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The computation of radiative energy loss in a finite-size QCD medium with dynamical constituents is a key
ingredient for obtaining reliable predictions for jet quenching in ultrarelativistic heavy-ion collisions. We here
present a theoretical formalism for the calculation of the first order in opacity radiative energy loss of a quark jet
traveling through a finite-size dynamical QCD medium. We show that, while each individual contribution to the
energy loss is infrared divergent, the divergence is naturally regulated once all diagrams are taken into account.
Finite-size effects are shown to induce a nonlinear path-length dependence of the energy loss, recovering both the
incoherent Gunion-Bertsch limit, as well as destructive Landau-Pomeanchuk-Migdal limit. Finally, our results
suggest a remarkably simple general mapping between energy-loss expressions for static and dynamical QCD

media.
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I. INTRODUCTION

Suppression pattern of high transverse-momentum hadrons
is a powerful tool to map out the density of a QCD plasma
created in ultrarelativistic heavy-ion collisions [1-3]. Because
suppression (called jet quenching) results from the energy
loss of high-energy partons moving through the plasma [4-7],
reliable theoretical predictions for suppression require reliable
energy-loss calculations.

The medium-induced radiative energy loss is, in most
studies, computed by assuming that the QCD medium consists
of randomly distributed static scattering centers (“static QCD
medium”). However, in reality, constituents of the medium
are dynamical, and we recently showed that inclusion of
dynamical QCD medium effects are important in the radiative
energy-loss calculations [8,9]. Furthermore, calculation of the
energy loss has to be performed in a finite-size QCD medium,
because the size of the QCD medium created in both the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) is finite. While methods for energy-loss
calculation have been developed for infinite optically thick
dynamical QCD medium, no such approach exists for finite
optically thin medium. However, it is of crucial importance to
develop the energy-loss formalism for the case of finite-size
optically thin medium to make reliable predictions applicable
for the range of parameters relevant for RHIC and LHC
experiments.

This article develops a theoretical formalism for the cal-
culation of the radiative energy loss in a finite-size dynamical
QCD medium, while main numerical results of the model are
presented elsewhere [9]. Our work is based a novel approach,
where two hard thermal loops are implemented within a
finite-size QCD model initially introduced by Zakharov [10].
The computations are presented in the appendices and include
analytical calculations of 24 Feynman diagrams, each of which
is individually infrared divergent. However, this divergence
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is naturally regulated when all the diagrams are taken into
account. Furthermore, we obtain an explicit analytical expres-
sion for the energy loss in dynamical medium, which can be
directly compared with the equivalent expression obtained in
static QCD medium. Finally, we discuss the obtained analytical
result in the context of several qualitative features: (i) recovery
of the static approximation for asymptotically high values
of energy, (ii) transition of the thickness dependence from
Gunion-Bertsch (GB) [11] to Landau-Pomeanchuk-Migdal
(LPM) [12] limits, and (iii) possible extension of the results to
higher orders in opacity.

II. RADIATIVE ENERGY LOSS IN A DYNAMICAL
QCD MEDIUM

In this section we outline the computation of the medium-
induced radiative energy loss for a heavy quark to first order in
opacity. We consider finite QCD medium of size L and assume
that the heavy quark is produced inside the medium at time
xo = 0 at the left edge of the medium, traveling right.

Medium-induced radiative energy loss is caused by the
radiation of one or more gluons induced by collisional
interactions between the quark of interest and partons in the
medium. The energy-loss rate can be expanded in the number
of scattering events suffered by the heavy quark, which is
equivalent to an expansion in powers of the opacity. For a finite
medium, the opacity is given by the product of the density
of the medium with the transport cross section, integrated
along the path of the heavy quark. The lowest- (first-) order
contribution corresponds to one collisional interaction with the
medium, accompanied by emission of a single gluon.

We compute the medium-induced radiative energy loss for
a quark jet to the first (lowest) order in number of scattering
centers. The finite-size medium is introduced similarly as in
Ref. [13], i.e., by starting from the approach described in
Ref. [10]. That is, we assume that the medium has a size
L and that the collisional interaction has to occur inside the
medium.
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FIG. 1. Feynman diagrams M g».c, M1 5., and M, g contribute to the radiative energy loss to the first order in the opacity. On each
panel, the left (right) gray ellipse represents the source J, which at time x, (xs) produces an on-shell jet with momentum p, (ps). The large
dashed circles (“blob”) represent effective HTL gluon propagators [14]. A cut gluon propagator with momentum k and color ¢ corresponds to
the radiated gluon. A cut gluon propagator with momentum ¢ and color a corresponds to a collisional interaction with a parton in the medium.
Specific time points are represented by x;. The diagrams are calculated in light cone coordinate system, and x;” — x; < 2L on the first and the
third panels, as well as xj — xJ < 2L on the first and the second panels, represent the condition that the distance between collisional interaction
and jet production has to be smaller than the size L of the medium. (Left) Middle and right panels present three possible cuts (central, left, and
right, respectively) of the same 2-HTL Feynman diagram, all of which contribute to the first order in opacity radiative energy loss.

As in Ref. [8], we describe the medium by a thermalized
quark-gluon plasma at temperature 7 and zero baryon density,
with n ¢ effective massless quark flavors in equilibrium with
the gluons. The formalism for computing the energy loss in
finite-size dynamical QCD medium is presented in Appendices
C-N, and the diagrams are evaluated in finite temperature field
theory [15,16], using HTL resumed propagators [16] for all
gluons. To outline the calculations, in Fig. 1 we show three
typical diagrams that have to be computed. The Feynman
diagram in the left panel of Fig. 1 represents the source
J, which at time x¢ produces an on-shell jet with momen-
tum p, and subsequently radiates a gluon with momentum
k = (w, k;, k) and exchanges a virtual gluon of momentum
q = (qo0, ¢z, q) with a parton in the medium. The quark jet
emerges with (measured) momentum p = (E, p,, p). We
assume, as in Ref. [17], that J changes slowly with jet
momentum, i.e., that J(p +k+¢q)~ J(p+ k)= J(p). To
incorporate the effect of the finite-size QCD medium, we
assume that the distance between the jet production and
collisional interaction has to be smaller than the size of the
medium.

Because the produced jet can be off-shell, the Feynman
diagrams shown in the center and right panels of Fig. 1 also
contribute to the first order in opacity radiative energy loss.
They are complex conjugates to each other and they present
the terms that will interfere with the diagram shown in the left
panel of Fig. 1 and consequently lead to the appearance of
LPM effect (in the case of high-energy jets), after all relevant
contributions are taken into account. In addition to the three
diagrams shown in Fig. 1, there are 21 more diagrams that
contribute to the first order in opacity radiative energy loss, and
their calculation is presented in Appendices C—N. Note that the
calculation presented in this article differs from Ref. [18] by
the use of HTL gluon propagators to describe the interaction
of the quark with the medium. The difference from Ref. [8] is
that in this work we allow the jet to be on- or off-shell and the
vertices that correspond to gluon exchange are restricted to be
located inside the medium.

Because the exchanged gluon momentum is spacelike
[13,19,20]), only the Landau damping contribution (go < |q|)
to the cut HTL effective gluon propagator D(g) needs to be
taken into account [13,19,21]. The radiated gluon has timelike
momentum k= (w, E), so only the quasiparticle contribution
at o > |k| from the cut gluon propagator D(k) contributes
[14-16]. Because our focus is on heavy quarks with mass
M > gT, we neglect the thermal shift of the heavy-quark
mass.

The effective gluon propagator has both transverse and lon-
gitudinal contributions [22-28]. The 1-HTL gluon propagator
has the form

Pr() "' ()

STV (T —
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2.1

where [l = (I, i) is the four-momentum of the gluon and P,,, (/)
and Q,,(l) are the transverse and longitudinal projectors,
respectively. The transverse and longitudinal HTL gluon
self-energies I17 and I, are given by
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where y = lo/|i| and u =gT,/N./3+ N;/6 is the Debye
screening mass.

While the results obtained in this article are gauge invariant
[20], the calculation is for simplicity presented in Coulomb
gauge. In this gauge the only nonzero terms in the transverse
and longitudinal projectors are
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As in Refs. [17,18,29-34], we use the same kinematic
approximations, i.e., we assume validity of the soft-gluon
(w < E) and soft-rescattering (w > |k| ~ |q] ~ q0, q;) ap-
proximations (see Appendix A for details). In Appendices
C-N we compute all the diagrams that contribute to the first
order in opacity radiative energy loss. Once the diagrams are
calculated, the interaction rate is given by:

I'(E) = LMtor = L(Ml,o + M+ M), 24
Ny Ny

here M, o, M, 1, and M , present the sum of all contributions
in which zero, one, or two (respectively) ends of the exchanged
gluon g are attached to the radiated gluon k. Furthermore,
Nj is an integrated invariant distribution of jets, created by
the effective jet source current and given by [17] (note that
Dpr = 3 accounts for the jet colors)

N, =D it ZTE 25
) = R/mupn. 25)

Equations (C16), (D13), (D29), (E7), (F12), and (G7) give

final results for the Feynman diagrams contributing to M ;.
After adding these expressions M| o becomes
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where x = M2x2 + m2 and € = X2 are defined by Eq. (A8)
in Appendix A.

