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The residual resistivity of metals at the absolute zero of temperature is usually understood in terms of electrons
scattering from random impurities. This mechanism, however, does not take into account dynamical many-body
effects, which cannot be described in terms of a static electron-impurity potential. Here we show that dynamical
corrections to the resistivity, already known to play a role in nanoscale conductors, are of quantitative importance
in the calculation of the residual resistivity of simple metals, and lead to a significantly improved agreement
between theory and experiment in the case of impurities embedded in an Al host. Our calculations are based
on a recently proposed form of the time-dependent many-body exchange-correlation potential, which is derived
from the time-dependent current density functional theory. Surprisingly, we find that the largest correction to the
residual resistivity arises from the real part of the exchange-correlation kernel of time-dependent current density
functional theory, rather than from its imaginary part. This unexpected result is shown to be consistent with recent
theories of the dynamical corrections to the resistivity of nanoscale conductors.
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The calculation of the electrical resistance of conductors
is one of the basic problems in the theory of electronic
transport [1]. At the absolute zero of temperature the crystal
lattice becomes irrelevant (no phonons) and the origin of the
resistance is traced to electron-impurity and electron-electron
scattering. Electron-electron scattering conserves momentum,
so it is customary to assume that electron-impurity scattering
plays by far the dominant role. This is the basis for the standard
theory of residual resistivity in normal metals in the diffusive
regime. Also in coherent nanoscale conductors, where the
diffusive model is no longer applicable, the resistance can
be expressed in terms of the transmission probability of
noninteracting electrons from one lead to another according
to the Landauer-Büttiker formula [2–5]. Electron-electron
interaction corrections to the resistivity are known to exist and
can be included in principle by various methods, such as the
nonequilibrium Green’s function formalism [6–8], leading to
the Meir-Wingreen formula [9] for nanoscale conductors, and
more recently, the time-dependent current density functional
theory [10,11]. Part of the correction is, in a sense, trivial—at
least from the conceptual standpoint. This is the correction that
arises from the many-body “dressing” of the static effective
potential in which the electrons move. The dressing in question
is essentially a generalization of the classical screening idea
to include so-called exchange-correlation (xc) effects in the
local environment of an electron [12,13]. If standard density
functional theory [14,15] is used to model these xc effects,
great care must be exerted, in nanoscale systems, to ensure
that the effective potential has the appropriate discontinuities
as a function of particle number [16,17]. This is because the
number of electrons in a nanoscale conductor typically fluc-
tuates between N and N + 1 during the conduction process.
Besides the many-body dressing of the static effective potential
(which exhibits the discontinuity as a function of N ), there is
an additional effect arising from the fact that the conduction
process is a nonequilibrium one and therefore cannot be
rigorously described in terms of a static effective potential:
What is needed is a dynamical effective potential, such as the
one introduced in time-dependent density functional theory

(TDDFT) [11,18]. Corrections to the resistance, which arise
from the dynamical character of the effective dressed potential,
is what we mean when we talk of “dynamical many-body
corrections.” The existence of dynamical corrections to the
resistivity was first implicitly recognized in the nonequilibrium
Green’s function formalism of Meir and Wingreen [9], but the
correction was believed to vanish at zero temperature. It was
only in later work, based on time-dependent current density
functional theory (TDCDFT) [19,20], that the dynamical
corrections were explicitly formulated in terms of a dynamical
xc potential and were shown to survive in the limit of zero
temperature [21–26]. In these papers the additional dynamical
resistance of a conductor was interpreted as a manifestation
of the many-body electronic viscosity [27,28] affecting the
inhomogeneous flow of electrons in a nanoconstriction or
around an impurity.

Unfortunately, the complex behavior of the many-body
viscosity as a function of frequency and temperature in
an inhomogeneous electron gas, combined with ambiguities
in the characterization of experimental devices, has so far
frustrated attempts to reach definite conclusions concerning
the importance of dynamical corrections in concrete situations
[22–24,29,30]. Very recently, however, an interesting paper
by Kurth and Stefanucci [31] has conclusively shown the
importance of dynamical corrections in an Anderson impurity
model in the Coulomb blockade regime.

In this Rapid Communication we consider the somewhat
simpler problem of the residual resistivity of a normal metal
(Al) with embedded impurities. The application of density
functional theory to this system is not plagued by discontinu-
ities in the xc potential and we can thus focus on dynamical
corrections in their pure form. We apply the method introduced
in Refs. [32,33] to extract the dynamical effective potential of
time-dependent DFT from the xc kernel of time-dependent
current DFT. In those papers, large many-body corrections to
the stopping power of an electron gas for charged impurities
were found. The outcome of the present study is twofold: On
the one hand, we show that the dynamical corrections to the
resistivity for this classic problem are indeed very significant
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and must be taken into account if a quantitative comparison
with experiments is desired; on the other hand, we discover that
the dominant contribution to the dynamical correction is quite
different from the one that was proposed in earlier papers on
the basis of a perturbative analysis of time-dependent CDFT:
It does not come from the imaginary part but from the real part
of the xc kernel, and from this point of view, is more consistent
with the treatments of Refs. [30,31].

