2kF

[ |α|kF

3EF

+ O
(
�2

z

)]
,

(1.10a)

δχxx(T ,α) = χ0u
2
2kF

[ |α|kF

3EF

+ T

EF

+ O(T 3)

]
,

δχxx(Bx,α) = χ0u
2
2kF

( |α|kF

3EF

+ 16

3π

|�x |
EF

)
.

Here, �i = gμBBi/2 and T ,�i � |α|kF . As Eqs. (1.7a),
(1.7b), and (1.10a) demonstrate, while nonanalytic scaling of
δχzz with all three variables (q̃, T , B) is cut off by the scale
introduced by SOI, scaling of δχxx continues below the SOI
scale. This difference was shown in Ref. 4 to arise from the

differences in the dependence of the energies of particle-hole
pairs with zero total momentum on the magnetic field: while
the energy of such a pair depends on the SO energy for B||ẑ,
this energy drops out for B ⊥ ẑ.

In addition to modifying the behavior of χij for q̃ � qα ,
SOI leads to a new type of the Kohn anomaly arising
due to interband transitions: a nonanalyticity of χij (q̃,α)
at q̃ = qα . The nonanalyticity is stronger in χzz than in
χxx : δχzz(q̃ ≈ qα) ∝ (q̃ − qα)3/2	(q̃ − qα), while δχxx(q̃ ≈
qα) ∝ (q̃ − qα)5/2	(q̃ − qα), where 	(x) is the step function.
Consequently, the real-space RKKY interaction exhibits long-
wavelength oscillations χzz(r) ∝ cos(qαr)/r3 and χxx(r) ∝
sin(qαr)/r4 in addition to conventional Friedel oscillations
behaving as sin(2kF r)/r2. It is worth noting that the long-
wavelength Friedel oscillations occur only in the presence of
both electron-electron and SO interactions.

This paper is organized as follows. In Sec. II, we derive
perturbatively the electron spin susceptibility of interacting
2DEG with the SOI as a function of momentum; in particular,
Secs. II A–II D outline the derivation of all relevant second-
order diagrams, Sec. II E is devoted to Cooper renormalization
of the second order result, and in Sec. II F, we show that, in
contrast to the spin susceptibility, the charge susceptibility
is analytic at small q̃ (as it is also the case in the absence
of SOI). In Sec. III, we derive the real-space form of the
RKKY interaction and show that it exhibits long-wavelength
oscillations with a period given by the SO length 2π/qα .
Details of the calculations are delegated to Appendices A—
D. In particular, the free energy in the presence of the
SOI is derived beyond the random phase approximation in
Appendix D. The summary and discussion of the main results
are provided in Sec. IV.

II. SPIN SUSCEPTIBILITY OF INTERACTING
ELECTRON GAS

Dynamics of a free electron in a two-dimensional electron
gas (2DEG) in the presence of the Rashba spin-orbit interaction
with a coupling strength α is described by the following
Hamiltonian:

H = p2

2m∗ + α(pxσ
y − pyσ

x), (2.1)

where p = (px,py) is the electron momentum of an electron
and σ is a vector of Pauli matrices. The interaction between
electrons will be treated perturbatively. For this purpose, we
introduce a Green’s function:

G(P ) = 1

iωp − H − EF

=
∑

s

�s(p)gs(P ) (2.2)

with

�s(p) = 1

2

[
1 + s

p
(pyσ

x − pxσ
y)

]
(2.3)

and

gs(P ) = 1

iωp − εp − sαp
, (2.4)

where P ≡ (ωp,p) with ωp being a fermionic Matsubara
frequency, εp = p2/2m∗ − EF , and s = ±1 is a Rashba index.
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The nonanalytic part of a spin susceptibility tensor to
second order in electron-electron interaction is given by
seven linear response diagrams depicted in Figs. 2–7. Due
to symmetry of the Rashba SOI, χij (q̃) = χii(q̃)δij and
χxx = χyy �= χzz.

In the following sections, we calculate all diagrams that
contribute to nonanalytic behavior of the out-of-plane, χzz,
and in-plane, χxx = χyy , components of the spin susceptibility
tensor for small external momenta (q̃ � kF ) and at T = 0.

In the absence of SOI, the nonanalytic contributions to the
spin susceptibility from individual diagrams are determined
by “backscattering” or “Cooper-channel” processes,20,24 in
which two fermions with initial momenta k and p move in
almost opposite directions, such that k ≈ −p. Backscattering
processes are further subdivided into those with small momen-
tum transfer, such that (k, − k) → (k, − k), and those with
momentum transfers near 2kF , such that (k, − k) → (−k,k).
In the net result, all q = 0 contributions cancel out and only
2kF contributions survive. We will show that this is also the
case in the presence of the SOI. In what follows, all “q = 0”
diagrams are to be understood as the q = 0 channel of the
backscattering process.

A. Diagram 1

1. General formulation

The first diagram is a self-energy insertion into the
free-electron spin susceptibility, see Fig. 2. There are two

r,Km,K

P + Q, t

P, s

K + Q, n

K + Q̃, l

σi σj

U(|q|) U(|q|)

(1a)

r,Km,K

P + Q, t

K + Q, n

P, s

K + Q̃, l

σi σj

U(|k − p|) U(|k − p|)

(1b)

FIG. 2. Diagram 1. Top: small-momentum transfer part. Bottom:
2kF -momentum transfer part. K and s denotes a fermion from Rashba
subband s = ±1 with “four-momentum” K = (ωk,k).

contributions to the nonanalytic behavior: (i) from the region
of small momentum transfers, i.e., q � kF ,

χ
ij

1,q=0(q̃) = 2U 2(0)
∫

Q

∫
K

∫
P

Tr[G(P )G(P + Q)]

× Tr[G(K + Q̃)σ iG(K)G(K + Q)G(K)σ j ]

(2.5a)

and (ii) from the region of momentum transfers close to 2kF ,
i.e., |k − p| ≈ 2kF and q � kF ,

χ
ij

1,q=2kF
(q̃) = 2U 2(2kF )

∫
Q

∫
K

∫
P

Tr[G(K + Q)G(P + Q)]

× Tr[G(K + Q̃)σ iG(K)G(P )G(K)σ j ].

(2.5b)

Here, K ≡ (ωk,k) and
∫
K

≡ (2π )−3
∫

dωkd
2k (and the

same for other momenta). The time component of Q̃ = (�̃,q̃)
is equal to zero throughout the paper. Since the calculation
is performed at T = 0, there is no difference between the
fermionic and bosonic Matsubara frequencies. A factor of 2
appears because the self-energy can be inserted either into
the upper or the lower arm of the free-electron susceptibility.
As subsequent analysis will show, a typical value of the
momentum transfer q is on the order of either the external
momentum q̃ or the “Rashba momentum” qα [cf. Eq. (1.6)],
whichever is larger. In both cases, q � kF while the momenta
of both fermions are near kF , thus we neglect q in the
angular dependences of the Rashba vertices: �s(k + q) ≈
�s(k + q̃) ≈ �s(k) = [1 + s(sin θkq̃σ

x − cos θkq̃σ
y)]/2 with

θab ≡ ∠(a,b). [The origin of the x̂ axis is arbitrary and can
be chosen along q̃.] Also, we impose the backscattering
correlation between the fermionic momenta: k = −p in the
2kF part of the diagram. With these simplifications, we obtain

χ
ij

1,q=0(q̃) = 2U 2(0)
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
a

ij

lmnrbst

× Ilmnr (�,θkq̃ ,q,q̃)�st (�,q), (2.6a)

χ
ij

1,q=2kF
(q̃) = 2U 2(2kF )

∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π
ã

ij

lmsr b̃nt

× Ilmnr (�,θkq̃ ,q,q̃)�st (�,q), (2.6b)

where summation over the Rashba indices is implied,

a
ij

lmnr ≡ Tr[�l(k)σ i�m(k)�n(k)�r (k)σ j ], (2.7a)

bst ≡ Tr[�s(p)�t (p)] = (1 + st)/2, (2.7b)

ã
ij

lmsr ≡ Tr[�l(k)σ i�m(k)�s(−k)�r (k)σ j ], (2.7c)

b̃nt ≡ Tr[�n(−p)�t (p)] = (1 − nt)/2, (2.7d)

Ilmnr (�,θkq̃ ,q,q̃)

≡
∫

dθkq

2π

∫
dωk

2π

∫
dεk

2π

× gl(ωk,k + q̃)gm(ωk,k)gn(ωk + �,k + q)gr (ωk,k),

(2.7e)
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and, finally, the partial components of the dynamic particle-
hole bubble are given by

�st (�,q) ≡
∫

dθpq

2π

∫
dωp

2π

∫
dεp

2π

× gs(ωp,p)gt (ωp + �,p + q)

= m

2π

|�|√
v2

F q2 + [� + i(t − s)αkF ]2
. (2.7f)

For the derivation of the particle-hole bubble, see, e.g.
Ref. 4. Calculation of other common integrals is presented
in Appendix A.