Here and below we used [¢,, .][t., t.] = C2(G)Cg Dg [with
C(G)=3,Cg = ‘3‘, and Dy = 3] and defined a “dynamical
mean free path” (see Ref. [8]) Aqyn through

hgn = C2(G)a, T = 30, T, 2.7)

2 . .
where o, = f— is coupling constant, and we assumed constant

coupling g. "

Equations (H11), (I8), (J10), and (K10) give final results
for the Feynman diagrams contributing to M, ;. After adding
these expressions M, | becomes

d*p
My, =D | ——=—1J
o R/ S )
dx d’k d*q w?
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where ¢ = ®£07X 5 defined by Eq. (A8) in Appendix A.
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Equations (L7) and (M6) give final results for the Feynman
diagrams contributing to M, . After adding these expressions
M, » becomes

d3p 2 CROlY L
Mi,=D —|J -
12 = Dy / el
dx d*k d*q w? 2k +q)°
| % 2(g2 & 112 k 2 2
x mom gt +p) ([(k+g)" +xl

sin(¢ L) 'S sin(£L)
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(2.9)

By using Egs. (2.5)-(2.9) the interaction rate [Eq. (2.4)]
reduces to
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(2.10)

T(E) =

The heavy-quark radiative energy loss per unit length
is obtained from the above expression for the interaction
rate by weighting it with the lost energy w + go. In the
soft-rescattering approximation o + gy ~ w, leading to:

dEgn 1 / dT(E) E / dT'(E)
= Jdoow ~ — [ dxx .
dL ~ Dg Dx

dw dx
(2.11)

This finally leads to

AEgyn
E

_ CRle L /dx
b4 )\.dyn

k+q k
X 5 - = 1
k+q»+x k'+x

It is important to note that, similarly to Ref. [8], each
individual diagram that contributes to the energy loss in a
finite-size dynamical QCD medium diverges logarithmically
in the limit of zero transverse momentum of the exchanged
gluon, ¢ — 0. The reason for this divergence is that in a
dynamical QCD medium both transverse and longitudinal
gluon exchange contribute to the radiative energy loss [35].
While Debye screening makes the longitudinal gluon exchange
infrared finite, transverse gluon exchange causes a well-known
logarithmic singularity [16] due to the absence of a magnetic
screening [36]. Remarkably, we see from Eq. (2.12) that,
when the contributions from all diagrams are taken into
account, the infrared divergences cancel, naturally regulating
the energy-loss rate.

d*k d*q u? k+q
T woq*g*+p?)  (k+q)P+x

sin [—(kJ“I)Z tx L]}

xE*

(k+g’+x
xE* L

2.12)
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The analytical expression for the energy loss in dynamical
medium that we obtained can now be directly compared
with the equivalent expression for static QCD medium. We
below make this comparison to study the importance of
the dynamical QCD medium effects. To do that, we here
rewrite the expression for the DGLV first order in opacity
radiative energy loss in static QCD medium, which is obtained
in Ref. [18]:

AE
E

_ CROQ L

k+gq
(k+q) +x

7w (g2

k+gq k | sin[%L]
QTR e | = ST

/ d’k d*q w?
d
T Agtat

xE+
(2.13)
with [8,37]
1 11 12021+ % 1
x :)»_—i_)»_: 3 —&305sT=C(”f))L )
stat g q 7= 14+ dyn
(2.14)
where c(ny) = 6122 % is a slowly increasing function of

ny that varies between ¢(0) 2~ 0.73 and c(o0) ~ 1.09. For a
typical value n = 2.5 (which we use in this article), ¢(2.5) ~
0.84.

We see that, similarly to the case of infinite QCD medium
[8], Egs. (2.12) and (2.13) are remarkably similar, up to two
important differences: The first is an O(15%) decrease in the
effective mean free path

)Ldyn
c(ng)’

which increases the energy-loss rate in the dynamical medium
by O(20%). The second difference is a change in the effective
cross section, which in the energy-loss rate is reflected by the
replacement

w W ]
— | . 2.16
|:q2(q2 +/’L2)i|dyn |:(q2 +M2)2 stat ( )

As discussed in Ref. [9], these differences lead to a significant
increase of the heavy-quark energy-loss rate in dynamical
compared to static QCD medium.

By using the above results, we can now discuss the
following two issues: (i) comparison between dynamical and
static energy-loss results and (ii) comparison between energy-
loss results in Bethe-Heitler limit and finite-size QCD medium.
Regarding the first comparison, one should note a remarkably
simple mapping between dynamical and static QCD medium.
That is, the expression for energy loss in dynamical QCD
medium can be obtained from the expression for the energy
loss in static QCD medium by simply replacing the effective
mean free path and the effective cross section by the appropri-
ate expressions given above. The simplicity of this substitution

kdyn — )\stat = (215)
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rule is surprising, given the complexity of the calculations and
their different structure for static [18] and dynamical media.
In particular, one should note the infrared divergences in the
dynamical case that cancel only after summing all the diagrams
from Appendices C—N, but do not arise at all in the static case.
Regarding the second comparison, the expressions for both
dynamical and static energy loss in finite-size QCD medium
are significantly different from the corresponding expressions
in Bethe-Heitler limit [8]. However, despite this difference, the
same simple substitution rule is found to apply, suggesting a
possibly general mapping between static and dynamic QCD
media.

We also note that the study presented here considers a
finite, optically thin dynamical QCD medium [quark-gluon
plasma (QGP)], extending the DGLV approach [17,18] to
include parton recoil. In this sense it is complementary to the
work by Arnold, Moore, and Yaffe [34] who study energy
loss in an infinite, optically thick QGP. We note that the
AMY approach [34] yields the same form (2.16) for the
effective cross section in a dynamical QCD medium as found
here (see also Ref. [38]), further supporting our conjecture
above.

III. INCOHERENT LIMIT

First of the two relevant limits of the Eq. (2.12), which
we consider in this article is the incoherent, short formation
time limit. This limit is relevant for heavy quarks at lower jet
energy regions, and it can be extracted from the Eq. (2.12)

k+9)% +x
xET L

when

AEdyn _ CRO[S L /dx
E /g )\dyn

|: k+gq k ]
X —
k+q9?2+x K +yx

d’k d*q w? 2(k+q)
T 7w q*(g*+p?) (k+q)7*+x

Cros L 2 1
_ Gre /dx A dg* ——— —
T Adyn q°(q>+1*) k°+ x

K +3¢%+ x

X -1
12 +2200 +¢2) + 10—

2471 —¢*) + X (5K + ¢7)]
(X% + 2102 + ¢ + (K — ¢2)7?]

R

3
2

where the second step is obtained after angular inte-
gration. Furthermore, under the assumption that o is
not running, Eq. (3.1) can be further analytically inte-
grated over 0 < |k| < kpax, Where ko = 2E+/x(1 — x) [18].
We obtain

AEg, Cras L / 2
I d d n ) )
7 77 hayn x d°qJayn(q, X)

(3.2)
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where
Jayn(q, x)
W ~ — k2 + L + ko — 4+ \/ g +242(x —K2y) + (K2 + %)’
q*(g> + p?) 2 (x + k)
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@ +30+
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By comparing Egs. (3.1)—(3.3) with the equivalent expressions
from Ref. [8] [see Egs. (2.9)-(2.12)], we see that, though
similar, the corresponding expressions are not the same. The
reason is that, in Ref. [8], we considered the Bethe-Heitler
limit, which considers on-shell quark jets produced at remote
past, while in our study, we allow that quark jets can be both
on- and off-shell.

IV. LPM LIMIT

The second relevant limit that we consider is the non-
Abelian analog of the Landau-Pomeanchuk-Migdal limit. This
limit is relevant for highly energetic jets, where destructive
interference effects reduce the energy loss relative to the
incoherent limit. The limit is obtained from the Eq. (2.12)
when E* &~ 2E — oo. In such a limit finite mass effects are
negligible. Additionally, k.x = 2E/x(1 — x) — oo as well,
which enables us to introduce a substitution k' = k + ¢ in
Eq. (2.12). With these simplifications, Eq. (2.12) becomes

AEgqn Croy L / &’k dq W’
il LU Y— =
E s )\dyn v T 412(41 +/’L2)
2% (g - k>[ _Sm('z‘xé)}
n ’ k L
k (k ) xE+
CRO[S

(Imdx
e e [
T )‘-dyn

w?

Xm o(lq| — |k|)|:

where in the second step we performed angular integration. To
proceed further, we observe that the derivative over distance
L of the above expression (e L) is equal to

ldEdyn _ CRCYS / dx/ k’z /q|ndx
E dL T ki
M k/2L
—0 KD|1—
< el |)[ COS(M)}

CRO[S

dmax
dx dq?
4 )“dyn/ / 1 2(‘I +M2)

[V ci3t) ()]

4.2)

— k2 +3%) + ,/1+4X\/q +242(x —K2y) + (B + 1)’

where in the second step we performed an integral over k%,
y ~ 0.577216 is Euler’s constant, and Ci(y) gives the cosine
integral function.

Finally after performing the integration over x, we obtain

| dEay _ ,Cray 1 /q; , o ou?
EdL 7 R EreEae)

L) )]

4.3)
where
1 ) sin(y)
Z(y) =y — 3 cos(y) — Ci(y) + In(y) + 2y
_5i) —0 4.4)
2 y—0 ’ ’

Therefore, for the asymptotically large jet energies, the
Eq. (4.3) reduces to

ldEdyn _ Cra, L /q.znaxd , ul

E dL 2E hay Jo q% + u?
Cray L 4ET
= R B em (22, (4.5)
2E )\dyn MZ
where we used gmax = V4ET [39]. Fmally, E then becomes
AE‘d}’l’l — CR“S LZI'LZ 4ET ) (46)
E 4E )\dyn /Lz

From the above expressions, we see that at asymptotically large
jet energies we obtain quadratic thickness dependence for the
energy loss, that is, we recover the LPM limit. Therefore, for
highly energetic jet, finite-size corrections implemented in the
calculation presented in this article simulate the destructive
effects of LPM interference in an infinite QCD medium [5].
This behavior is expected [17] because the nuclear medium
has finite dimensions that may be small compared to the
jet radiation coherence length, especially in the case of light
partons or high jet energies. Due to this, in finite-size media
the basic formation time physics developed by LPM [12] leads
to destructive interference effects on the quark quenching.
Furthermore, by applying the same procedure, it is straight-
forward to obtain that, for asymptotically large jet energies, the
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radiative energy loss in static QCD medium becomes

AEg,  Croy L*u? AET
sat _ ZREG B —1|, @
E 4E g Mz

so that ratio between energy losses in dynamical and static
QCD medium approaches
4ET
. AEdyn . Astat In u? Astat
lim = lim TaET 1
E—o0 AEstat E—o0 )"dyn In 7 _

= 4.8)
)"dyn (

Therefore, we conclude that, at asymptotically large jet ener-
gies, approximation of the medium by a random distribution of
static scatterers becomes valid, up to a multiplicative constant

% that can be renormalized. This is consistent with what
yn

would be expected from established BDMPS results [5].