We start by deriving an exact formula for the frequency-
dependent resistivity in terms of quantities that can be
calculated entirely within density functional theory. Let us
consider a monochromatic and uniform external electric field
Eext(t) = Eexte

−iωt applied to electron gas with impurities
positioned at Rk , k = 1,2, . . . . We can write the (particle)
current density averaged over the normalization volume V as
[34] (we use atomic units, i.e., the electron charge and mass
are set to unity unless otherwise indicated)

ji(ω) = c

iωV

∫
V

dr dr′χ̂ij (r,r′,ω)Eext,j , (1)

where χ̂ij (r,r′,ω) is the current-current response function of
the inhomogeneous electron gas with impurities. A summation
over the repeated Cartesian index j is implied. (Notice that the
electric charge current is the negative of the particle current.)
We transform Eq. (1) with the help of the sum rule [35]

(
ω2 − ω2

p

) ∫
χ̂ij (r,r′,ω) dr′

=
∫

χ̂ik(r,r′,ω) ∇′
k∇′

jV0(r′) dr′ + ω2

c
n0(r) δij , (2)

where

V0(r) =
∑

k

v0(r − Rk), (3)

v0(r) is the bare potential of one impurity centered at origin,
n0(r) is the ground-state electron density, and ωp = √

4πn̄0

is plasma frequency of the homogeneous electron gas without
impurities. Applying Eq. (2) twice with respect to the integra-
tion over r and r′ in Eq. (1), and using the expression for the
density-response function

χ (r,r′,ω) = − c

ω2
∇i · χ̂ij (r,r′,ω) · ∇′

j ,

together with the static sum rule [36]∫
χ (r,r′,0)∇′

iV0(r′) dr′ = ∇in0(r), (4)

we eventually write the current density as

ji(ω) = ω

i
(
ω2 − ω2

p

)
(

n̄0Eext,i + 1(
ω2 − ω2

p

)
V

×
{ ∫

V

dr dr′[∇iV0(r)][χ (r,r′,ω)

−χ (r,r′,0)][∇′
jV0(r′)]

}
Eext,j

)
. (5)

In order to calculate the frequency-dependent complex
resistivity tensor ρij (ω) defined as

Ei(ω) = −ρij (ω)jj (ω), (6)

we need to know the total electric field E, which is the sum of
the external electric field Eext and the field that is induced by
the current itself. From Maxwell’s equations, and since ∇ × B
averages out to zero, one has

E(ω) = Eext(ω) + 4πi

ω
j(ω). (7)

Equation (7) substituted into Eq. (5) implicitly determines the
resistivity tensor ρij (ω) in the general case of finite frequency.
As we show below, in the specific case of ω → 0, this relation
becomes explicit. Notice that both E and j vanish in the ω → 0
limit. The external electric field, on the other hand, is clearly
finite and given by Eext = − 4πi

ω
j in the same ω → 0 limit.

Substituting this expression for Eext in the second term on
the right-hand side of Eq. (5), putting j = ω

4πi
(E − Eext) on the

left-hand side, and lastly, noting that

χ (r,r′,ω) − χ (r,r′,0) � iω
∂ Im χ (r,r′,ω)

∂ω

∣∣∣∣
ω=0

, (8)

we arrive at our main formal result:

ρij = − 1

n̄2
0V

∫
V

[∇iV0(r)][∇′
jV0(r′)]

× ∂ Im χ (r,r′,ω)

∂ω

∣∣∣∣
ω=0

dr dr′. (9)

Equation (9) is the formal solution to the problem of the
resistivity in terms of the density-density response function χ

of the interacting inhomogeneous electron gas with impurities.
We now substitute the operator equality

∂χ (ω)

∂ω

∣∣∣∣
ω=0

= −χ (0)
∂χ−1(ω)

∂ω

∣∣∣∣
ω=0

χ (0)

into Eq. (9), and apply again the static sum rule of Eq. (4).
Recalling that [18]

χ−1(r,r′,ω) = χ−1
s (r,r′,ω)−fxc(r,r′,ω) − 1

|r − r′| , (10)

where χs is the “Kohn-Sham” density-density response func-
tion of the noninteracting system with ground-state density
n0(r) and fxc is the dynamical exchange and correlation kernel,
we conveniently rewrite Eq. (9) in terms of χs and the fxc as
follows:

ρij = ρ1,ij + ρ2,ij , (11)