The main difference between the out-of-plane and in-plane
components is in the structure of the “quaternion,” defined
by Eq. (2.7e) and calculated explicitly in Appendix A [cf.
Eq. (A3)]. The dependence of Ilmnr on the external momentum
q̃ enters only in a combination with the SOI coupling as
vF q̃ cos θkq̃ + (s − s ′)αkF , where s,s ′ ∈ {l,m,n,r}. Combina-
tions of indices l,m,n,r are determined by the spin vertices
σ i,j and are, therefore, different for the out-of-plane and
in-plane components. The out-of-plane component contains
only such combinations {l,m,n,r} for which the coefficient
s − s ′ is finite. Therefore the SOI energy scale is always
present and, for q̃ � qα , one can expand in q̃/qα . The leading
term in this expansion is proportional to |α| but any finite-order
correction in q̃/qα vanishes. In fact, one can calculate the
entire dependence of χzz

1 on q̃ (which is done in Appendix B)
and show that χzz

1 is indeed independent of q̃ for q̃ � qα (and
similar for the remaining diagrams). On the other hand, some
of the quaternions that enter the in-plane component have
s = s ′ and thus do not contain the SOI, which means that
one cannot expand in q̃/qα anymore. These quaternions
provide linear-in-q̃ dependence of χxx

1 even for q̃ � qα , where
the slope of this dependence is 2/3 of that in the absence of the
SOI. This is the origin of the difference in the q̃ dependences
of χzz and χxx , as presented by Eqs. (1.7a) and (1.7b).

The evaluation of the out-of-plane and in-plane part of
diagram 1 is a subject of the next two sections.

2. Diagram 1: out-of-plane component

We begin with the out-of-plane component of the spin
susceptibility, in which case azz

lmnr = [1 + mr + n(m + r) −
l(m + n + r + mnr)]/8 and ãzz

lmsr = [1 + mr − s(m + r) +
l(s − m − r + mrs)]/8. Summation over the Rashba indices
yields

χzz
1,q=0 = 4U 2(0)

∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π
(I+−−− + I−+++)�0

(2.8a)

and

χzz
1,q=2kF

= 2U 2(2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π

× [(I+−−− + I−+++)�0 + I+−+−�+− + I−+−+�−+],

(2.8b)

where �0 = �++ = �−−.
As we explained in Sec. II A 1, the quaternions in Eqs. (2.8a)

and (2.8b) contain q̃ only in combination with qα . Therefore,
for q � qα , the leading term is obtained by simply setting

q̃ = 0, upon which the remaining integrals can be readily
calculated. The results are given by Eqs. (A7) and (A8), so
that

χzz
1,q=0 = u2

0χ0
|α|kF

3EF

(2.9a)

and

χzz
1,q=2kF

= u2
2kF

χ0
|α|kF

3EF

. (2.9b)

In fact, it is shown in Appendix B that Eqs. (2.9a) and (2.9b)
hold for any q � qα rather than only for q̃ = 0.

3. Diagram 1: in-plane component

The in-plane component of the spin susceptibility differs
substantially from its out-of-plane counterpart due the angular
dependence of the traces a

ij

lmnr and ã
ij

lmsr which, for the in-plane
case, read

axx
lmnr = 1

8 [1 + mr + n(m + r) − l(m + n+ r + mnr) cos 2θk],

ãxx
lmsr = 1

8 [1 + mr − s(m + r) + l(s − m − r + mrs) cos 2θk].

(2.10a)

(For the sake of convenience, we choose the x axis to be
perpendicular to q̃ when calculating all diagrams for χxx .)
Summing over the Rashba indices, one arrives at

χxx
1,q=0 = 4U 2(0)

∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π

× [sin2 θkq̃(I+−−− + I−+++)�0

+ cos2 θkq̃(I++++ + I−−−−)�0] (2.11a)

and

χxx
1,q=2kF

= 2U 2(2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π

× [sin2 θkq̃(I+−−− + I−+++)�0

+ cos2 θkq̃(I++++ + I−−−−)�0

+ sin2 θkq̃(I+−+−�+− + I−+−+�−+)

+ cos2 θkq̃(I++−+�−+ + I−−+−�+−)]. (2.11b)

Details of the calculation are given in Appendix. A2b; here,
we present only the results for q̃ � qα:

χxx
1,q=0 = 1

2
χzz

1,q=0 + u2
0χ0

2

9π

vF q̃

EF

= u2
0χ0

( |α|kF

6EF

+ 2

9π

vF q̃

EF

)
, (2.12a)

χxx
1,q=2kF

= 1

2
χzz

1,q=2kF
+ u2

2kF
χ0

2

9π

vF q̃

EF

= u2
2kF

χ0

( |α|kF

6EF

+ 2

9π

vF q̃

EF

)
. (2.12b)

Notice that the linear-in-q̃ dependence survives in the in-plane
component of the spin susceptibility even for q̃ � qα . Similar
behavior was found in Ref. 4 for the temperature dependence
of the uniform spin susceptibility in the presence of the SOI.
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B. Diagram 2

Diagram 2, shown in Fig. 3, is a vertex correction to the spin
susceptibility. As in the previous case, there are two regions of
momentum transfers relevant for the nonanalytic behavior of
the spin susceptibility: the q = 0 region, where

χ
ij

2,q=0 = U 2(0)
∫

Q

∫
K

∫
P

Tr[G(P )G(P + Q)]

× Tr[G(K + Q̃)G(K + Q+ Q̃)σ iG(K + Q)G(K)σ j ],

(2.13a)

and the 2kF -region, where

χ
ij

2,q=2kF
= U 2(2kF )

∫
Q

∫
K

∫
P

Tr[G(K + Q)G(P + Q)]

× Tr[G(K + Q̃)G(P + Q̃)σ iG(P )G(K)σ j ].

(2.13b)

Explicitly,

χ
ij

2,q=0 = U 2(0)
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
c
ij

lmnrbst

× Jlmnr (�,θkq̃ ,q,q̃)�st (�,q), (2.14a)

χ
ij

2,q=2kF
= U 2(2kF )

∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π
c̃
ij

lrsmb̃nt

× Ilmn(�,θkq̃ ,q,q̃)Irst (�,θkq̃ ,q, − q̃), (2.14b)

where

c
ij

lmnr ≡ Tr[�l(k)�m(k)σ i�n(k)�r (k)σ j ], (2.15a)

c̃
ij

lrsm ≡ Tr[�l(k)�r (−k)σ i�s(−k)�m(k)σ j ], (2.15b)

Jlmnr (�,θkq̃ ,q,q̃)

≡
∫

dθkq

2π

∫
dωp

2π

∫
dεk

2π
gl(ωk + �,k + q)

× gm(ωk + �,k + q + q̃)gn(ωk + �,k + q)gr (ωk,k),

(2.15c)Ilmn(�,θkq̃ ,q,q̃)

≡
∫

dθkq

2π

∫
dωp

2π

∫
dεk

2π

× gl(ωk,k + q̃)gm(ωk,k)gn(ωk + �,k + q). (2.15d)

As before, summation over the Rashba is implied. Integrals
(2.15c) and (2.15d) are derived in Appendix A.

K + Q, n K, r

P + Q, tP, s

K + Q + Q̃, m K + Q̃, l

σi σj

U(|q|)

U(|q|)

(2a)

P, s K, m

P + Q, tK + Q, n

P + Q̃, r K + Q̃, l

σi σj

U(|k − p|)

U(|k − p|)
(2b)

FIG. 3. Diagram 2. Top: small-momentum transfer part. Bottom:
2kF -momentum transfer part.

Traces entering the q = 0 part of the out-of-plane and in-
plane components are evaluated as

czz
lmnr = 1 + nr − m(n + r) + l(m − n − r + mnr)

8
,

(2.16)

cxx
lmnr = (1 + lm)(1 + nr) + (l + m)(n + r) cos 2θkq̃

8
.

Summing over the Rashba indices and using the symmetry
properties of Ilmnr and Jlmnr , it can be shown that the q = 0
parts of diagrams 1 and 2 cancel each other

χ
ij

2,q=0 = −χ
ij

1,q=0, (2.17)

which is also the case in the absence of the SOI.20 Therefore
we only need to calculate the 2kF part of diagram 2.

1. Diagram 2: out-of-plane component

Summation over the Rashba indices with the coeffi-
cient c̃zz

lrsm = [1 + mr − s(m + r) + l(s − r − m + mrs)]/8
for the out-of-plane part gives

χzz
2,q=2kF

= U 2(2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π

× [I+−+(�,θkq̃ ,q,q̃)I−+−(�,θkq̃ ,q, − q̃)

+ I+−−(�,θkq̃ ,q,q̃)I−++(�,θkq̃ ,q, − q̃)

+ (q̃ → −q̃)], (2.18)

where (q̃ → −q̃) stands for the preceding terms with an
opposite sign of momentum. Integrating over q and � at q̃ = 0,
yields [cf. Eq. (A9)]

χzz
2,q=2kF

= u2
2kF

χ0
|α|kF

3EF

. (2.19)

Again, an exact calculation at finite q̃ proves that this results
holds for any q̃ � qα .

2. Diagram 2: in-plane component

The in-plane component comes with a Rashba co-
efficient c̃zz

lmsr = [(1 − lr)(1 − ms)(l − r)(m − s) cos 2θkq̃]/8,
such that

χxx
2,q=2kF

= U 2(2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π

×{sin2 θkq̃[I+−+(�,θkq̃ ,q,q̃)I−+−(�,θkq̃ ,q, − q̃)

+ I+−−(�,θkq̃ ,q,q̃)I−++(�,θkq̃ ,q, − q̃)]

+ cos2 θkq̃[I+++(�,θkq̃ ,q,q̃)I−−−(�,θkq̃ ,q, − q̃)

+ I++−(�,θkq̃ ,q,q̃)I−−+(�,θkq̃ ,q, − q̃)]

+ (q̃ → −q̃)}. (2.20)

The first part, proportional to sin2 θkq̃ , contains the SOI
coupling α. In this part, q̃ can be set to zero, and the resulting
linear-in-|α| part equals half of that for the out-of-plane
component due to the integral over sin2 θkq̃ . On the other hand,
in the term proportional to cos2 θkq̃ , the dependence on |α|
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drops out upon integration over q, and the final result for
q̃ � qα reads as [cf. see Eq. (A12)]

χxx
2,q=2kF

= 1

2
χzz

2,q=2kF
+ u2

2kF
χ0

2

9π

vF q̃

EF

= u2
2kF

χ0

( |α|kF

6EF

+ 2

9π

vF q̃

EF

)
. (2.21)

C. Diagrams 3 and 4

We now turn to “Aslamazov-Larkin” diagrams, Fig. 4,
which represent interaction via fluctuational particle-hole
pairs. Without SOI, these diagrams are identically equal to
zero because the spin vertices are averaged independently
and thus vanish. With SOI, this argument does not hold
because the Green’s functions now also contain Pauli matrices
and, in general, diagrams 3 and 4 do not vanish identically.
Nevertheless, we show here that the nonanalytic parts of
diagrams 2 and 3 are still equal to zero.