V. CONCLUSION

In this article, we developed a theoretical formalism for
the calculation of the first order in opacity radiative energy
loss of a fast quark traveling through a finite dynamical QCD
medium. We obtain a closed analytical expression for the
energy loss in dynamical medium. The obtained result is
convergent, despite the fact that each individual contribution to
the energy loss is infrared divergent. Furthermore, the energy
loss has a nontrivial dependence on the size of the medium,
which depends on both mass and energy of the quark jet.
The finite-size effects are found to be most important in the
ultrarelativistic limit and they effectively reproduce the effects
of destructive LPM interference. Another interesting limitis an
incoherent (GB) limit, which is reproduced for heavy quarks
with moderately small jet energies.

The study presented here considered the radiative energy
loss in finite-size dynamical QCD medium up to the first order
in opacity. However, in static QCD medium, radiative energy
loss up to all orders in opacity is obtained [17,18]. Simplicity
of the mapping between the first order in opacity static and
dynamical energy loss, implies that the same mapping might
be generalized to higher order in opacity as well. That is, we
make a conjecture that, to obtain the energy-loss expressions in
dynamical QCD medium from the existing static QCD medium
expressions, one (only) needs to replace effective mean free
path and effective cross section from static QCD medium, with
the corresponding expressions from dynamical QCD medium.
However, to prove this conjecture is very nontrivial, which will
be a subject of further research.

The measurement of the heavy-flavor suppression is in
the current focus of intensive experimental efforts, and these
measurements are expected to became available soon at the
upcoming high-luminosity RHIC and LHC experiments. As
already mentioned, particle suppression is a consequence of
the energy loss. Our study, which incorporates dynamical ef-
fects in realistic finite-size QCD medium, enables us to provide
the most reliable computations of the energy loss in QGP. Our
future goal is to use these energy-loss calculations to make
accurate theoretical predictions for the heavy-flavor suppres-
sion. These predictions can then be directly compared with the

PHYSICAL REVIEW C 80, 064909 (2009)

upcoming experimental data to test our understanding of QGP
and to further study the properties of this novel form of matter.
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APPENDIX A: NOTATION AND ASSUMPTIONS

In the following appendices, the calculation will mostly
(with the exception of G_, propagators), be done using the
light cone coordinate system [40]. This coordinate system
is appropriate for systems moving with almost the speed of
light. It is obtained by choosing new spacetime coordinates
[x*, x~, x], related to the coordinates in the laboratory frame
(t, z, x) by (x is the transverse coordinate)

xt=@¢+2z2, x =@t-2). (A1)

In the same way the light cone momentum [p*, p~, p] is
related to the momentum in the laboratory frame [E, p,, p] by
(p is the transverse momentum)

pT=(E+p), p =(E-p).

In this article we consider a quark of a finite mass M,
produced inside the finite-size QGP, at some initial point xg.
The jet is assumed to have a large spatial momentum p’ > M,
and it can be both on-shell and off-shell. This is in contrast
to the Bethe-Heitler limit, which we considered in Ref. [8],
where an on-shell jet was created at —oo. Further, we choose
coordinates such that the momentum of the initial quark is
along the z axis:

(A2)

p=1E", p~, 0]

We are interested in the radiative energy loss to first order in
the opacity, so we study the case in which the quark exchanges
(in arbitrary sequence) one virtual gluon with spacelike
momentum

(A3)

q=109".9".91=(90.9 =(q0. 9. 9), qo<ldl (A4)

with a parton in the medium and radiates one (medium-
modified) real gluon with timelike momentum

k=1[k" k™ k]l = (ko. k) = (0, k.. k), ko > |K|

into the medium. The on-shell quark jet emerges with four-
momentum p*.

Similarly to all energy-loss formalisms developed so far
(see e.g. Refs. [5,17,18,29-34]), the calculations presented
in Appendices C—N are developed under the assumption of
a perturbative high-temperature QGP. We note that, strictly
speaking, this assumption may not be directly applicable
to the case of a strongly coupled QGP or in cold nuclear
matter. The validity of this assumption for the QGP created
in ultrarelativistic heavy-ion collisions can be tested by
comparison with upcoming experimental data from the RHIC
and LHC heavy-ion programs.

For the computation of the Feynman diagrams given
in Appendices B-D we will need Gi +(x), GZ__(x), and

(A5)
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G _,(x) propagators for the quark jet p, the radiated gluon
k, and the exchanged gluon g. These functions are derived in
Appendix B.

As in Refs. [17,18,29-33], we assume validity of the
soft-gluon (w <« E) and soft-rescattering (|q|~|k| < k;) ap-
proximations. These approximations become more reliable
as the temperature increases and are expected to hold well
at the LHC, while at RHIC their application should be
further validated. Together with conservation of energy and
momentum (p’ = p + k + q) they yield

K+ mi,
k

k+ b 9
B p2 + M2
=T f)

In Ref. [8] we showed that it is reasonable to assume that ¢,
has the same order of magnitude as |q|. Because |k| < k, and
q.~|q|~k|, we then also have g, < k.. Thus k, 4+ g, ~ k, and
p:+k:+q. ~ p.+k; ® p:+q. ~ p;.Definingx = %’We
can therefore also assume that
kKt (k4+q)t
Et (E+q)t
By using x, we further define x, £, and ¢ in the following way

k = |:k+, k=
(A6)
p = |:E+, p_

(AT)

X =

X = M2x2+m§

foktx
T xET (A8)
_(k+gq’ +x
¢= xE*t
_ (k+q? -k
fTEETE

Finally, by using that &,¢ < |k|~|q|, and that
q.~|q| ~ |k|, we obtain £, { < g, leading to
a+E=4¢"-(@.-6~q"—q.
a+i=q¢"-(@-0~q¢" -q

T EC-9=¢"-lg: £E -1~ ¢’ —q..

(A9)

APPENDIX B: DERIVATION OF THE PROPAGATORS IN
LIGHT CONE COORDINATE SYSTEM

In this appendix we present in some detail the derivation
of the propagators Gy in the light cone coordinate system,
which are needed for the calculations presented in the
following appendices. To derive these functions we start from
Kallen-Lehmann theorem [41]:

i o0 d*l
Gah(x)z E /0 ds/(ZT)“

Pab(s, 1) Pan(s, 1)
X
2 —s4ie [12—5—ie

:| e—il-x , (B 1 )
where a, b can be + or — and p,;(s, [) and g, (s, [) are spectral
functions. We can now decompose the propagator as

Gap(x) = 0(x G} (x) + 0(—xT)G, (x). (B2)
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Note that
l-x = %l*x’+%l’x+ —1l-x
=1t -1,

(B3)
(B4)

We first concentrate on G/, (x). To obtain G/ (x) we
take poles from Eq. (B1). Pole > — s + ie = 0 contributes to
G}, (x) only if /T > 0, while pole /> — s — ie = 0 contributes
to G/, (x) only if /T < 0, leading to

Gjb(x)
d*l T 2 +
= (2;1)46 /0 ds 817 — )OUT)pap(s, 1)
—0(=I)pap(s, D]
_ d4l —il-x G+ (l) (BS)
o (271)46 abi™
where
GH(1) = 0UN)pap(*, 1) — O(=1")pup(*, 1), (B6)
where 0(I*) and 6(—[™") are unit step functions.
To proceed further, we use the following expressions
PP D) = —p_ (1, D) =[6(") + fUO)] p()
p——(P.1) = —ppy (P 1) = [0(=1") + £ p() B7)

pr— (P 1) = —p_ (1%, 1) = f(°) p(D)

p_s (P D)= —p_y (. D =1+ fUN] p(D),
which can be straightforwardly derived from Ref. [41]. Here
6(1%) is unit step function, f(°) = (/T —1)7!, where T is
the temperature of the medium and p(/) is a spectral function.

Then, by using Egs. (B6) and (B7), we obtain

G ()= —00") prs)+0(=1") p__()

[0(%) 0(°) + 0(—17) 0(—1°) + fI)]p)
00" p—— (D) +0(—1) piy (D)
[04%) 6(=1% +6(=1) 6(1°) + fI)]p)
Gi_()=—00") pr—()+0(=I") ps_(D)
p—() = £U° p()
GT ()= —00") p_s () +0(=1") p_i(D)

Gt ()

= p_ () =1+ fU)] pD). (BY)
Furthermore, it is straightforward to show that
Gi,.(h=G__()
++ (BY)

G= () =Gt ().

In this article we will need only GI +(x), G__(x), and
G _(x) propagators for the quark jet p, the radiated gluon %,
and the exchanged gluon g. We will first derive these functions
for the exchanged gluon ¢. To do this, let us first note that,
as noted in the previous appendix, in this article we assume
high-temperature QGP and a soft-gluon, soft-rescattering
approximation. In such a limit, for the exchanged gluon ¢,
f(qo) ~ qlo > 1, reducing the Eqgs. (B8) and (B9) to

GL (@~ Gl ()~ Gl (9~ Gt (9)~G__(¢q)
~ G (q)~ f(q°) p(q). (B10)
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By using Eq. (B10), it is then straightforward to obtain that
corresponding propagators for the exchanged gluon are given
by
D" (xi — x;) = D" (x; — x;) ~ DY (x; — x;)
d*q
(2m)*

where D~ (g) is the effective 1-HTL cut gluon propagator for
the exchanged gluon [8]
2

D;,(q) =6 (1 - "—3) [1+ £(q0)]
q

P.(q) 0,0(q)
q*—Tr(q)  ¢q*—Ti(g)

Here I17(g) and I11(q) [see Eq. (2.2)] are transverse and longi-
tudinal self-energies. Note that exchanged gluons are spacelike
[see Eq. (A4)]. Therefore, in the cut 1-HTL exchanged gluon
propagator, only Landau damping contribution from the gluon
spectral function contribute to the above expression (for more
details, see Ref. [8]).

We will now concentrate on the propagators for the radiated
gluon and quarks jet. For radiated gluon and quark jet f(ly) =
(e/T —1)~! « 1, reducing the Eq. (B8) to

G1 () =[0a")00% +0(—I") 0(—I")]p()
Gt () =[00") 0(—1°) +0(—1") 0UN)1p()
GI_()=0

Gt ()= p).

To proceed further with propagators for the radiated gluon
propagator, we note that, for the radiated gluon with momen-
tum k, the longitudinal contribution can be neglected relative
to the transverse one. Also, for the transverse gluon the self-
energy I[17(k) can be approximated by mz, where m, ~ 1/ V2
is the asymptotic mass (see Ref. [14]). These approximations
are true in the soft-rescattering limit w >> |q| ~ |k| ~ gT that
we use in this article. With these approximations the HTL
gluon propagator for the emitted gluon can be simplified to [14]

P, (k)
k2 — méz, +ie

~
~

D>(q)e*iq(x,‘*xj)’

(B11)

><2Irn|: } (B12)

(B13)

D, (k) ~ —i , B14)
where P, is the transverse projector.