ρ1,ij = − 1

n̄2
0V

∫
V

[∇iVs(r)][∇′
jVs(r′)]

×∂ Im χs(r,r′,ω)

∂ω

∣∣∣∣
ω=0

dr dr′, (12)

where Vs(r) is the static Kohn-Sham (KS) potential,

ρ2,ij = − 1

n̄2
0V

∫
V

[∇in0(r)][∇′
jn0(r′)]

×∂ Im fxc(r,r′,ω)

∂ω

∣∣∣∣
ω=0

dr dr′. (13)

241108-2



RAPID COMMUNICATIONS

DYNAMICAL MANY-BODY CORRECTIONS TO THE . . . PHYSICAL REVIEW B 89, 241108(R) (2014)

Notice that in Eq. (12) we have used the “Kohn-Sham version”
of the static sum rule

∫
χs(r,r′,0)∇′

iVs(r′) dr′ = ∇in0(r) to
introduce the Kohn-Sham potential Vs .

Equation (12) is the single-particle (KS) contribution to
the resistivity. Under the assumption that the electrons feel
only one impurity at a time, (i.e., the coherent scattering
of an electron from more than one impurity is neglected),
we replace the full KS potential Vs(r) by the KS potential
associated with a single impurity in the electron gas, which we
further assume to be spherically symmetric, i.e., Vs(r) = Vs(r).
The KS response function χs(r,r′,ω) is computed accordingly.
The normalization volume is taken to be equal to the volume
per impurity, i.e., V = 1/ni . It can be proved without further
assumptions [33,36] that Eq. (12), thus modified, yields exactly

ρ1 = kF ni

n̄0
σtr (kF ), (14)

where σtr is the transport cross section, which can be calculated
by means of the standard T -matrix (phase-shift) technique in
the potential Vs(r) [12,13].

Equation (13) is the dynamical exchange-correlation con-
tribution. If the frequency dependence of fxc is neglected—
as one does, for example, in the adiabatic approximation
to TDDFT—then fxc is purely real and Eq. (13) yields
ρ2 = 0. This result, combined with the discussion of the
previous paragraph, leads to the important conclusion that
the adiabatic approximation to TDDFT is equivalent to the
classical potential-scattering (T -matrix) approach as far as the
calculation of the resistivity is concerned.

To find the many-body contribution to the resistivity from
Eq. (13), we need a good approximation to the dynamical
exchange and correlation kernel fxc. It is known [38] that
fxc(r,r′) is strongly nonlocal (i.e., a long-ranged function of
|r − r′|) and this nonlocality is crucial to a proper description
of many-body effects in transport phenomena, even on a
qualitative level [32]. This immediately poses the problem of
construction of a reasonably accurate nonlocal approximation
for fxc. In a recent paper [32] we have shown how this can
be done starting from an exact representation of the scalar
fxc kernel in terms of the tensor exchange-correlation kernel
f̂xc of time-dependent current density functional theory. This
representation reads

fxc = −ω2

c
∇−2∇· {

f̂xc+
(
χ̂−1

s −f̂xc

)[
T̂
(
χ̂−1

s −f̂xc

)
T̂

]−1

×(
χ̂−1

s −f̂xc

)−χ̂−1
s

(
T̂ χ̂−1

s T̂
)−1

χ̂−1
s

} · ∇∇−2, (15)

where χ̂s is the KS current-current response function, T̂ is
the projector operator onto the subspace of transverse vector
fields (i.e., divergence-free fields), and ∇−2 is the inverse
of the Laplace operator: ∇−2f (r) = − ∫

dr′ f (r′)
4π |r−r′| in three

dimensions [39].
By making use of the local density approximation (LDA)

for the tensor f̂xc [20] in the right-hand side of Eq. (15),
we obtain a nonlocal approximation for the scalar fxc, which
satisfies the static zero-force sum-rule requirements [32,38],
and can, therefore, be considered a promisingly accurate
approximation for transport problems. At the same time, in
Ref. [40], the LDA to the exchange and correlation kernel f̂xc

of the TDCDFT has been worked out within the framework of

the hydrodynamics of inhomogeneous viscous electron liquid.
A simplified form for this kernel (neglecting the bulk viscosity
and keeping only the shear viscosity) is [40]

iωf̂xc,ij =
∑

j

1

n0
∇j η̃xc(ω)∇j

1

n0
+ 1

n0
∇j η̃xc(ω)∇i

1

n0

− 2

d

1

n0
∇i η̃xc(ω)∇j

1

n0
, (16)

where η̃xc(ω) = ηxc(ω) − μxc(ω)
iω

is the complex viscoelastic
coefficient of the homogeneous electron liquid, with ηxc being
the xc shear viscosity and μxc the xc shear modulus (ηxc and
μxc are both real; d is the number of space dimensions).