Diagrams 3 and 4 correspond to the following analytical
expressions:

χ
ij

3 =
∫

Q

∫
K

∫
P

U 2(|q|)Tr[G(P − Q̃)G(P − Q)G(P )σ i]

× Tr[G(K + Q̃)G(K + Q)G(K)σ j ], (2.22a)

χ
ij

3 =
∫

Q

∫
K

∫
P

U 2(|q|)Tr[G(P )G(P + Q)G(P + Q̃)σ i]

× Tr[G(K + Q̃)G(K + Q)G(K)σ j ]. (2.22b)

Note that the second trace is the same in both diagrams. In
what follows, we prove that

χ
ij

3 = χ
ij

4 = 0 (2.23)

for both small and large momentum transfers q.

1. Diagrams 3 and 4: out-of-plane components

The out-of-plane case is straightforward. Evaluating the
second traces in Eqs. (2.22a) and (2.22b), one finds that they
vanish:

dz
lnm ≡ Tr[�l(k)�n(k)�m(k)σ z] = 0, (2.24)

for the q = 0 case, and

d̃z
lnm ≡ Tr[�l(k)�n(−k)�m(k)σ z] = 0, (2.25)

for the q = 2kF case. Therefore χzz
3 = χzz

4 = 0.

2. Diagrams 3 and 4: in-plane components

For the in-plane part of the spin susceptibility, the proof is
more complicated as the traces do not vanish on their own. To
calculate the q = 0 part, we need the following two objects:

dx
lnm ≡ Tr[�l(k)�n(k)�m(k)σx]

= cos θkq̃(l + m + n + lmn)/4 (2.26)
and

I ′
lmn(�,θkq̃ ,q,q̃)

≡ m∗

2π

∫
dωk

∫
dεkgl(ωk,k + q̃)

× gm(ωk,k)gn(ωk + �,k + q)

= im∗�
i� − vF q cos θkq + vF q̃ cos θkq̃ + (l − n)αkF

× 1

i� − vF q cos θkq + (m − n)αkF

. (2.27)

The prime over I denotes that integration over the angle θkq is
not yet performed as compared to Ilmn(�,θkq̃ ,q,q̃) defined by
Eq. (2.15d).

Summing over the Rashba indices, one finds

∑
lmn

dx
lnmI ′

lmn(�,θkq̃ ,q,q̃) = 0 (2.28)

and, therefore, the in-plane component at small momentum
transfers vanishes.

The trace for the q = 2kF case turns out to be the same as for the q = 0 one because

d̃x
lnm ≡ Tr[�l(k)�n(−k)�m(k)σx] = dx

lnm. (2.29)

However, in order to see the vanishing of the 2kF part, the integral over εk has to be evaluated explicitly with q = 2kF , i.e.,

I ′′
lmn(�,θkq̃ ,q = 2kF ,q̃)

= m∗

2π

∫
dεkgl(ωk,k + q̃)gm(ωk,k)gn(ωk + �,k + q)

= im∗[1 − 	(ωk) − 	(ωk + �)]

[i(2ωk + �) − vF q̃ cos θkq̃ − vF q − vF kF φ2 − (m + n)αkF ][i(2ωk + �) − vF q − vF kF φ2 − (l + n)αkF ]
,

(2.30)

where we used an expansion of εk+q around q = 2kF : εk+q ≈ −εk + vF (q − 2kF ) + vF kF φ2, where φ ≡ π − θkq . Summing
over the Rashba indices, we obtain ∑

lmn

d̃x
lnmI ′′

lmn(q ≈ 2kF ,q̃) = 0 (2.31)
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m,Ks,P

K + Q̃, lP + Q̃, r

P + Q, t K + Q, nσi σj

U(|q|)

U(|q|)
(3)

P − ˜ m,Kr,Q

K + Q̃, lP, s

P − Q, t K + Q, nσi σj

U(|q|)

U(|q|)

(4)

FIG. 4. Top: diagram 3. Bottom: diagram 4. The momentum
transfer q in both diagrams can be either small or close to 2kF .

and, therefore, the 2kF part of the in-plane components of
diagrams 3 and 4 is also equal to zero.

D. Remaining diagrams and the final result for the spin
susceptibility

The remaining diagrams can be expressed in terms of the
those we have already calculated.

Diagram 5 in Fig. 5 reads

χ
ij

5 = −4U (0)U (2kF )
∫

Q

∫
K

∫
P

Tr[G(K + Q̃)σ iG(K)

×G(K + Q)G(P + Q)G(P )G(K)σ j ]

= −4U (0)U (2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
f

ij

lmntsr Ilmnr�st

(2.32)

with

f
ij

lmntsr ≡ Tr[�l(k)σ i�m(k)�n(k)×�t (−k)�s(−k)�r (k)σ j ]

(2.33)

and q � |k − p| = 2kF . A factor of 4 appears because the
“sunrise” self-energy can be inserted into either the lower or
the upper arm of the bubble while each of the interaction lines
can carry momentum of either q = 0 or q = 2kF . A minus sign
is due to an odd number of fermionic loops. Upon summation
over the Rashba indices, we obtain

χ
ij

5

U (0)U (2kF )
= −χ

ij

1,q=0

U 2(0)
. (2.34)

r,Km,K P, sK + Q, n
P + Q, t

K + Q̃, l

σi σj

U(|q|) U(|k − p|)

(5)

FIG. 5. Diagram 5. The momentum transfer q is close to zero and
|k − p| = 2kF .

K, m P − Q̃, r

P, sK + Q̃, l

K + Q, n

P − Q, t

σi σj

U(|q|)

U(|k − p|)
(6)

FIG. 6. Diagram 6. The momentum transfer q is close to zero and
|k − p| = 2kF .

Diagrams 6 and 7b in Figs. 6 and 7, correspondingly, are
related as well. Explicitly, diagram 6 reads

χ
ij

6 = −2U (0)U (2kF )
∫

Q

∫
K

∫
P

Tr[G(K + Q̃)σ iG(K)

×G(K + Q)G(P − Q̃)σ jG(P )G(P − Q)]

= −2U (0)U (2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
g

ij

lmnrst

× Ilmn(�,θkq̃ ,q,q̃)Irst (−�,θkq̃ , − q,q̃) (2.35)

with

g
ij

lmntsr ≡ Tr[�l(k)σ i�m(k)�n(k)�r (−k)σ j�s(−k)�t (−k)].

(2.36)

For diagram 7b, we obtain

χ
ij

7b = −2U (0)U (2kF )
∫

Q

∫
K

∫
P

Tr[G(K + Q̃)σ iG(K)

×G(K + Q)G(P + Q)G(P )σ jG(P + Q̃)]

= −2U (0)U (2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
h̃

ij

lmntsr

× Ilmn(�,θkq̃ ,q,q̃)Irst (�,θkq̃ ,q, − q̃) (2.37)

with

h̃
ij

lmntsr ≡ Tr[�l(k)σ i�m(k)�n(k)�t (−k)�s(−k)σ j�r (−k)].

(2.38)

In both cases, q � |k − p| = 2kF . Using the symmetry
property Irst (−�,θkq̃ , − q, − q̃) = −I−r−s−t (�,θkq̃ ,q,q̃) in

K + r,Kn,Q

K + Q̃, lK + Q + Q̃, m

P, s P + Q, t

σi σj

U(|k − p|)

U(|q|)
(7a)

(7b)

s,Pm,K

P + Q̃, rK + Q̃, l

K + Q, n P + Q, t

σi σj

U(|q|)

U(|k − p|)

FIG. 7. Diagram 7a (upper figure) and diagram 7b (lower figure).
The transferred momenta are q = and |k − p| = 2kF .
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χ
ij

4 , summing over the Rashba indices, and noticing that
I+++(�,θkq̃ ,q,q̃) = I−−−(�,θkq̃ ,q,q̃), we arrive at

χ
ij

6 = χ
ij

7b. (2.39)

Finally, diagram 7a shown in Fig. 7 is related to diagram 2
at small momentum transfers. Indeed,

χ
ij

7a = −2U (0)U (2kF )
∫

Q

∫
K

∫
P

Tr[G(K + Q+ Q̃)σ i

×G(K + Q)G(P )G(P + Q)G(K)σ jG(K + Q̃)]

= −2U (0)U (2kF )
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
h

ij

lmnstrJlmnr�st

(2.40)

with

h
ij

lmnstr ≡ Tr[�l(k)�m(k)σ i�n(k)�s(−k)�t (−k)�r (k)σ j ],

(2.41)

where again q � |k − p| = 2kF . After summation over the
Rashba indices, this diagram proves related to the small-
momentum part of diagram 2 as

χ
ij

5a

U (0)U (2kF )
= −χ

ij

2,q=0

U 2(0)
. (2.42)

The results of this section along with Eq. (2.17) show that
the sum of all diagrams proportional to U (0)U (2kF ) cancel
each other:

χ
ij

5 + χ
ij

6 + χ
ij

7a + χ
ij

7b = 0. (2.43)

Therefore, as in the absence of SOI, the nonanalytic part of the
spin susceptibility is determined only by the Kohn anomaly at
q = 2kF .