Then, by using Eqgs. (B13) and (B14), relevant radiative
gluon propagators become (see also [40]):

DI (i — x;) = D7 (x; — x))
dk*d*k

= W@(k*)P””(l{)e’ik()‘f’xi) (B15)

v &’k T T
Dﬁ+(xi — )Cj) = / MPM (k)e ik(xi xf), (B16)
where  ~ /K2 +m?and k" = o + k.

Note that we here assume that gluon mass is given by
the expression mg ~ u/ V2 regardless whether the gluon is
radiated inside or outside of the medium. Strictly speaking,
including the finite-size effects on the radiated gluon would
assume that the above gluon mass is valid only for gluons
radiated inside the medium, while for the gluons radiated

PHYSICAL REVIEW C 80, 064909 (2009)

outside the medium the gluon mass should be equal to
zero (see Ref. [33]). However, based on [33], neglecting the
finite-size effects on the radiated gluon is expected to be a
reasonable approximation, and we adopt it here to simplify
the calculations.

Finally, we now concentrate on the relevant propagators for
the quark jet. By repeating similar procedure as for the radiated
gluon, we obtain

Ai+(xi —.Xj) = A:_()C,' — Xj)

dp*d*p o
= [ ———0(pHe P (B17
Qnyapt (pTe (BI17)
d3p —ip(x;—x;
A,+(x,-—xj)=/me Pl (B18)

APPENDIX C: COMPUTATION OF DIAGRAM M, ¢ ; ¢

In Appendices C—G we present in some detail the calcula-
tion of the diagrams where both ends of the exchanged gluon
q are attached to the heavy quark, i.e., none is attached to the
radiated gluon k and no three-gluon vertex is involved. In this
appendix, we start with the calculation of the diagram shown
in Fig. 2.

Here and later the diagrams are labeled as follows: In
M ; jc, 1 denotes that these diagrams contribute to the energy
loss to first order in opacity, i denotes how many ends of the
virtual gluon ¢ are attached to the radiated gluon k, and j
labels the specific diagram in that class. The letter C denotes
that we consider central cut of the diagram. In the next chapters,
letter R (L) will denote that we consider right (left) cut of the
Feynman diagram.

We will first calculate the cut diagram M| o1 ,c:

Mioi.c
5
= / [ [d*xi7 (o) AT, (1 = xo)vjf (x1) DY (s — x1)
i=0

X AT, (xp — x)VF (02) D% (x5 — x2) A (x3 — x2)

M o1,c

FIG. 2. Feynman diagram M, ¢ c, contributing to the radiative
energy loss to first order in opacity, labeled the same way as in Fig. 1.
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X Uy (X3)AZ_ (x4 — x3)v, (x4) AZ_(x5 — x4)J (x5)
X 9()(1 — X )9()62 - X NO[2L —
X 0(x4 — X5 )9()(3 - X, HeR2L —

(x1 — Xy )]

(xy —x],  (CD

where J is the source of a jet, A correspond to the jet
propagator, D to gluon propagators and v to vertices. By using
expressions for the propagators from the previous section, we
obtain:

M ,1.c
dp2 d p2 —lp7 (xl—xo)

/ H‘”’J wf [ @ryapt
g / amyPn@e e [

—ip1-(x2—x1) "
X e [—ig(p2 + p1)tal(— 1)/(2 20

d*p
(27)R2E

dpid®
X [ lg(pl + p)ptc]/ [ p3 p3 7lp3 (X4 x3)

(27'()‘2p3
x (ig(p + p3)’ tc)/ /

dpjd2p4 o iPa(xs—x4)
(277)32174

X (ig(p3 + pa)'ta) J (x5) O(x; — x7)

X 9()52 - X, MOR2L — ()cl+ — X )]9()64 — X5 H

X 9(x3 — x4 HoQRL — (x4 — X5 i)

_/ / dpfdzp,/ d*k / dp
N T @ry2pt ) @r)2e ) (2r)2E
q 4 >

X /mg latctcta(p1+p2) DW(C])

x (p3+ pa)” (p+ p1)’ Poo(k)(p + p3)° 1,

dp+dzp1
(271)32p1

—ip-(x3—x2)

X Pyo(k)e™F (%)

(C2)

where
5

I :/l_[d4x,~9(xl —x OGS — xDHORL — (xF — x )]
i=0

X 9()64 — X5 )9()(3 — X, oL — (x4 — X5 M
x e P2 (x1=x0) p=ig-(xa—x1) p=ip1-(¥2—=X1) p —i(pFK)-(¥3—x2)
X eiimA(x‘ﬁx'z)eiim'(xjim)J(x())J(XS)

= [J(P)P@rY8[(pr — p —k —q)"18*(py — p —k — q)
x 2m)*8[(p1 — p —)*18%(p, — p — k)(27)’s
x[(p3s—p—K)*"18*(ps — p — b)27)’
x8[(ps—p—k—q)t18*(ps — p —k — @I,

where

= —5(p—p—k)x;" * =5 (pr—p—k—q)"x}*
I = dxy e ? 2 dx|Te 2 I
0 0

(C3)

o S(p3—p—h)~xi* 2 + 5 (pa—p—k—q)"x;"
X dxy ez 3 dxy"e? 4,

0 0
(C4)
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Here we defined x| = x;
Xj = X4 — Xs.
By applying § functions from Eq. (C3), and by using

/ /
— X0, x2:x2_x1’ X3=X3_)C4,

_ pr+m?
p, = p—+
’ (C5)
K+ méz,
="
we obtain (note p+k+q=0— p+k=—q):
2 2
- _ 9 +M
= = C6
Py = D3 T (Co)
Then in the soft-gluon, soft-rescattering limit we obtain [note
X = F and that £ and ¢ are defined in Eq. (A8)]:
_ R
(pr=p-k =(ps—p-h =—7==-¢
! (o)
o - K+’ +x
(p2—p—k) = B+ =-¢
leading to
16 sin? —p—k—gq)yt
5 - [(p2—p q)zz] C8)
[(p1—p— k)] [(p2—p—k—q)]

In Ref. [13], it was shown that finite-size effects on collisions
are negligible, i.e., for collisional parts

4sin2 [(p2—p—k—q) %]
[(pr—p—k—q) T

~2mLo[(p2—p—k—q)7]

~ 2 L8(g™ +¢)

~ 2 L8(q" — q.), (C9)

where in the last step we used soft-gluon, soft-rescattering
approximation, i.e., Eq. (A9).
By using Eq. (C9), Eq. (C8) reduces to
16x2E+?
I ~ =
(k* + x)?

Similarly as in Ref. [8], for highly energetic jets

21 L3(q° — gz). (C10)

2
|
o
|

(p+ p1)’ Poo(k)(p + p3)°
(P14 P Pu(@)(p3+ pa)” = —(p1+p2)" Qn(q)(p3+ps)”

~ E+2‘_1,2, (C11)
q
By using Eq. (C11) and  Egs. (B12),
(p1+ p2)* D, (q)(p3 + pa)” becomes
(p1+ P2 Dy, (@)(p3 + ps)’
Pu(q) Q,(q) }
A 3 “ " v
(p1+p2) m[ " TIr(q) “M,() (p3+ pa)
~ 9( )f(q e
q
1
21 - Cl12
) m[ *M.(q) qZ—nm)] 2
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Finally, by using Eqs. (C3), (C4), (C10), (C11), and (C12),
and after performing integrations over pi, p», p3, and pa,
Eq. (C2) reduces to

d*p

M =4Lg*t 1101, | ————
1,0,1.C 8 /(271)32E

d3k K’

|J(p)I*

* 2w (k> + x)? o 19
where
d4 q2
L= 2 = 4 a0’
1
21 — . Cl4
. m[cﬂ—lh(q) qZ—HT(qJ (19

In the high-temperature limit /, reduces to (see Appendix C
in Ref. [8]):

d’q W
2n)? ¢*(q> +u?)
Finally, Eq. (C13) becomes

IL,=T

(C15)

d*p
M = 4LT gttty | ———|J T
10,1, § “”“f(zn)32E| )l f(zn)32w

qu MZ k2
X .
7)) ¢%(g> + 1?) (k> + x)?

(C16)

APPENDIX D: COMPUTATION OF DIAGRAMS
My 0,2,cs M1,0,2,r, AND My 5 1

In this appendix we present in some detail the calculation
of the diagrams shown in Fig. 3.

We will first calculate the cut diagram M| o2 ¢, shown in
the left panel of Fig. 3:

5
Mioz.c = fnd4xi1(xo)Ai+(x1—xo)v,f(xl)Dﬂ(M—Xl)

PHYSICAL REVIEW C 80, 064909 (2009)
/ /oo 4 +d2 ; d3k
(271)32 pl Q2r) 2w
Hotatat, ®
(2:1)32E / an )4g (P1+ p2)

x Pu(k)(p3 + pa)’ (p+ p1)’ D, (q)(p + p3)° 1,
(D1)

where

5
- /Hd4xi9(x1 —x OGS —xHORL — (x — x)]
i=0

X 9()64 — X5 )9(x3 - X HerL — (xg — X5 I

X e—iPZ'(Xl —Xo)e—lk'(xzx—xl)e—im'(Xz—xl)e—l(P+q)'(x3—X2)

X e—iﬁa~(X4—X3)e—ip4-(xs—x4)J(XO)J(XS)

= |J(PP@r)’8[(p2 — p1 — kK)*18%(p, — py — K)27)
x8[(pr—p—q@)"18°(py — P — q)
x 2n)*8[(ps — p — )" 18%(ps — p — @) 27)’
x 8[(ps — p3 — k)T18%(ps — p3 — K1 (D2)
and where

2L ) x
I Zf dxé-#ef’g(pﬁpfq)’xz*/ dx/+ —L(pa—p1—k)x{"
0 0
"+

2L ) X3 i ,
x / dx;-f-e%(psfpfq)’xg* / dxfeg(prprk)’ﬁ*
0 0
(D3)

Here we defined x| = x;
Xj = X4 — Xs.