We therefore use Eq. (13) with fxc given by Eq. (15)
and f̂xc given by Eq. (16) with the viscoelastic constants
of the homogeneous electron liquid evaluated at the local
density n0(r). The values of these constants are taken from
Ref. [28]. Notice that f̂xc has a real part controlled by the
shear modulus μxc and an imaginary part controlled by the
shear viscosity ηxc. The perturbative treatment suggested in
Ref. [29] led to the conclusion that the dynamical correction
to the resistivity would be controlled exclusively by the shear
viscosity. However, we see that this is not the case in the
present treatment. Because the Kohn-Sham response function
χs has both a real and an imaginary part, the imaginary part
of fxc, as given by Eq. (15), is now controlled by both μxc

and ηxc.
In Fig. 1, we present results for resistivity for substitutional

impurities of atomic number Z from 11 through 32 in an
aluminum host. The latter is modeled as a jellium with Wigner-
Seitz radius rs = 2.07. The single-particle contribution ρ1

calculated from Eq. (14) and represented by the dashed
chained curve (black) is found to be in agreement with earlier
calculations [12,13]. The total resistivity, including dynamical
exchange and correlation contributions, is represented by the
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FIG. 1. (Color online) Residual resistivity of aluminum due to
substitutional impurities of atomic number Z, as a function of Z. The
solid chained curve (red online) is our result with inclusion of the
dynamical exchange and correlations [the sum of ρ1 and ρ2 obtained
with use of Eqs. (14) and (13), respectively]. The dashed chained
curve (black) is the result of the single-particle theory (ρ1 only).
Solid symbols are experimental data compiled from Ref. [37].
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solid chained curve (red). An improved agreement between
theory and experiment can be clearly seen from the figure. The
dynamical corrections are sizable and indeed of the right order
of magnitude to account for the observed discrepancy between
available theoretical calculations and experimental data.

Further analysis shows that the dominant contribution to
the dynamical corrections does not come from the viscosity,
ηxc, but from the shear modulus, μxc, contribution to the xc
kernel of Eq. (16). In fact, the contribution from ηxc is one
to two orders of magnitude smaller than that from μxc. This
is apparently in contrast with the discussion of Ref. [29], in
which the dynamical correction was expressed solely in terms
of ηxc.

Physically, however, the emergence of μxc as the main
contributor to the resistivity makes physical sense. The
homogeneous kernel of Eq. (16) is “collisionless,” i.e., does
not include the effect of electron-impurity collisions on
the viscosity and the shear modulus. Mathematically, these
quantities were obtained from a “high-frequency” calculation
[28] in which the frequency remains higher than the electron-
impurity collision rate. Therefore, we expect that the true
zero-frequency limit of the viscosity, which should ultimately
control the excess dissipation and hence the dynamical
correction to the resistivity, should be quite different from
the collisionless ηxc used in Eq. (16). In fact, according
to a dispersion relation argument put forth in Ref. [30], a
reasonable expression for the zero-frequency limit of the
viscosity (i.e., the true collisional viscosity) is ηxc(0) = μxcτ ,
where μxc is the high-frequency shear modulus, and 1/τ is the
electron-impurity scattering rate. The same conclusion was
reached in Ref. [28] [see, in particular, Eq. (5.28)] where the
collisional (i.e., ω = 0) viscosity was found to be equal to the

collisionless shear modulus multiplied by the collision time. It
now appears that the xc kernel constructed via Eq. (15) does
take into account the effect of electron-impurity collisions. It
does so via the imaginary part of the noninteracting response
function χs which, indeed, is calculated in the presence of the
impurity. It is the imaginary part of χs that, combined with the
real part of f̂xc (i.e., μxc), generates the main contribution to
the dynamical resistivity. We interpret this fact as an indication
that Eq. (15) is dressing the homogeneous kernel (16) by
including the effect of electron-impurity collisions.

In conclusion, we have developed the nonadiabatic time-
dependent density functional formalism for a systematic
calculation of the dc residual resistivity of metals with
impurities. The contribution to the resistivity arising from
the many-body interactions has been expressed through the
dynamical exchange and correlation kernel fxc. We have
shown that all the dynamical effects of the electron-electron
interaction are contained in the frequency dependence of fxc.
The adiabatic approximation, which neglects this frequency
dependence, is exactly equivalent to the conventional single-
particle potential-scattering theory of the resistivity, provided
the coherent scattering from multiple impurities is neglected
as well. Our representation of the single-particle and the many-
body contributions to the resistivity through the Kohn-Sham
response function and the dynamical xc kernel, respectively, is
fit to use in band-structure calculations [41], and can provide
guidance in calculating the resistance of nanoscale conductors.
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