Summing up the contributions from diagrams 1–3, we
obtain the results presented in Eqs. (1.7a) and (1.7b).

E. Cooper-channel renormalization to higher orders in the
electron-electron interaction

An important question is how the second-order results,
obtained earlier in this section, are modified by higher-order
effects. In the absence of SOI, the most important effect—
at least within the weak-coupling approach—is logarithmic
renormalization of the second-order result by the interaction
in the Cooper channel. As it was shown in Ref. 3, this
effect reverses the sign of the q̃ dependence due to proximity
to the Kohn-Luttinger superconducting instability; the sign
reversal occurs at q̃ = e2TKL/vF ≈ 7.4TKL/vF , where TKL is
the Kohn-Luttinger critical temperature. For momenta below
the SO scale (qα), χzz ceases to depend on q̃ but χxx still
scales linearly with q̃. What is necessary to understand now
is whether the linear-in-q̃ term in χxx is renormalized in
the Cooper channel. The answer to this question is quite
natural. The |α| and q̃ terms in the second-order result for
χxx [see Eq. (1.7b)] come from different parts of diagram:
the |α| term comes from q̃ independent part and vice versa.
Starting from the third order and beyond, these two terms
acquire logarithmic renormalizations but the main logarithm
of these renormalizations contains only one energy scale. In
other words, the |α| term is renormalized via ln |α| while the

q̃ is renormalized via ln q̃. For example, the third-order result
for the 2kF part of diagram 1 (see Fig. 2) reads [for simplicity,
we assume here a contact interaction with U (q) = const]

χxx
1,q=2kF

= −u3 2χ0

3

[ |α|kF

EF

ln
�

|α|kF

+ 2

3π

vF q̃

EF

ln
�

vF q̃

]
,

(2.44)

where u = m∗U/4π and � is the ultraviolet cutoff. Details of
this calculation are given in Appendix C. It is clear already
from this result that the logarithmic renormalization of the
q̃ term in χxx remains operational even for q̃ � qα , with
consequences similar to those in Ref. 3.

F. Charge susceptibility

In the absence of SOI, nonanalytic behavior as a function
of external parameters q̃, T , H is present only in the spin
but not charge susceptibility.20,33,34 An interesting question is
whether the charge susceptibility also becomes nonanalytic in
the presence of SOI. We answer this question in the negative:
the charge susceptibility remains analytic. To show this, we
consider all seven diagrams replacing both spin vertices by
unities. The calculation goes along the same lines as before,
thereby we only list the results for specific diagrams; for
q̃ � qα ,

δχc
1 = −δχc

4 = χ0

3π

(
u2

0 + u2
2kF

)vF q̃

EF

,

δχc
2 = −δχc

3 = χ0

3π

(
u2

2kF
− u2

0

)vF q̃

EF

, (2.45)

δχc
5 = −δχc

6 = − χ0

3π
u0u2kF

vF q̃

EF

,

whereas χc
7 = 0 on its own (χc

7a = −χc
7b). First, we immedi-

ately notice that SOI drops out from every diagram even in the
limit q̃ � qα . Second, the sum of the nonanalytic parts of all
the charge susceptibility diagrams is zero, δχc = 0, as in the
case of no SOI.

III. RKKY INTERACTION IN REAL SPACE

A nonanalytic behavior of the spin susceptibility in the
momentum space leads to a power-law decrease of the
RKKY interaction with distance. In this section, we discuss
the relation between various nonanalyticities in χij (q) and
the real-space behavior of the RKKY interaction. We show
that, in addition to conventional 2kF Friedel oscillations, a
combination of the electron-electron and SO interactions leads
to a new effect: long-range Friedel-like oscillations with the
period given by the SO length.

A. No spin-orbit interaction

First, we discuss the case of no SOI, when the spin
susceptibility is isotropic: χij (q̃) = δijχ (q̃). For free electrons,
the only nonanalyticity in χ0(q̃) is the Kohn anomaly at
q̃ = 2kF , which translates into Friedel oscillations of the
RKKY kernel; in 2D and for kF r � 1,35

χ0(r) = χ0

2π

sin (2kF r)

r2
. (3.1)
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One effect of the electron-electron interaction is a log-
arithmic amplification of the Kohn anomaly (which also
becomes symmetric about the q̃ = 2kF point): χ (q̃ ≈ 2kF ) ∝√|q̃ − 2kF | ln |q̃ − 2kF |.36 Consequently, χ (r) is also en-
hanced by a logarithmic factor compared to the free-electron
case: χ (r) ∝ sin(2kF r) ln(kF r)/r2.

Another effect is related to the nonanalyticity at small q̃:
χ (q̃) = χ0 + Cq̃.20 To second order in the electron-electron
interaction [cf. Eq. (1.8)],

C = C2 ≡ 4χ0

3πkF

u2
2kF

; (3.2)

however, as we explained in Sec. I, both the magnitude
and sign of C can be changed due to higher-order effects.
(Cooper channel renormalization leads also to multiplicative
ln q̃ corrections to the linear-in-q̃ term; those correspond to
multiplicative ln r renormalization of the real-space result and
are ignored here.)

In 2D, χ (r) is related to χ (q̃) via

χ (r) = 1

2π

∫ ∞

0
dq̃q̃χ (q̃)J0(q̃r). (3.3)

Power-counting suggests that the q̃ term in χ (q̃) translates into
a dipole-dipole-like 1/r3 term in χ (r). To see if this is indeed
the case, we calculate the integral

A =
∫ �

0
dq̃q̃2J0(q̃r) (3.4)

with an arbitrary cutoff �, and search for a universal, �-
independent term in the result. If such a term exists, it corre-
sponds to a long-range component of the RKKY interaction.
Using an identity xJ0(x) = d

dx
[xJ1(x)] and integrating by

parts, we obtain

A = 1

r3

[
(�r)2J1(�r) −

∫ �r

0
dxxJ1(x)

]

= 1

r3

{
(�r)2J1(�r) − π�r

2
[J1(�r)H0(�r)

− J0(�r)H1(�r)]

}
, (3.5)

where Hν(x) is the Struve function. The asymptotic expansion
of the last term in the preceding equation indeed contains a
universal term

π�r

2
[J1(�r)H0(�r) − J0(�r)H1(�r)]

∣∣
�r→∞ = 1 + . . . ,

(3.6)

where . . . stands for nonuniversal terms. A corresponding term
in χ (r) reads

χ (r) = − C

2πr3
. (3.7)

As a check, we also calculate the Fourier transform of the
q̃-independent term in χij . The corresponding integral

Ã =
∫ �

0
dq̃q̃J0(q̃r) = �

r
J1(�r) (3.8)

does not contain a �-independent term and, therefore, a con-
stant term in χ (q̃) does not produce a long-range component

of the RKKY interaction, which is indeed the case for free
electrons.

Equation (3.7) describes a dipole-dipole-like part of the
RKKY interaction that falls off faster than Friedel oscillations
but is not oscillatory. (Incidentally, it is the same behavior as
that of a screened Coulomb potential in 2D, which also has a
q̃ nonanalyticity at small q̃.37)

In a translationally invariant system, HRKKY =
− A2

8n2
s

∑
r,r′ χ (|r − r′|)I i

rI
j

r′ . Therefore, if C > 0, i.e., χ (q̃)
increases with q̃, the dipole-dipole interaction is repulsive for
parallel nuclear spins and attractive for antiparallel ones. Since
the 1/r3 behavior sets in only at large distances, the resulting
phase is a helimagnet rather than an antiferromagnet. Vice
versa, if C < 0, the dipole-dipole interaction is attractive for
parallel spins. This corresponds precisely to the conclusions
drawn from the spin-wave theory: a stable FM phase requires
that ω(q̃) > 0, which is the case if C < 0.

B. With spin-orbit interaction

C. Free electrons

In a free-electron system, the SOI splits the Fermi surface
into two surfaces corresponding to two branches of the
Rashba spectrum with opposite helicities. Consequently, both
components of the spin susceptibility in the momentum
space have two Kohn anomalies located at the momenta
2k±

F = 2kF ∓ qα with qα = 2m∗ |α| . To see this explicitly,
we evaluate the diagonal components of χij (q̃) for q̃ ≈ 2kF ,

χii
0 (q̃) = −

∑
s,t

∫
K

|〈k,s|σ i |k + q̃,t〉|2gt (ω,k + q̃)gs(ω,k).

(3.9)

For q̃ ≈ 2kF , the matrix elements of the spin operators in the
helical basis reduce to

|〈k + q̃,t |σx |k,s〉|2 = |〈k + q̃,t |σ z|k,s〉|2 = 1
2 (1 + st).

(3.10)

Therefore χii(q̃) contains only contributions from intraband
transitions,

χxx
0 (q̃) = χzz(q̃) = −

∫
K

g+(ω,k + q̃)g+(ω,k)

−
∫

K

g−(ω,k + q̃)g−(ω,k). (3.11)

Each of the two terms in Eq. (3.11) has its own Kohn anomaly
at q̃ = 2ks

F , s = ±. In real space, this corresponds to beating
of Friedel oscillations with a period 2π/qα.

This behavior needs to be contrasted with that of Friedel
oscillations in the charge susceptibility, where, to leading
order in α, the Kohn anomaly is present only at twice the
Fermi momenta in the absence of SOI.38 Consequently, the
period of Friedel oscillations is the same as in the absence
of SOI. (Beating occurs in the presence of both Rashba and
Dresselhaus interactions.39) This is so because, for q̃ near 2kF ,

the matrix element entering χc(q̃) reduces to

|〈k + q̃,t |k,s〉|2 = 1
2 (1 − st),
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which implies that χc contains only contributions from
interband transitions:

χc
0 (q̃) = −2

∫
K

g+ (ω,k + q̃) g− (ω,k) . (3.12)

The Kohn anomaly in χc
0 corresponds to the nesting condition

ε+
k+q̃ = −ε−

k , which is satisfied only for q̃ = 2kF .