By applying § functions from Eq. (D2), and by using
Eq. (C5), we obtain p; = p; and p;, = p, .

I, then becomes

/ /
— X0, .XZZ.XZ_.X(), x3:-x3_x59

—i(pr=p—k=q)"L _
X AT, (62 — X1V () D% (03 — x2) A1 (x3 — x2) I = 16 [e e 1
_ —pi—k)? —p—k—q)
X vy (¥3)AT_ (x4 — x3)v) () AZ_(xs — x9)J (x3) lp2=pr =07 F (2= p =k =4)
x 0(x;" —x Oy —xHORL — (xf — x)] N et
x 00 —xNOG] —xDOR2L — (xf —xD)] (pp—p—k—q)~ (P1—p—q)
Moo, : M o2 R :
| |
| k,C/ k’c/ |
|
| Xs Pa J(x5)  J(x0) Xl x PN J(x5)  J(x0) X X X | N J(x5)
w Py p : oy Psy P Psy  Pa Ps w P2p PO J;v Ps
| x5—-xg<2L x5-xg<2L

-
X5—xg<2L \
g,a

X3—xg<2L \ |
q.a |

|

|

FIG. 3. Feynman diagrams M, o 2.c, M1,.2.1, and M, o2 g contributing to the radiative energy loss to first order in opacity, labeled the same
way as in Fig. 1. The same figure is also presented as Fig. 1 in the main text and is repeated here for completeness.
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e—ip—p—7L _ | |:ei(pz—p—k—q)L _1

(p—r—9) |(p2—p—k—9q)
eltri—p—9)"L _q
S pm—p—a) “
_ 16 {4sin2 [(po—p—k—q) %]
(p2=pi =P | [p—p—k—q) T

(pp—p—k—q) PPt ]
x [ 1= i(pr—p—k—q)~ L -
eltm ==t — 1 (p1=p—q)
sin [(p1 = p — @) 5]
[(pr—p—a) P

i eitr—p—9) L _ (pp—p—k—q)
(pr—p—q) ekl —1 ||

+4

(D4)

In Ref. [13], it was shown that finite-size effect are small for
collisional energy loss, i.e., for collisional parts the following
approximation can be used

4sin2 [(p2—p—k—q) 5]
(pr—p—k—q)T

sin’ [(p1 —p —9)" 5]
(pr—p—a) T

~2mLd[(p2—p—k—q)7]

~2mLS[(pr—p —q)" 1
(D3)
By using Eq. (D5), Eq. (D4) reduces to
32xL
T (g +k—p) P

|: el(pit+k=p)~L _

1

{8[(;72 —p—k—q)]

1_
i(p1+k—p) L

e~ ipi+k=p) L _q
+[1-—=
—i(p1+k—p)~L

327 L

} 8[(pr—p—q)]

({5[(172 —p—k—=q)]

Uitk = p)P
_ sin[(py +k — p2)”L]
+8[(p1—pP—q) ]}{1 k=)L }
+ifdl(pp—p—k=—q@) 1=8llpr—p—a)™ D
cos[(pi +k —p2)" L] — 1)
(p1+k—p)L '

In the soft-gluon, soft-rescattering approximation

kK —(k+q)
E+

(D6)

(pr—p) =~
(p1r+k—p)” =&
Note that (p; — p)~ < & < |kl, |q], g;, leading to
l(pp—p—k—q) 1+d8l(pr—pP—q) 1}
~ 28[(p2—p —k—q) 1~ 28(qo0 — q2),
Blpp—p—k—q) 1=-8l(pr—p—q) 1}
~ 8(q0 — q: + &) — 8(q0 — q2)-

D7)

(D8)
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By using Eq. (D8), Eq. (D6) finally reduces to

16x2E*2 sin(§L)
2= 1285(q% — 1 —
(k2+x)2{ o qz)[ EL }

cos(6€L) — 1
EL

Similarly as in previous section, for highly energetic jets
and in a high-temperature limit

I =~ 2n L

+i[8(q0 — g: + &) — 8(q0 — q2)] } (D9)

k2
(pr+ P PuaOps + po)’ ~ —4,

(p+ )’ Dy (q)(p+ p3)°

N T 2 1 1
z@(l-%) —E“‘f—zzan2 —— ]

@) a0 @ |l2-Tiq) ¢*—Tr(q)
= F(CIO, 6117 q) (Dlo)

By using Egs. (D2), (D9), and (D10), and after performing
integrations over pi, pa2, p3, and ps, Eq. (D1) becomes

Mioo.c
a3 d*k K
= 4LTg4tCtatatC/ P 1P 3
(27)32E )3 2w (k* + x)?

sin(§L) cos(EL)—1
x{2|:1— il :|Iq+l§—LJq}’ (D11)

where I, is given by Eq. (C15) and

o= [ 4 s ) — 8(do — g.)1F( )
q_/(zn)4[ qo_qz—‘_é - qO_qZ] QquZ’q

— é/ d3q dF(qu qZ’ q)
(2m)} dqo

ljomq. = O. (D12)

dF(40.9:,9)

In the last step we used that dao

of q,.
Finally, by using Egs. (C15) and (D12), Eq. (D11) reduces
to

lgo=q. 1s an odd function

Mipoc = 8LTg4tctatatc/ d3—p|.](p)|2
o 2m)32E

Pk d%q u? 'S
(27)20 (27)% (g% + 12) (k> + x)?
|: sin(SL)]
x |1— .
EL

We will now calculate the cut diagrams M, ; and
M, 2.8, shown in the central and right panels of Fig. 3,
respectively. We start with M, 2 r:

(D13)

5
Mioak = f [ [d*xi 7o) AT, (xr = xo)vyf (x1)
i=0

x DX (xg — x1) AT, (2 — x)v (x2)

x D7 (x5 — x2) AT, (x3 — x2)v; (x3)

X A4 (x4 — x3)v, (x4)AZ_(x5 — x4)J (x5)
X 9()61+ — xg)e(x; — xf)e(x; — x;)

X O[2L — (xf — x DO — x)
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/ /oo 4 +d2 . d3k d3p
(271)32 pt ] @ry2e | Gr2E

q v

X / (27’:)4 g4lc[atatc(p2 —+ p3)MP;w(k)(p+p4)

x (p1+ p2)’ D, (q)p+ p1)°1, (D14)

where

5
- /l—[d4xi9(x1 —x DBy — xNOG — x))
i=0

X 0[2L — ()c2 — X )]9()64 — X5 D

X e*ips'(xl *xo)e*ik-(mﬁxl )e*ipr(xzfxl)e*i(pl +q)-(x3—x2)

« e—ip-()u—X3)e—i174'(x5—x4>](xO)J()C5)

= [J(p)IPQr)’8[(ps — pr — k)T18%(p3 — p, — k)(27)’
x 8[(p2 — p)*18*(p, — p)
x 2m)8[(p1 — p+ )" 18°(py — p + )27 )’
x8[(ps — p — k)T18%(ps — p — I, (D15)

and where

+

2L .

= o= smmpy i [ g g Skt

11 = dx2 e ? dxl e 1P :
0 0

oo ) - 00 -
x/ dx;-#ef’g(pﬁpw)’xg/ dxfe%(l’rl’*k)’ﬂ.

0 0
(D16)

Here we defined x| = x;
Xy = X4 — Xs.

By applying § functions from Eq. (D15), and by using
Eq. (C5), we obtain

/ /
— X0, Xy = X2 — Xp, -x3=-x3_-x2’

p, =p —>(pp—p) =0
(p+k7>+M M
(p+ht  ET

Py =Py =
(D17)
(p+k—p3) =§

(r—p+q) ~q
Note that in the second equation we used p = —k and (p +
k)+ ~ Et+

I; then becomes

2L 00 . "

I = / dx," / dx’*eZE"l/ abc;ﬂe_‘5(”‘_”“’)7’(2
X/ d)c/+ — 363"

0

_ 8L <1 3 sinéL —il —cosEL)/ dxle gy
&2 §L §L 0

(D18)
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By usmg Egs. (D18), (D15), and (D14) M| o2 g becomes
(y= .

M = —4Lgt 1,1 t./ ds—le(P)Iz
1LO-2.R ) @m)2E

/ d’k k?
X
Qr)Y 2w (K + x)?

< sinéL ,l—coséL>
x|1— — i
&L &L

d4q pD> o
< [ G+ P D@+ 1)

00 P
X / dye™ 7,
0

where, as in the previous

2
(p+ P P (k)(p + p3)" ~ =45,
In the same way, it can be obtained that M, ¢ » ;. is equal to

(D19)

sections, we used

Mioas = —4Lg utatat, f P
02, (n)Y2E

d3k K’
Q1) 20 (2 + x)?

( sinéL ‘l—cos§L>
x {1— —i
EL EL

d4
X f an )4(19 + p1)’ D, (q)(p + p1)’

o0 PR
X / dye'? 7.
0

MI,O,Z,R + Ml,O,Z,L then becomes

(D20)

d*p
M M = —4Lg*t tat,t, | ———|J(p)?
1,028 + Mi02,L g / (2n)32E| (P
d’k K d*q
Qr)2w (k> + x)* ) @n)*

x (p+p1)’ D, (q)p + p1)° I,
(D21)

where

L=(1- siné L _il—cos$L>/°°dyeiyq_
0

EL EL

sinéL .I—COSSL)/OO .
+ 1= + dye1
( gL e )b

{_ sinéL) /OO dye
§L —00

_2—1 ;zséL/O dysin (g~ y)
~ (1 - SinsL) 28(q7)
£L
_plzcosél / " dysin (g-y). (D22)
EL 0
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Similarly as in previous section, for highly energetic jets

(p+p1)’" D, (q)p+p1)°

2
~ 9(1-‘1-3) f(qo)E+2q—21m
q q

1
[ 2T, (q) qZ—nT(qJ'
(D23)

Finally, by using Egs. (D22) and (D23), Eq. (D21) becomes

PHYSICAL REVIEW C 80, 064909 (2009)

which consequently leads to
Jy=0. (D28)

Finally, by using Egs. (C15) and (D28), Eq. (D24) becomes

Mioor+ Mo =—4LTg tctcttatL/(z |J(p)I*

)32E
A’k d%q w?