1. Interacting electrons

The electron-electron interaction is expected to affect the
2kF -Kohn anomalies in χxx and χzz in a way similar to
that in the absence of SOI. However, a combination of the
electron-electron and SO interaction leads to a new effect: a
Kohn anomaly at the momentum qα � 2kF . Consequently, the
RKKY interaction contains a component that oscillates with a
long period given by the SO length λSO = 2π/qα rather than
the half of the Fermi wavelength.

To second order in the electron-electron interaction, the
full dependence of the electron spin susceptibility on the
momentum is shown in Appendix B to be given by

δχxx(q̃) = 2C2q̃

3
+ C2q̃

2
Re

{
1

3

√
1 −

(
qα

q̃

)2[
2 +

(
qα

q̃

)2 ]

+qα

q̃
arcsin

qα

q̃

}
, (3.13a)

δχzz(q̃) = C2q̃ Re

[√
1 −

(
qα

q̃

)2

+ qα

q̃
arcsin

qα

q̃

]
. (3.13b)

Equations (3.13a) and (3.13b) are valid for an arbitrary
value of the ratio q̃/qα (but for q̃ � kF ). For q̃ � qα , both
δχxx and δχzz scale as q̃. For q̃ � qα , δχxx continues to scale
as q̃ (but with a smaller slope compared to the opposite case),
while δχzz is q̃ independent. The crossover between the two
regimes is not continuous, however, because certain derivatives
of both δχxx and δχzz diverge at q̃ = qα . Expanding around
the singularity at q̃ = qα , one finds

δχxx = 2C2q̃

3
+ C̃2

2

{
	(qα − q̃)

+	(q̃ − qα)

[
1 + 2b

5

(
q̃

qα

− 1

)5/2]}
, (3.14a)

δχzz = C̃2

{
	(qα − q̃) + 	(q̃ − qα)

[
1 + b

(
q̃

qα

− 1

)3/2]}
,

(3.14b)

where 	(x) is the step function, C̃2 = πC2qα/2 and b =
4
√

2/3π . The q̃ dependences of δχxx and δχzz are shown
in Fig. 8.

The singularity is stronger in δχzz ∝ (q̃ − qα)3/2 whose
second derivative diverges at q̃ = qα , whereas it is only third
derivative of δχxx ∝ (q̃ − qα)5/2 that diverges at this point.
Both divergences are weaker than the free-electron Kohn
anomaly χ ∝ (q̃ − 2kF )1/2.

We now derive the real-space form of the RRKY interaction,
starting from χzz(r). Substituting Eq. (3.14b) into Eq. (3.3)

zz

xx

1 2 1 3 2
q q

1 2

1

3 2

ii

FIG. 8. (Color online) The nonanalytic part of the electron spin
susceptibility in units of (2/3π )u2

2kF
(|α|/vF )χ0 as a function of the

momentum in units of qα = 2m∗|α|. i = x,z. Solid lines are the exact
results (3.13a) and (3.13b). Dashed lines are the approximate results
(3.14a) and (3.14b) valid near the singularity at q = qα .

and noting that only the part proportional to (q̃/qα − 1)3/2

contributes, we arrive at the following integral:

χzz(r) = C̃2b

2π

∫ �

qα

dq̃q̃J0(q̃r)

(
q̃

qα

− 1

)3/2

, (3.15)

where � is an arbitrarily chosen cutoff that does not affect
the long-range behavior of χzz(r). Replacing J0(x) by its
large-x asymptotic form and q̃ by qα in all nonsingular and
nonoscillatory parts of the integrand, we simplify the previous
expression to

χzz(r) = C̃2b

2π

√
2qα

πr

∫ �

0
dq̃

(
q̃

qα

)3/2

cos

[
(q̃ + qα)r − π

4

]
.

(3.16)

Integrating by parts twice and dropping the high-energy
contribution, we arrive at an integral that converges at the
upper limit. The final result reads

χzz(r) = −χ0
2

3π2

u2
2kF

kF

cos (qαr)

r3
. (3.17)

Equation (3.17) describes long-wavelength Friedel-like oscil-
lations that fall off with r faster than the usual 2kF oscillations.
Notice that Eq. (3.17), while valid formally only for qαr � 1,
reproduces correctly the dipole-dipole term [see Eq. (3.7) with
C = C2] in the opposite limit of qαr � 1. Therefore Eq. (3.17)
can be used as an extrapolation formula applicable for any
value of qαr .

In addition to the Kohn anomaly at q̃ = qα , the in-plane
component also contains a nonoscillatory but nonanalytic term
proportional to q̃. As it was also the case in the absence of
SOI, this term translates into a dipole-dipole part of the RKKY
interaction. Analysis of Sec. III fully applies here; we just need
to replace the prefactor C in Eq. (3.7) by 2C2/3, where C2 is
defined by Eq. (3.2). The role of the cutoff � in Eq. (3.4) is now
being played by qα , therefore, C → 2C2/3 for r � q−1

α . For
r � q−1

α , the prefactor is the same as in the absence of SOI.
Summarizing, the dipole-dipole part of the in-plane RKKY
interaction is

χxx
d−d(r) = − 2

3π2
u2

2kF
χ0

{
1/r3, for qαr � 1,

2/3r3, for qαr � 1.
(3.18)
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The oscillatory part of χxx(r) is obtained by the same method
as for χzz(r) with the only difference that one needs to
integrate by parts three times in order to obtain a convergent
integral. Consequently, χxx(r) falls off with r as 1/r4. The r

dependence of χxx(r), resulting from the SOI, is given by a
sum of the nonoscillatory and oscillatory parts:

χxx(r) = χxx
d-d(r) + χ0

1

3π2

u2
2kF

qαkF

sin(qαr)

r4
. (3.19)

Finally, the conventional, 2kF Friedel oscillations should
be added to Eqs. (3.17) and (3.19) to get a complete r

dependence. The dipole-dipole part and long-wavelength
Friedel oscillations fall off faster then conventional Friedel
oscillations. In order to extract the long-wavelength part from
the data, one needs to average the measured χij (r) over
many Fermi wavelengths. Recently, 2kF oscillations in the
RKKY interaction between magnetic adatoms on metallic
surfaces have been observed directly via scanning tunneling
microscopy.40 Hopefully, improvements in spatial resolution
would allow for an experimental verification of our prediction
for the long-wavelength component of the RKKY interaction.

As a final remark, we showed in Sec. II F that the charge
susceptibility does not exhibit small-q nonanalyticities. This
result also implies that the long-wavelength oscillations are
absent in the charge susceptibility; therefore Friedel oscil-
lations produced by nonmagnetic impurities contain only a
conventional, 2kF component.

IV. SUMMARY AND DISCUSSION

We have studied the nonanalytic behavior of the electron
spin susceptibility of a two-dimensional electron gas (2DEG)
with SOI as a function of momentum q̃ = |q̃| in the context
of a ferromagnetic nuclear-spin phase transition (FNSPT).
Similarly to the dependence on temperature and magnetic
field,4 the combined effect of the electro-electron and spin-
orbit interactions affects two distinct components of the
spin susceptibility tensor differently. For q̃ � 2m∗|α|, where
m∗ is the effective electron mass and α is the spin-orbit
coupling, the out-of-plane component of the spin susceptibility
χzz(q̃,α) does not depend on momentum (in other words, the
momentum-dependence is cut off by the SOI), [cf. Eq. (1.7a)],
whereas its in-plane counterparts, χxx(q̃,α) = χyy(q̃,α), scale
linearly with q̃ even below the energy scale given by the SOI
[cf. Eq. (1.7b)].

Beyond second order in electron-electron interaction,
renormalization effects in the Cooper channel, being the
most relevant channel in the weak-coupling regime, start to
play a dominant role. As we have shown in Sec. II E, the
leading linear-in-|α| term becomes renormalized by ln |α|,
while the subleading linear-in-q̃ term acquires additional
ln q̃ dependence. This behavior is a natural consequence
of the separation of energy scales in each of the diagrams
and suggests that, in general, χ (n)({Ei}) ∝ Un

∑
i Ei lnn−2 Ei ,

where Ei stands for a generic energy scale (in our case
Ei = {|α|kF ,vF q̃} but temperature or the magnetic field could
be included as well).

Our analysis of the spin susceptibility gives important
insights into the nature of a FNSPT. First, the SOI-induced

anisotropy of the spin susceptibility implies that the ordered
phase is of an Ising type with nuclear spins aligned along the z

axis since χzz > χxx . Second, the ferromagnetic phase cannot
be stable as long as the higher-order effects of the electron-
electron interaction are not taken into account. In this paper, we
focused only on one type of those effects, i.e., renormalization
in the Cooper channel. Without Cooper renormalization, the
slope of the magnon dispersion is negative, even though
the magnon spectrum is gapped at zero momentum, cf.
Fig. 1. This implies that spin-wave excitations destroy the
ferromagnetic order. Only inclusion of higher-order processes
in the Cooper channel, similarly to the mechanism proposed
in Ref. 3, leads to the reversal of the slope of the spin
susceptibility in the (not necessarily immediate) vicinity of
the Kohn-Luttinger instability, and allows for the spin-wave
dispersion to become positive at all values of the momentum.
This ensures stability of the ordered phase at sufficiently low
temperatures.1,2

We have also shown that a combination of the electron-
electron and SO interactions leads to a new effect: a Kohn
anomaly at the momentum splitting of the two Rashba
subbands. Consequently, the real-space RKKY interaction has
a long-wavelength component with a period determined by the
SO rather than the Fermi wavelength.