Mio2r+Mip2L = = —4Lg% t,t,1, / T IE 17 (p))2 2m)3 2w 27)? ¢ (g% +u?)
. , K [ sin(SL)i| ©29)
: X — .
d’k k _sméL K2+ ) EL
27)20 (k* + x)? §L
1, + 8L otatat,
x & felalale / Qr )32E| (P)F APPENDIX E: COMPUTATION OF DIAGRAMS
d*k K> 1— cos&éL Mi.03.c AND Mi.04.¢
X 27) 2w (k2 T2 EL Jgs We will now calculate cut diagrams M o 3.c and M 4.c,
shown in Fig. 4. We start with M| o3 ¢:
(D24)
5
where 1, is given by Eq. (C15), and J, is given by Migsc = / l_ld4xi-[(x0)Ai+(xl _ xo)v,f()ﬂ)
dqydq.d =
Yo = / / Qn)* [Sm(qw cos(q:2) x D" (x3 — x1)AT, (x — x)v/ (x2)
— cos(qoz) sin(q:2)1F (qo qz. 9), (D25) x D% (x4 — x2) A_ 1 (x3 — x2)v; (x3)
In the above equation, we defined F(qo, ¢, q) as X AZ_(x4 — x3)v, (x4)AZ_(x5 — x4)J (x5)
q2 T 2ImIT; (q) x 0(x;] — x)Oxs — xHORL — (x1 — x0) "]
F(q07 ral q) [ —RCH ( )]2 —I—ImH ( )2
q Lq L\q x 0(x — xJ )e(x3 —xDORL — (x3 — x5)7]
2ImIlr(q) }
— . (D26 2 3
(47 — ReTlp (@ + iy | % _ / / "pt o [ 4K
) ) ) (271)3217[ 2m)2w
F(qo, g, q) is even function of both gy and ¢, leading to
o0
/ dqo sin(qoz)F(qo, gz, ) = 0 (27()32E (2 )4g Hatetate
—00
o0 x(p1+ p2)* Dy, (@)(p + p3)
dq, si F(q0,9.,q9) =0, D27 .
/_oo 9: Sin(g=0F (o, ¢z 4) B=D X (p+ p1) Pao®)(ps + pa) I, (ED)
| |
| M o3.c | M o4.c
k% K, %
I
0 e e e P o p YO OJ(XO) Ppoxfp e Phem x m J(X(S))
u p | v o wooop | v o
q f\ | 9 e\ |
Xj-xg5<2L | X3-xg<2L X3—-Xg<2L | X;—Xg<2L

FIG. 4. Feynman diagrams M o3 ¢ and M, o4 c contributing to the radiative energy loss to first order in opacity, labeled the same way as

in Fig. 1.
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where
5

I = /nd“xie(xr —xDOG; — xDORRL — (x; — x0) "]
i=0

X 9(x2' — x;')G(x;' — xI)Q[ZL —(x3 —xs5)"]
X e—ipz-(x]—xo)e—iq-(x3—x])e—ip1~(x2—x1)e—ik-(x4—x2)
X e—ip-(xz—Xz)e—ips'(m—xa)e—ip4-(x5—x4)](XO)](XS)
= [J(PIPQr)Ysl(po—p—k—)"18*(p,—p—k — q)
x 2m)’8[(pr— p — )" 18%(p, — p— k)
x 2m)*8[(ps—p— )" 18%(ps — P — )
x (2m)*8[(ps — p3 — K)T18%(py — p3 — K14 (E2)

and where

00 2L
i — k) xlT iy —p—k—a)x'T
I, :/ dx;re 5(p1—p—k)"x; / dxfre 5(Pp2—p—k—q)" x;
0 0

2L " X3 I+

% / dx;re%(m—p—q)’x; / dx:re%(m—ps—k)’n
0 0

—16 e~ ip—p=k=)L _ 1

- (pr—p—k) " (pa—p3—k)~ " (po—p—k—q)

eipa—p—k=q)"L _ 1 Lilp3=p=q)"L _ |
X . (E3)

(pa—p—k—q- (ps—p—q)

Similarly as in previous sections, by using é functions from
Egs. (E2) and (C5), we obtain p, = p, and

(pr—p—k) =(ps—p3s—k)~ =-¢§. (E4)
I, then becomes

164sin’ [(p2—p —k—q)" 5]

I — —
: 2 [(pr—p—k—q) P
(pp=—p—k—q) PPt
x |1 —=— E———3 —
e~ip=p=k=ar"L — 1 (p3 — p —q)
10, L3[( k—q) 1|1 li
N ——=2 —p—k— — im
&2 p2=p 1 (pr—p—k—q)~—0

(pr—p—k—q)~ elp—phk—ar+8L _
emipmp=k=ayL — 1 (py—p—k—q)" +&

~ —;—SzﬂL(S(CIO 4 |:1 B sin(éL) .cos(§L) — 11|’

eL 1 EL
(ES)

where similarly to previous sections, in the second step we used

Eq. (A9) and the fact that finite-size effects are negligible for
o o o T
collisional interactions. That is, we used % ~
pa—p—k=q)7]
2rLé(qg~ — &)~ 2mLé(q0 — qz)-

Finally, by using Egs. (E2) and (E5), Eq. (E1) becomes

4 d3p 2
M1,0,3,C = —4LT8 Lalelate m”(l’”

43k K> d’q W
Q)20 (kK + x)? ) Q) g*(g* + 1)
x [1 _sinGL) 1= COS(SL)] (E6)
EL §L
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Because M| 94c = (My0.4.c)*, we obtain
,04,C ,0,4,C

d3
Mio3,c+ Miosc = —8LT84l‘alclal‘c/ —(Zn):;E |J(p)I?
&k d%q u?
2n)320 27)% ¢*(q* + 1?)

K’ sin(£L)
- [1— ] (E7)
(k*+ x)? §L

APPENDIX F: COMPUTATION OF DIAGRAMS
Mi,0,3,r AND My 0,4,1

We will now calculate the cut diagrams M, 3z and
M o.4.1, shown in Fig. 5. We start with M, ¢ 3 g:

5
Myosg = / [T 7oAt (e — ot Ger)
i=0

x DI (xs — x)) AT, (2 — x)v] (x2)
x D (x4 — x2) AT (x5 — x2)v] (x3)

X A_ (x4 — x3)v, (Xx4)AZ_(x5 — x4)J (x5)

3
< [To6h, —xhoes —xHorL — @ —x0]

i=0

_/oo /00 dplﬂ—dzpi d3k d3p
o @rY2pt ) @n)20w 27)2E
44

q >
2n) g tatetate (p2 + p3)* D7 (@)(p + p1)

X (p1+ p2)’ Poo (k)(p + pa)° I, (F1)

X

where

5 3
I = /]_[d“xi ]_[e(xj+1 —x7)
i=0 j=0

X O[2L — (x1 — x0)"10(x; — x3) T (x0)J (x5)
% e i3 (¥1=%0) p=iq-(x3=x1) p=ip2-(¥2—=x1) =ip1-(¥3—X2)

x e*ip'()u*xs)e*ik'(nfxl )e*im'(xs —X4)

= [J(p)I*Qr)’8[(ps — p — k)" 18%(ps — p — )27 )’
x 8[(p» — p1 —K)T18%(p, — p1 — k)
x (2m)*8[(p1 +q — p)"18%(p, + ¢ — p)27)’
x8[(ps — p —K)*18*(py — p — OI,. (F2)

Here

+

00 ) X3 .
—L )yt - _ i I A e
I :/ dx;"'e 5(p1+4—p) x;/ dxé+e 5(P2—p1—k)"x;
0 0

2L » . [ee) ) o
o / dxt e P, / dx(F et pimp b
0 0
(F3)

where we defined x| = x| — xo, Xj = x» — X1, Xj = X3 — Xy,
and xj = x4 —xs5. By using 8 functions from Egs. (F2)
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M 3.r | M4,
|
/ K, %
‘(J)(XO) P3 X1 P2 X2 P1 X3 J(xs) ‘(J)(XO) Pt X X3 P3 X4 Pa J(Xs)
a, a\ ' |q,

|

X;-xg<2L | X5 - x5<2L
|

FIG. 5. Feynman diagrams M, o3z and M, o4 contributing to the radiative energy loss to first order in opacity, labeled the same way as

in Fig. 1.

and (C5), we obtain in soft-gluon, soft-rescattering approx-
imation:

(p3—p—k) =(pa—p—k =(p2—k—p) ~—¢&
5 (F4)
_  q°+2kq
(p1—p) ® — £ L1ql. k|. g,
leading to (py — p)” +q~ ~q . (F5)

I; then becomes

I = [smsL—i—z(l —cos&L)]

53
o i + i +

X f dxjT(e72 @ 9% _ o727 (F6)
0

Finally, by using Eqgs. (F2) and (F6) Eq. (F1) becomes

M = 2Lg 1t 1yt /dS—pU(p)l2
1,0,3,R alclale (27T)%2E
&k d*q
Q7 20 (K + 17 / @yt @

q° 1 1
X =21Im —
q’ q*-T, ¢>-Tr

(sinéL ,1—cos§L>
X i
§L §L

o0 i ’ I
x / dxfle 2@ —H%" _ 730757 (F7)
0

Note that M} 04,1 = (M103,r)", leading to
Miosr+Mioasr
d*p d*k K?
=4L4tttt/—J 2/
guttits | oo VO | G s

d*q q° 1 1
Sl e e
2 : L
X (1 - %) {S‘gi [5G~ — &) — (g7

1 —coséL [ . .
2—/ dy[sin(g~ — &)y — sin(g y)]},
EL 0
(F8)

where y = 2. Let us define

q° 1
f(qO)~22Im [—
72—

1 q§>
E—— - R F9
qz—l'lr(q)} ( q’ )

In the high-temperature limit F(qo, q?, g?) is even function

F(q0.47.4°) =

of go and g,. Then %j‘”lqoqu is an odd function of ¢,
leading to

d*q
/ Gyt F a0 42 4)18(g0 — 4= = §) — 5(g2 — 42)]
_ . [ La (g _
Q@m)* dqo o
90=4z

We will now compute the second part of the integral in
Eq. (F8):

/ﬁp(q 2. 4% /oody[sin(q —q;— &)y
Qm)yt 0T 0 o

—sin(go — ¢2)y]. (F10)