Another issue is whether the SOI modifies the behavior
of the charge susceptibility which is known to be analytic in
the absence of the SOI.20,33,34 As our calculation shows, the
answer to this question is negative.

One more comment on the spin and charge susceptibil-
ities is in order: despite the fact that we considered only
the Rashba SOI, all our results are applicable to systems
where the Dresselhaus SOI with coupling strength β takes
place of Rashba SOI, i.e., β �= 0, α = 0; in this case, the
Rashba SOI should be simply replaced by the Dresselhaus
SOI (α → β).

Finally, we analyzed the nonanalytic dependence of the
free energy, F , in the presence of the SOI and at zero
temperature beyond the RPA. This analysis is important in the
context of interacting helical Fermi liquids that have recently
attracted considerable attention.41–43 In contrast to the RPA
result,42 which predicts that the free energy scales with α as
α4 ln |α|, our result shows that the renormalization is stronger,
namely, F ∝ U 2|α|3C(U ln |α|), where C(x → 1) ∼ x2 and
C(x → ∞) ∼ 1/x2.
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APPENDIX A: DERIVATION OF COMMON INTEGRALS

In this appendix, we derive explicit expressions for some
integrals of the Green’s function that occur throughout the
paper.
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1. “Quaternions” (Ilmnr and Jlmnr ) and a “triad” (Ilmn)

The first integral is a “quaternion”—a convolution of four Green’s functions defined by Eq. (2.7e). This convolution occurs
in diagram 1, where it needs to be evaluated at small external and transferred momenta: q,q̃ � kF . To linear order in q

and α, εk+q + sα|k + q| = εk + vF q cos θkq + αkF + o(q2,αq) with θkq ≡ ∠(k,q). The same approximation holds for q̃ with
θkq̃ ≡ ∠(k,q̃). Switching to polar coordinates and replacing kdk by m∗dεk , we reduce the integral to

Ilmnr (�,θkq̃ ,q,q̃) = m∗
∫

dθkq

2π

∫
dωk

2π

∫
dεk

2π

1

iωk − εk − vF q̃ cos θkq̃ − lαkF

1

iωka − εk − mαkF

× 1

i(ωk + �) − εk − vF q cos θkq − nαkF

1

iωk − εk − rαkF

. (A1)

Integrating first over εk and then over ωk , we obtain

Ilmnr (�,θkq̃ ,q,q̃) = im∗�
(2π )2

∫
dθkq

1

i� − vF q cos θkq + (m − n)αkF

1

i� − vF q cos θkq + (r − n)αkF

× 1

i� − vF q cos θkq + vF q̃ cos θkq̃ + (l − n)αkF

. (A2)

Finally, the integral over θkq gives

Ilmnr (�,θkq̃ ,q,q̃) = m∗|�|
2π

1

(r − m)αkF [(l − m)αkF + vF q̃ cos θkq̃][(l − r)αkF + vF q̃ cos θkq̃]

×
⎧⎨
⎩ (l − r)αkF + vF q̃ cos θkq̃√

v2
F q2 + [� + i(n − m)αkF ]2

− (l − m)αkF + vF q̃ cos θkq̃√
v2

F q2 + [� + i(n − r)αkF ]2

+ (r − m)αkF√
v2

F q2 + [� − ivF q̃ cos θkq̃ + i(n − l)αkF ]2

⎫⎬
⎭ . (A3)

Because of the overall term (r − m)αkF in the denominator, the case r = m has to be treated specially. Taking the limit
Ilmnm(�,θkq̃ ,q,q̃) = limr→m Ilmnr (�,θkq̃ ,q,q̃), one obtains

Ilmnm(�,θkq̃ ,q,q̃) = m∗|�|
2π

1

[(l − m)αkF + vF q̃ cos θkq̃]2

⎛
⎝ 1√

v2
F q2 + [� − ivF q̃ cos θkq̃ + i(n − l)αkF ]2

− v2
F q2 + [� + i(n − m)αkF ][� + ivF q̃ cos θkq̃ + i(l + n − 2m)αkF ]{

v2
F q2 + [� + i(n − m)αkF ]2

}3/2

)
. (A4)

Similarly, we obtain for another quaternion Jlmnr , defined by Eq. (2.15c),

Jlmnr (�,θkq̃ ,q,q̃) = m∗|�|
2π

1

[� − ivF q̃ cos θkq̃ + i(n − m)αkF ][� − ivF q̃ cos θkq̃ + i(r − l)αkF ]

×
⎧⎨
⎩ 1√

v2
F q2 + [� − ivF q̃ cos θkq̃ + i(r − m)αkF ]2

+ 1√
v2

F q2 + [� − ivF q̃ cos θkq̃ + i(n − l)αkF ]2

⎫⎬
⎭ .

(A5)

Finally, we obtain for a convolution of three Green’s functions—a “triad”—defined by Eq. (2.15d),

Ilmn(�,θkq̃ ,q,q̃) = m∗|�|
2π

1

vF q̃ cos θkq̃ + (l − m)αkF

⎧⎨
⎩ 1√

v2
F q2 + [� + i(n − l)αkF − vF q̃ cos θkq̃]2

− 1√
v2

F q2 + [� + i(n − m)αkF ]2

⎫⎬
⎭ . (A6)

2. Integrals over bosonic variables

There is a number of integrals over the bosonic frequency � and momentum q one encounters while calculating the spin
susceptibility. The following strategy provides a convenient way of calculating all of them: (i) integrate over x ≡ vF q for
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x ∈ [0,∞[, (ii) integrate over � by introducing a cutoff �;the low-energy physics proves to be independent of the choice of
the cutoff, and (iii) perform angular integration, which is trivial for the out-of-plane spin susceptibility and, in that case, can be
performed at the very beginning. Again, it is convenient to treat the out-of-plane and in-plane components separately.

a. Out-of-plane components

As it was explained in the main text, the q̃ dependence of χzz for q̃ � qα can be calculated perturbatively by expanding
in q̃/qα , where qα = 2m∗|α|. In this section, we calculate only the leading term of this expansion obtained by setting q̃ = 0.
Corrections enter only quadratically in q̃ and a more detailed calculation is necessary in order to show that. Later, in Appendix
B, we find the entire dependence of χzz on q̃ exactly, and show that this dependence is absent for q̃ � qα , which means that all
terms of the expansion in q̃/qα vanish. For now, we focus on the q̃ = 0 case and evaluate the integrals in Eqs. (2.8a) and (2.8b)
for χzz

1 : ∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π
(I+−−− + I−+++)�0

=
(

m

8π2vF αkF

)2 ∫
d�

∫
xdx

�2

√
x2 + �2

[
1√

x2 + (� + 2iαkF )2
− 1√

x2 + �2
+ c.c.

]

=
(

m

8π2vF αkF

)2 ∫ �

−�

d��2 ln
�2

�2 + α2k2
F

=
(

m

4πvF

)2 |α|kF

6π
+ · · · (A7)

∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π
(I−+−+�−+ + I+−+−�+−)

=
(

m

8π2vF αkF

)2 ∫
d�

∫
xdx

(
1√

x2 + (� + 2iαkF )2

{
1√

x2 + �2
− 1√

x2 + (� − 2iαkF )2

+ 2iαkF (� − 2iαkF )

[x2 + (� − 2iαkF )2]3/2

}
+ c.c.

)

=
(

m

8π2vF αkF

)2 ∫ �

−�

d��2 ln
�2

�2 + α2k2
F

=
(

m

4πvF

)2 |α|kF

6π
+ . . . , (A8)

where . . . stands for nonuniversal, �-dependent terms and c.c. denotes the complex conjugate of the preceding expression.
Substituting these results back into Eqs. (2.8a) and (2.8b), we obtain Eqs. (2.9a) and (2.9b). Similarly, we obtain for the
combination of triads in Eq. (2.18) for χzz

2 ,

2
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
(I+−−I−++ + I+−+I−+−) = −

(
m

4π2vF αkF

)2 ∫
d�

∫
xdx

∣∣∣∣∣ 1√
x2 + (� + 2iαkF )2

− 1√
x2 + �2

∣∣∣∣∣
2

=
(

m

4π2vF αkF

)2 ∫ �

−�

d��2 ln
�2

�2 + α2k2
F

= 2

3π

(
m

4πvF

)2

|α|kF + . . . .

(A9)

b. In-plane components

We start with χxx
1 given by Eqs. (2.11a) and (2.11b). First, we notice that the quaternion structure of the first lines in Eqs. (2.11a)

and (2.11b) is the same as in the first lines of Eqs. (2.8a) and (2.8b) for the out-of-plane component; the only difference is in
the factor of sin2 θkq̃ . Since these expressions contain α, they can be evaluated at q̃ = 0 in the same way as the corresponding
expressions in χzz

1 were evaluated. At q̃ = 0, the factor of sin2 θkq just gives 1/2 of the corresponding contribution to χzz
1 . Next,

we calculate explicitly the integrals in the second line of Eq. (2.11a) and in the third line of Eq. (2.11b). These contributions
contain an overall factor of q̃−2 and, therefore, one has to calculate the full dependence on q̃ without expanding in q̃/qα . The part
of the integrands that are odd in the angle drop out and, since

∫ 2π

0 dθf (i cos θ ) = ∫ 2π

0 dθ [f (i cos θ ) + f (−i cos θ )]/2, all the
formulas can be written in an explicitly real form. For the first of these two integrals, we obtain (for brevity, we relabel θkq̃ → θ ):∫

d�

2π

∫
dθ

2π

∫
qdq

2π
cos2 θ (I++++ + I−−−−)�0

=
(

m

4π2v2
F q̃

)2 ∫
dθ

π

∫
d�

∫
xdx

�2

√
x2 + �2

[
1√

x2 + (� − ivF q̃ cos θ )2
− 1√

x2 + �2

]
− i�3vF q̃ cos θ

(x2 + �2)2
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=
(

m

4π2v2
F q̃

)2 ∫
dθ

2π

∫
d�

∫
xdx

�2

√
x2 + �2

[
1√

x2 + (� + ivF q̃ cos θ )2
− 1√

x2 + �2
+ c.c.

]

= −
(

m

4π2v2
F q̃

)2 ∫
d�

∫
dθ

2π
�2 ln

(
1 + v2

F q̃2

4�2
cos θ2

)

= −2

(
m

4π2v2
F q̃

)2 ∫ �

−�

d��2 ln

[
1

2

(
1 +

√
1 + v2

F q̃2

4�2

)]
=
(

m

4πvF

)2
vF q̃

9π2
+ . . . , (A10)

where, as before, . . . stands for nonuniversal, �-dependent terms. Notice that the SOI dropped out and, therefore, the equation
above is valid for any ratio q̃/qα . The second integral reads∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π
cos2 θ (I++−+�−+ + I−−+−�+−)

=
(

m

4π2v2
F q̃

)2 ∫
dθ

π

∫
d�

∫
xdx

({
�2√

x2 + (� + 2iαkF )2

[
1√

x2 + (� − 2iαkF − ivF q̃ cos θ )2

+ 1√
x2 + (� − 2iαkF + ivF q̃ cos θ )2

− 2√
x2 + (� − 2iαkF )2

]
+ c.c.

}
− i�2vF q̃ cos θ

|x2 + (� + 2iαkF )2|2

×
[

� + 2iαkF

x2 + (� + 2iαkF )2
+ c.c.

])
= −

(
m

4π2v2
F q̃

)2 ∫ �

−�

d��2
∫

dθ

2π
ln

(
1 + v2

F q̃2

4�2
cos2 θ

)
=
(

m

4πvF

)2
vF q̃

9π2
+ . . . ,

(A11)

which is the same result as in Eq. (A10). The second line in Eq. (2.11b) gives the same result as the third one. Collecting all the
results above, we arrive at Eqs. (2.12a) and (2.12b).

Finally, for the SOI-independent part of diagram 3, we find∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π
cos2 θ [I+++(�,θkq̃ ,q,q̃)I−−−(�,θkq̃ ,q, − q̃) + I++−(�,θkq̃ ,q,q̃)I−−+(�,θkq̃ ,q, − q̃) + (q̃ → −q̃)]

= −
(

m

4π2v2
F q̃

)2∫
dθ

π

∫
d��2

∫
xdx

[∣∣∣∣ 1√
x2 + (� + ivF q̃ cos θ )2

− 1√
x2 + �2

∣∣∣∣
2

+
∣∣∣∣ 1√

x2 + (� + 2iαkF + ivF q̃ cos θ )2

− 1√
x2 + (� + 2iαkF )2

∣∣∣∣
2]

= −2

(
m

4π2v2
F q̃

)2 ∫
d��2

∫
dθ

π
ln

(
1 + v2

F q̃2 cos2 θ

�2

)

= −2

(
m

2π2v2
F q̃

)2 ∫ �

−�

d��2 ln
1

2

(
1 +

√
1 + v2

F q̃2

4�2

)
=
(

m

2πvF

)2
vF q̃

9π2
+ . . . . (A12)

APPENDIX B: FULL q̃ DEPENDENCE OF THE SPIN SUSCEPTIBILITY

In the main text and preceding appendices, we found χzz at zero external momentum. Here, we show how the full dependence
of χzz can be found using the q = 0 part of diagram 1 in Fig. 2 as an example.

We consider Eq. (2.8a) at finite q̃. The integral over bosonic variables reads as∫
d�

2π

∫
dθ

2π

∫
qdq

2π
[I+−−− + I−+++] �0(�,q)

=
(

m

4π2vF

)2 ∫
dθ

2π

∫
d�

∫
xdx

�2

√
x2 + �2

{
1

(2αkF + vF q̃ cos θ )2

×
[

1√
x2 + (� − 2iαkF − ivF q̃ cos θ )2

− 1√
x2 + �2

− i�(2α + vF q̃ cos θ )

(x2 + �2)3/2

]
+ (α → −α)

}
, (B1)

where (α → −α) stands for a preceding term with a reversed sign of α and, as before, we relabeled θkq̃ → θ . The last term in
the parenthesis vanishes upon integration over either the angle (in the principal value sense) or the frequency (it is odd in �),
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whereas the remainder yields

∫
dθ

2π

∫
d�

∫
xdx

�2

√
x2 + �2

1

(2αkF + vF q̃ cos θ )2

[
1√

x2 + (� + 2iαkF + ivF q̃ cos θ )2
− 1√

x2 + �2
+ c.c.

]

= −
∫

dθ

2π

∫ �

−�

d��2 ln[1 + (2αkF + vF q̃ cos θ )2/4�2]

(2αkF + vF q̃ cos θ )2
= 1

24

∫ 2π

0
dθ |2αkF + vF q̃ cos θ |

= vF q̃

6
Re

⎡
⎣
√

1 −
(

qα

q̃

)2

+ qα

q̃

(
π

2
− arccos

qα

q̃

)⎤⎦ =
{

πvF qα/12, for q̃ � qα,

vF q̃

6

[
1 + 1

2

(
qα

q̃

)2 + · · · ], for q̃ � qα.
(B2)

We see that while χzz
1 is independent of q̃ for q̃ � qα , for qα � qα it approaches the linear-in-q̃ form found in Ref. 20 in the

absence of the SOI.
Another integral of this type occurs in the in-plane component, e.g., in the first line of Eq. (2.11a). The only difference

compared to the out-of-plane part is an extra sin2 θ factor. The q and � integrals are calculated in the same way while the angular
integral is replaced by∫

d�

2π

∫
dθ

2π

∫
qdq

2π
sin2 θ [I+−−− + I−+++] �

= 1

24

∫ 2π

0
dθ sin2 θ |2αkF + vF q̃ cos θ | = vF q̃

12
Re

⎧⎨
⎩1

3

√
1 −

(
qα

q̃

)2
[

2 +
(

qα

q̃

)2
]

+ qα

q̃

(
π

2
− arccos

qα

q̃

)⎫⎬
⎭

=
{

πvF qα/24, for q̃ � qα,

vF q̃

18

[
1 + 3

2

(
qα

q̃

)2 + . . .
]
, for q̃ � qα.

(B3)

APPENDIX C: LOGARITHMIC RENORMALIZATION

In this Appendix, we analyze renormalization of the out-of-plane component of the spin susceptibility in the Cooper channel
for q̃ � qα . As an example, we consider diagram 1 at large momentum transfer to third order in the electron-electron interaction,
see Fig. 9. The calculation is carried out most conveniently in the chiral basis as shown below,

χxx
1,q=2kF

= −2U 3
∫

Q

∫
K

∫
dωp

2π

∫
dεk

2π

∫
P

∫
L

Tr[G(−K+Q)G(−P+Q)G(−L+Q)]Tr[G(K + Q̃)σxG(K)G(P )G(L)G(K)σx]

= −4U 3
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π

∫
dθl

2π

∑
{si }

�tm;ns(θk,θp)�ns;vu(θp,θl)�vu;tr (θl,θk)σx
rl(θk)σx

lm(θk)Ilmnr�stLuv, (C1)

where

�s1s2;s4s3 (θk,θp) ≡ U 〈p,s3|k,s1〉〈p,s4|k,s2〉

= U

4

[
1 + s1s3e

i(θp−θk )] [1 + s2s4e
i(θp−θk)] (C2)

is the scattering amplitude in the Cooper channel (k = −p),
σst (θk) ≡ 〈k,s| σx |k,t〉 = −i(seiθk − te−iθk )/2, and

Luv = m

2π

∫
dωl

∫
dεlgu(L)gv(−L + Q)

= m

4π
ln

�2

(vF q cos θlq + (u − v)αkF )2 + �2

=
⎧⎨
⎩

m
4π

ln �2

α2k2
F

≡ L(α), for u = v,

m
4π

ln �2

v2
F q2 cos2 θlq+�2 ≡ L(q), for u = −v,

(C3)

is the particle-particle (Cooper) propagator, evaluated on the
Fermi surface at fixed direction of the fermionic momentum
l. An additional factor of 2 in Eq. (C1) is related to the
possibility of extracting the logarithmic contribution from

either the integral over P or that over L. Note that each
scattering amplitude depends on the difference of two angles,
i.e., θp − θl = θpq − θlq , such that the angle θlq is shared

r,Km,K

−K + Q, t

−P + Q, n −L + Q, v

P, s L, u

K + Q̃, l

σx σx

U U U

FIG. 9. Diagram 1 to third order in electron-electron interaction
at large momentum transfer; here, the in-plane component is shown.
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between the vertices and the function Luv . Moreover, due
to the correlation of momenta, we have θp = θk + π and
θk = π/2 − θkq̃ .