To do this we first concentrate on

/ood /oo—d4" F g0, 4% %) sinl(go — g — £)y]
A y , Qn) q0.49;-9 q0 — 4z y

[
0 o @mp e

x {sin(goy) cos[(g; — &)y] — cos(qoy) sin[(g; — &)y]}
= /ood /oocp_qcos[( - &)yl
T P @Y

x /dqu(qo,qf,qz) sin(qoy)—f dy

0
dgod?
x / (cg;)f cos(qoy) / dq. g(qo0. 42, 4%)
x sin[(g; — &)yl (F11)
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Because & < ¢q;, |q| we can assume ¢, — & =~ g,. There-
fore sin[(g; — &)y] ~ sing.y, leading to [ dq.F(qo, 47, q")

sin[(q; — §)y1 ~ [ dq.F(qo, 47, ¢%)sin(g.y) = 0. Similarly,
for the second part of the integral in Eq. (F10) we also obtain
0, which finally leads to

Mio3,r+ M4 ~0. (F12)

APPENDIX G: COMPUTATION OF DIAGRAMS
My o5,k AND My 6,1

We will now calculate the cut diagrams M; sz and
M 6.1, shown in Fig. 6. We start with M) ¢ 5 g:

5

Miosr = / [ [d*xi T (xo) AT, (x1 = xo)v) (x1)

i=0
x DI (g — x)) AT (62 — x1)v] (x2)

X AT, (x3 — x2)v; (x3) D27 (x4 — x3)

X A4 (x4 — x3)v, (xa) A~ _(x5 — x4)J (x5)

X 9()c1 — X )9()62 — X Ay

X Q(x3 - X, )9():5 —x, D6[2L —

oo 4 2
dpFd?p;
=8 tatatctcf / pl Pi
L aryap?

/ d’k d3p / d*q
X
2n)2w 27)32E | Q2n)*

x{(p2 + p3)" D, (@)(p1 + p2)"}

(x1 — x0) "]

PHYSICAL REVIEW C 80, 064909 (2009)

= [J(p)P@r)’8l(ps — p —K)T18*(ps — p — k)
x Q)Y 8l(p2+q—p—kT18(p,+q—p—k)
x 2m)8[(p1 — p — O*18%(p, — p — k)27’
x 8[(ps — p —K)"18*(ps — p — I, (G2)

and where
2L o 00 ) n
Il — / dx/Jr —E(ps—p—k) X} / dx‘/1+e§(p4—p—k) Xy
0 0

(o9 oo
—i(p—p—k)xt _i — k) xt
% / dx§+e 1(P1=p=h)"x; / dx;re 3(P2+g—p=k)"x,"
0 0
(G3)

Here we defined x| = x;
Xy = X4 — Xs.

By using § functions from Egs. (G2) and (C5) we obtain
py =p3 = py and

! ’
— X0, Xy = X2 — X, X3 = X3 — X3

=(pa—p—k~ =-§
(G4

(p3—p—k) =(p1—p—k~

Equation (G3) then becomes

—isL _
16_L e 1 /OO dy e ¥P2mp=k+ar
&2 —i&§L 0

16L (sin&L L—-1 & -
%_2<sm§ Ll )/ dy e, (GS)
§ §L §L 0
where y = x}/2, and in the last step we used (p» — p — k +
q)” =q  — &=~ q forsmall &.
Finally, by using Egs. (G2) and (G5), Eq. (G1) becomes

Miosg = —4LT 4””[ dp 1 )|2/ 'k
1,0,5.R — 8 lalalcle (27‘[)32E p (27‘[)326()

I =

xA{(p + p1)’ Pps(k)(p + pa)"}, (GD)
where x K d* ( — q_0> la
> k> +x)2 ) @y q*) q0q*
= f [[d*xioG — xHoes — xhHoad — x5 1
0 x 2 Im 5 -
q*—TMilg) q°—1Tr(g)
x 0(xy —xDHORL — (xf — x)] sinEL  _coséL — 1 *© ivo-
x e tP3(x1=x0) p—iq-(xa—x1) o =ip2-(X2—X1) ,=ip1-(x3—X2) X < EL -1 EL ) /0 dy e Yq .
x e_ik(x“_”)e_i”'(x“_”)e_i”(xs_x“)J(xo)J(X5) (G6)
I
: Mio5,r | M; 06,1
K, c/ | k, ¢ |
o)y, X0 Xa | x, Y Jxo0) | X X x, 96
Ps u p2 v Pt p ? : o Pa Pt u ? ; v P2 p Ps o Pa
q, a\ | | q, e&
<> | | -
Xi-xg5<2L | | X, —xg<2L

FIG. 6. Feynman diagrams M, o 5.z and M, 6, contributing to the radiative energy loss to first order in opacity, labeled the same way as

in Fig. 1.
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Because M 06,0 = (Mi,058)"
obtain [note that, similarly to Appendix D, (
vanish under integration over ¢]:

it is straightforward to
COSEL osEL=1y bart will

4 d3p 2
Miosr+ Mioer =—4LTg 1,111, m”(lm
A’k d%q w?
Qm)32w 21)* ¢*(q* + 1)
k? sinéL
X ——— )
(k*+x)* §L

(G7)

APPENDIX H: COMPUTATION OF DIAGRAMS
My1,1,c AND My 15,¢

In Appendices H-K we present in some detail the calcu-
lation of the diagrams where only one end of the exchanged
gluon g is attached to the heavy quark, i.e., one end is attached
to the radiated gluon k and consequently one three-gluon vertex
is involved in the process. In this appendix, we start with the
calculation of the diagrams shown in Fig. 7.

We will first calculate the cut diagram M ;1 ¢:

5
Miyc = / [ [dxiJ o)At (i — xo)v) (x1)
i=0

x DI (xy — XDUS o ()AL (x5 — x1)

X Dm+(x3 — x2)v;, (x3) DY (x4 — x2)v; (x4)
AZ_(x4 — x3)AZ_(x5 — x4)J (x5)

X G(Xf’ —x))0(x) — xHO2L — (x2 — x0)T]

X 6()53 - X )9()(4 — X5 MO2L — (x4 — x5)1]

. / / dpl td?p; dk+d2k1
N T @m2pt 2u 2
&’p d . . 4 peba
— Chttpt,
x /(271)320) On2E )i 8T el
X (p + p)F Py, (k)™ (ky + k)P

+gﬂzp3(q _ k)m + gmm(_kl _ q)p3]
x Pp(k) D, (@)(p + p2)"(p2+ p3)’1,  (HI)

| M 11,c

k,c/ |

ki, b 7 X
J(x0) ‘ / 2 Jxs)
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where

5
I = /1‘[ dxi0(x; — x0T — xHORL — (x2 — x0)*]
=0

X 9()63 — X )9()(4 — X5 Ho2L —

—ip1(x1=x0),

(x4 — x5)"]

% e —iki(p—x1) g=ip(xs—x1) ,—ik(x3—x2) ,—iq(Xs—x2)
x ¢TI0 (x50 T (x5)

= [J(P)P@7)*8[(p1 — p — k) *18%(p, —
x 2n)*8[(ky —k — q)"18% (ki —k — q)
x 21)*8[(p + k — p2)T18°(p + k — py)(27)’

x8[(p+k+q—p)T185(p+k+q—py) i (H2)

p—k)

and where

I+

2L X5
— Lk —k—a)"x T i —p—k )Xt
9 =/ dxlt o= ti—k=0 s / dxt e b npk)
0 0

00 2L
i (ke o) xt _i —
X / dxite 2(ptk=p2)7x / dxt e 2(ptkta=p)n
0 0

e ipi—p=k=@)"L _ 1

_ 1
B —Lpr—ki—p) | -

e—itki—k=q) L _
—5tk —k —q)~

Lpr—p—k—q)

1 e~ i(p1—p—k=q)"L—1
i —ki—-p —ip—p—k—q-
—5(p1—p—k—gq) emiit’L
o8 R e i :
esttnmpmim b =1 —5(ki —k —q)~
(H3)
|
| My 12.c

ki, b
J(x5)

+
X;—Xg<2L

P2 u pr v | X4,0  P3

>

4t +
Xy —xp<2L Xz—xg<2L

FIG. 7. Feynman diagrams M, ; ; ¢ and M, ; , ¢ contributing to the radiative energy loss to first order in opacity, labeled the same way as

in Fig. 1.
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By applying §° functions from Eq. (H2), and by using p; =

2 2
24 M .
2T we obtain

M? M?
o (ptk+ot

Py =Dy =

S _kt@PM >+ m3
pt ’ - k+
k@ m o _ghme
: k+qgt 7 (p+ot
which leads to
4 x
k — T = = H5
(p+ p2) N § (HS)
[derived for x = T +k+) and x < 1] and
_ k+q)*+x
— k1 — N——" =7, H6
(pr—ki—p) i E ¢ (H6)
[derived for x; = % ~ (erLk)* ~ x,and x < 1].

By using Egs. (H5) and (H6) and assuming (as in previous
sections) that finite-size effects are negligible for collisional
contribution, we obtain

_ —16x2E*?
k> + 0k + @) + x]
et
X <1 - Tﬂ)ana(ql —qz), H7)

where we used 8[(p + k +q — p1)~1~ 8(q1 — q,).
Let us now compute

(p1+ p2)(p+ p2)"(p2 + p3)° Pup (k1) Ppyu(k)Dy (q)
X [gﬂlp3(k + kl)Pz + gpzpz(q _ k)m + gﬂlpz(_kl _ q)l)z]
~ [(p1 4 P! Pup, (k) P (k)(p + p2)"|[(k + k1)’ D3, (q)

) 2
4kx2k 1} :9 (1 - %) F@OEKT

x q—ZZIm[ ! - ! } (HS)
q’ > —Ti(q) ¢>—Trg) ]|

(for more details see Eqgs. (C1)—(C4) in Ref. [8]). Also, note
that

X (p2+ p3)° ]~ |:—

— iftatyte = Lta, tellte, ta]- (H9)

Finally, by using Egs. (H2), (H7), (H8), and (H9), Eq. (H1)
reduces to

4 d’p 2
My 11,c = —=2LTg"[t,, t] [tc, ta] m“(l’ﬂ

Ak d’q u?
2n)2w (27)* q*(q* + 1)
k-(k+q)

X
(I + Ik +g)* + x]
! sin¢L . 1—cos¢L
X — L +1 L .