Upon summation over the Rashba indices, the integration
over θlq is readily carried out in all u = v terms, whereas the

u = −v terms require more a careful treatment. Due to the
dependence of the scattering amplitudes on θlq , Luv enters
multiplied by either a constant, or by sin 2θlq , or else by
cos 2θlq :

∫ 2π

0

dθlq

2π

⎡
⎣1

sin 2θlq

cos 2θlq

⎤
⎦L(q) = m

2π

⎡
⎢⎢⎣

ln �

|�|+
√

v2
F q2+�2

0

− 1
2 − |�|

vF q

(|�| −
√

v2
F q2 + �2

)
⎤
⎥⎥⎦ . (C4)

Obviously, only the first choice leads to logarithmic renormalization. Keeping only this choice for u = −v, we obtain

χxx
1,q=2kF

= −U 3 m

2π

∫
d�

2π

∫
dθkq̃

2π

∫
qdq

2π

{[
3 sin2 θkq̃(I+−−− + I−+++)�0 + 3 cos2 θkq̃(I++++ + I−−−−)�0 (C5)

+ sin2 θkq̃(I+−+−�+− + I−+−+�−+) + cos2 θkq̃(I++−+�−+ + I−−+−�+−)
]

ln
�

|α|kF

+
[

sin2 θkq̃(I+−−− + I−+++)�0 + cos2 θkq̃(I++++ + I−−−−)�0

+ 3 sin2 θkq̃(I+−+−�+− + I−+−+�−+) + 3 cos2 θkq̃(I++−+�−+ + I−−+−�+−) ln
�

|�| +
√

v2
F q2 + �2

]}
.

(C6)

The first two lines in Eq. (C6) contain an � and q-independent logarithmic factor. Integrations over q, θkq̃ , and � in these lines
produce terms that scale either as q̃ or as |α| , thus these two lines generate terms of the type q̃ ln |α| and |α| ln |α|. Next, we note
that some combinations of quaternions and polarization bubbles in these two lines, when integrated over q, θkq̃ , and �, produce a
q̃ term while others produce an |α| term. Namely, combinations (I++++ + I−−−−)�0 and I++−+�−+ + I−−+−�+− produce q̃,
while (I+−−− + I−+++)�0 and I+−+−�+− + I−+−+�−+ produce |α|. To extract the leading logarithmic dependence, we split
the � and q-dependent logarithmic factor into two parts as ln vF q̃

|�|+
√

v2
F q2+�2

+ ln �
vF q̃

, when it multiplies the combinations of the

first type, and as ln kF |α|
|�|+

√
v2

F q2+�2
+ ln �

kF |α| , when it multiples the combinations of the second type. The �- and q-dependent

remainders do not produce main logarithms because the internal scales of � and q are set either by q̃ or by |α| for the first and
second types, correspondingly.

Therefore the only main logarithms we have are either ln �
vF q̃

or ln �
kF |α| . Collecting all the contributions, we finally obtain

χxx
1,q=2kF

= −u3 2χ0

3

[ |α|kF

EF

ln
�

|α|kF

+ 2

3π

vF q̃

EF

(
ln

�

|α|kF

+ ln
�

vF q̃

)]
≈ −u3 2χ0

3

[ |α|kF

EF

ln
�

|α|kF

+ 2

3π

vF q̃

EF

ln
�

vF q̃

]
,

(C7)

where in the last line, we retained only leading logarithms
renormalizing each of the two terms in the second-order result.
Thus we see that each energy scale, i.e., vF q̃ and vF qα , is
renormalized by itself.

APPENDIX D: NONANALYTIC DEPENDENCE OF THE
FREE ENERGY ON THE SPIN-ORBIT COUPLING

In a number of recent papers,41–43 the properties of
interacting helical Fermi liquids were analyzed from a general
point of view. In particular, Chesi and Giuliani42 have shown
that an equilibrium value of helical imbalance

δN ≡ N+ − N−
N+ + N−

, (D1)

where N± is the number of electrons in the ± Rashba subbands,
is not affected to any order in the electron-electron interaction

and to first order in Rashba SOI. Mathematically, this statement
is equivalent to the notion that, for small δN and α, the ground-
state energy of the system F can be written as E = A(δN −
2mα/kF )2, so that the minimum value of F corresponds to
the noninteracting value of δN . The analysis of Ref. 42 was
based on the assumption that F is an analytic function of α,
at least to order α2. In a related paper, Chesi and Giuliani43

analyzed the dependence of F on δN within the RPA for
a Coulomb interaction and found a nonanalytic δN4 ln |δN |
term.

In this appendix, we analyze the nonanalytic dependence
of F on α by going beyond the RPA. (For small α, there
is no need to consider the dependences of F on α and δN

separately, as the shift in the equilibrium value of δN due to
the electron-electron interaction can be found perturbatively.)
To this end, we derive the free energy at q̃ = T = 0—equal,

115424-17
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K + Q, s2

P + Q, s4

K, s1

P, s3

Γ̃ Γ̃
K

s1

s2

K

P

s3

s4

P

K

s1

s2

−K

L1

t1

t1

−L1

Ln−1

tn−1

tn−1

−Ln−1

P

s3

s4

−P

FIG. 10. (Left) A skeleton diagram for the free energy in the presence of the Cooper renormalization; �̃ is a renormalized Cooper vertex.
(Middle) The effective scattering amplitude �(1)

s1s2;s3s4
(k,k′; p,p′) in the chiral basis. (Right) A generic nth order ladder diagram in the Cooper

channel, �(n)
s1s2;s3s4

(k, − k; p, − p).

therefore, to the ground-state energy—following the method of
Ref. 4, which includes renormalization in the Cooper channel
to all orders in the interaction.

The free energy is given by the skeleton diagram in Fig. 10:

F = −1

4

∫
q

�̃s1s4;s3s2 (kF,−kF; −kF,kF)�̃s3s2;s1s4

× (−kF,kF; kF,−kF)�s1s2�s3s4 , (D2)

where a particle-hole bubble is given by Eq. (2.7f) and
�̃s1s2;s3s4 (kF,−kF; −kF,kF) is a scattering amplitude renormal-
ized in the Cooper channel. To first order in electron-electron
interaction U , �̃s1s2;s3s4 is given by Eq. (C2).

It is convenient to decompose the renormalized amplitude
into s, p, and d channels as

�1
s1s2;s3s4

(k, − k; p, − p|L)

= Us1s2;s3s4 (L) + Vs1s2;s3s4 (L)ei(θp−θk)

+Ws1s2;s3s4 (L)e2i(θp−θk), (D3)

where the bare values of the corresponding harmonics are
Us1s2;s3s4 (0) = u2kF

/2, Vs1s2;s3s4 (0) = u2kF
(s1s3 + s2s4)/2, and

Ws1s2;s3s4 (0) = u2kF
s1s2s3s4/2. The s,p,d harmonics of �̃ were

shown in Ref. 4 to obey a system of decoupled renormalization

group (RG) equations:

− d

dL
Us1s2;s3s4 (L) =

∑
s

Us1s2;s−s(L)Us−s;s3s4 (L), (D4)

− d

dL
Vs1s2;s3s4 (L) =

∑
s

Vs1s2;s−s(L)Vs−s;s3s4 (L), (D5)

− d

dL
Ws1s2;s3s4 (L) =

∑
s

Ws1s2;s−s(L)Ws−s;s3s4 (L), (D6)

where the RG variable is defined as

L ≡ Lss = m

2π
ln

�

|α|kF

(D7)

and the initial conditions were specified above. Solving
these equations, we obtain Us1s2;s3s4 (L) = u/[2(1 + uL)],
Vss;±s±s(L) = ±u, Vs1s2s3s4 (L) = u(s1s3 + s2s4)/(1 + 2uL)
for the remaining si’s, and Ws1s2;s3s4 (L) = us1s2s3s4/[2(1 +
uL)] with u ≡ u2kF

. Combining the solutions in the Cooper
channel, we find

�̃s±s;±ss(kF,−kF; −kF,kF) = u
1+uL

∓ u, (D8)

�̃s−s;±s∓s(kF,−kF; −kF,kF) = u
1+uL

∓ u
1+2uL

, (D9)

and zero for the remaining cases.
Substituting the RG amplitudes into Eq. (D2) and summing

over the Rashba indices, we arrive at

F = −u2
∫

d�

2π

∫
dθkq̃

2π

∫
qdq

2π

{(
1

1 + uL
− 1

1 + 2uL

)2 (
�2

−+ + �2
+− − 2�2

0

)+ 2

(
1

1 + uL
+ 1

)2 (
�−+�+− − �2

0

)

+ 2

[(
1

1 + uL
− 1

)2

+
(

1

1 + uL
+ 1

1 + 2uL

)2

+
(

1

1 + uL
− 1

1 + 2uL

)2

+
(

1

1 + uL
+ 1

)2
]

�2
0

}
. (D10)

The terms proportional to �2
0 are divergent and scale with the upper cutoff �, thus they can be dropped as we are interested

only in the low-energy sector. Making use of the integrals
∫

qdq(�+−�−+ − �2
0) = 0 and

∫
d��2

∫
dqq(�2

+− + �2
−+ − 2�2

0) =
∫

d�
�2

v2
F

ln
�2

�2 + 4α2k2
F

= 16π

3v2
F

|α|3k3
F + O(�), (D11)
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we obtain the final result

F = −u2χ0

[
1

1 + u ln �
|α|kF

− 1

1 + 2u ln �
|α|kF

]2 |α|3k3
F

2EF

. (D12)

Note that F is nonzero starting only from the fourth order in u:

F (4) = −u4χ0
|α|3k3

F

2EF

ln2

( |α|kF

�

)
. (D13)

Apart from the logarithmic factor, a cubic dependence of F on |α| is in line with a general power-counting argument24 that states
that the nonanalytic dependence of the free energy in 2D is cubic in the relevant energy scale. A cubic dependence of F on α

implies that the shift in δN scales as α2C(L), where C(L) is a function describing logarithmic renormalization in Eq. (D12). This
is to be contrasted with an α3 ln α scaling predicted within the RPA.43
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