(H10)
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Because M ;2 ¢ is a complex conjugate of M, ;1 ¢, one
finally obtains

Mii1.c+Miac

= —4LTg*t,, t.] [t t, p J(p)? dk
= - g[mc][oa]fﬁ' (P)|/m

d’q ? k-(k+q)
X
Q) q*(q* + 12 (I + )k + g)* + x]

( sin;‘L)
x|1— .
L

APPENDIX I: COMPUTATION OF DIAGRAMS
M2, +Mya,1

(H11)

In this appendix we will calculate cut diagrams M | ; ; and
M, 12, r, shown in Fig. 8. We start with M ; » g:

5
Mok = /deiJ(XO)A (1 = xo)v! (x)) DY
i=0
X (x3 = xDv o (3)AT (62 — x1)
x D5 (x5 — x2)v) (x2) D] (x4 — x2)v;, (x4)
X A_ (x4 — x2)v__(x5 — x4)J (x5)
< O(x — xHO — xHO[2L —
X 9(x3 - X, )9(x4 — X5 H
B / f°° S dptdp; dkfdky [ &k
B (2;1)32 pir ek ) 2n)2w
dp dq

X GyaE Gyt D8 tabtepi o)

X (p+ P (p + p3)° D3, (@) Pup, (ki) Ppyo (k)
X [gPIPS(k + kl)ﬂz + gpzﬂs(_k _ q)m
+ 8" (q — k)11, 1)

(x1 — x0)"]

where

5
I = /]_[ dx;i0(x; — x0T — xHOCL — (x1 — xo)h)
i=0

X 9(x3 —x; )9(x4 _x+)e*lpz(m —X0) p=iq(x3=x1) ,—ip1(x2—=x1)
—iky(x3— xz)e e —ip(xs— x2)e_lp3(xs_x4).l(.x0) J(X5)
= |J(PPQr)8[(p2 — p — K)*18°(p, — p — k)2’
x8[(p1 — p —k1)T18%(p, — p — k1)
x )’ 8[(ki +q — k)V18* (ki + ¢ — k)2 )’
x8[(ps—p—k)T18%(ps—p—k) I (12)

X e ik(x4—x3)

and where

2L o] . .
I :/ dxH' —L(p—p—k)xit / dxf' e2(P3—p—k)"xy
0 0
I+

X3
X/ dxlt o=tttk / dxl e b=k
0 0

13)
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| My 14,0

J(x0)

Xy —Xxg<2L

'P1 Xt p' 4 Pé o Ps
I
I
| Xy —Xg<2L
I

FIG. 8. Feynman diagrams M, ; ; ; and M, , g contributing to the radiative energy loss to first order in opacity, labeled the same way as

in Fig. 1.

In the last equation we defined x| = x;
Xy = x3 —x1,and x; = x4 — xs.
By applying 83 functions from Eq (I2), and by using p; =

p?+M

/
— X0, X = X3 — X1,

,weobtain p, = p; = leading to (in soft-gluon,

(p+k)+ ’
soft- -rescattering approximation)

(po—p—k) =(ps—p—k =-§
(p1—p—k)” ~—¢, (I4)
. . —ag)t
where in the second relation we used x; = % ~
K
o — %

I, then becomes

L | |

- Z_?l 'gi / T Ao N0 ON _ gt -0,
l 0

as)

Furthermore, similarly as in Ref. [8], for highly energetic
jets

{(p + 1)’ Pup, (k) PY (k)(p + p3)° }
X {(p1 4 p2)' Dyo (@) k + K1)’}

. — z 2
~ [_ 4%} [E+k+0 (1 - %) f(%)%

1
21 - . 16
. m[ 2—T,(q) qz—Hr(q)H 10

By using Egs. (12), (I5), (I6), and (H9), Eq. (I1) finally
reduces to

M —L4[tt][tt]/ @p 1J( )IZ/ d°k
1L,1,2,R = L& lla, el e, la (7 )32E p Q) 2w

dq k-(k—q) ( qé)
X 9 1-— Sh
Qm)* (I + )tk — 9)> + x] q*

q’ !
2 5 -
X f(CIO)qz m |:q2 —T.(q) q°>— HT(‘])]

1 —coséL sin$L>/°° "
X i + dx
( 5L sL ) )y

x [em 3@ amO _ =gkt =6 (17)

Because M, 1,1, is a complex conjugate of M 12 g, it is
straightforward to obtain (y = x; /2)

ML+ Migog =2Lg [ta, t] [te, 1]

/(2 )32E| (P)l /(2;1)32@(271)4

k- (k—q) ( q(%) q’
o0l1—- = =
* (K + Ik — )* + x] q’ f(%)q2
X ZIm[ — ! i|
q>—Ti(q) q*—Tz(q)
siné L
X { [S(QO_QZ_%-)_‘S(QO_QZ"I'E_5)]}
EL
1— L ™
+2 —g‘;g [0 dylsin(go — g: — £)y
— sin(qo — g, + ¢ — &)yl (I8)

By applying the same procedure as in Appendix F, we
obtain Ml,l,],L + M1,1,2,R =0.

APPENDIX J: COMPUTATION OF DIAGRAMS
My 13,c AND My,1,4.c

In this appendix we will calculate the cut diagrams M ; 3.¢
and M) | 4.c, shown in Fig. 9. We start with M, | 3 ¢:

5

M 30 = /dezJ(XO)A++(X1 xo)v! (x)) DL
i=0

X (X = xDv o (02) A1 (x5 — x1)
x D™ (x3 — x2)v; (x3)A”_ (x4 — x3) D"

X (x4 — x0)v, (x4)AZ_ (x5 — x4)J (x5)

+ 2
f / d *IPS(Xs —X4)
(271)32 24

X [ig(p2 + p3)° 1) (x5)0(x;" — x)0(x; — x;°)
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M1,1,3,C M1,1,4,C
_ = ’ k1, b
J(xo) J(xs) : J(xs)
0 ; 0 | 0
P Xy, U ? | X3,V X4,0 Ps | P3
B S
X3 —Xp<2L | X3—xs<2L Xy —X5<2L | X3—Xxe<2L

FIG. 9. Feynman diagrams M, ; 3¢ and M, ; 4¢ contributing to the radiative energy loss to first order in opacity, labeled the same way as

in Fig. 1.
X O[2L — (xa — x0)T10(x5 — x) and where
2 2x5t
x O(xy — x$)O[2L — (x3 — x5)"] I = / de; e—%(kl—k—q)’x;r/ Tt e bk
foo foo li[ apdy dkidk [ dk ° C
= - w i —_— 3 i — 1"
oo 11 @ER2p T Qry2k ) @ny x /0 dxjt e smpmar /0 dxjt em3pmpha’
a3 d*
X-E—{%E 2q4g40—0f“6%ma 0
(27)*2E (2m) ; ) Here we defined x| = x| — xo, x;7 = x2 — x0, x;" = x3 —
X (p+p) (p+p2)" (p2+ p3) x5,andxf = X4 — Xs5.
X Pup (k1) D;zv(q) P, (k) By applying 83 functions from Eq. (J1), and by using p; =
2 2
X (877 (ky + k) + g7 (g — k) P we obtain
PPk — q)) I, J1 ‘
+g ( 1 61)) () __(k+q)2+M2 __k2+M2
where = D+ P2 = —(p+q)+’
5 B M2 M?
I = fl_[ dx;0(x| — xHOGT —xNHOQRL — (x2 — x0)™) Py =P1 = I5a T ptktgt
i=0
k> +m? (k+q)> + m?>
O(xF —xNHO —xDHO2L — (x5 — x5)T = 8 k=" 8 J4
x 0(x3 —x;) (%4 X5 ) [' (3 'xs) ] e 1 k+q)t (34)
x J(x0) J (xs)e P10t mr0) gtk =) pmipli =) which leads to
w @ i3 =x2) g=ip2(Xa=x3) p=ip3(xs—x4) ,—ik(x4—x2) (pr—p—k) =-¢, J5)
_ 2 3 +152 3 . +
= |J(PI"2x)'él(p1 — p —k1)"16°(p; — p — k)(27) [derived for x| = % ~ (’ﬁ—kﬁ ~ x <« 1] and
8[(ky —k — q)"18%(ky — k — -
x 8[ (ki q)" 167 (ky ') (p3 — pr — k)~ = —E, J6)
x 21)’8[(p2 — p — ) 18%(p, — p — 9)2)° K kerg)t

x8[(p3 — p2 — k)T 18*(ps — p, — k) I J2)

_ 16 [4sin’(pi —p—k—q)"L/2 (p—p—k—q)

[derived for x, =
By using Eqgs. (J4)-(J6), Eq. (J3) becomes

o~ K
N e S <Ll

(p+k+q)* (p+Hk+q)t

emikizk=ay"L _q 4sin*(py—p—q)"L/2

1-——
1 [(p] — p — k — q)‘]z [ e_l(Pl_I’_k_Q)iL — 1

e—iti—k= L _

{

_ (p=p—9)

gk

(po—p—9q)

)

(ky —k —q)~ (po—p—q)

|

e~ ipm—p=k=9)"L _q
X J
I pp—p—k—q)
1 eie-OL _q

e—ip—p=q)"L _ | (ky —k—q)~ e~ i(p—p—q)"L _
16 —i¢L _ elsL
~ —2xLi8(g” 1——) =34 —p—q)
e " { (q +§)( Y ) (Pr=pP—a) [ L
16 —i¢L __ 1 iEL 1 —i(¢—&)L _ 1
~ oL 8(q‘>[1 S ]
43 —i¢L i§L —i( —§)L
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where, as in the previous sections, we assumed that finite-size
effects are negligible for collisional contribution, and in the
last step we used Eq. (A9).

Analogously to calculations performed in Ref. [8] (see
Appendix C in Ref. [8]) one has

(p+ p)"(p+ p2)"(p2+ p3)” Pup, (k1) Dy, (q) Ppyo (k)
X (gﬂlpz(k + kl)ﬂz + gpzﬂ3(q _ k)m + gmpz(_kl _ q)m)
~(p+ p))" Pup (k1) PY(K) (P2 + p3)°
x [(k+ k)" D, (g)(p+ p2)’l
2

. 2
~ _4L2+q) 2] (1 _ ?_2) f(q()) ETk™ 2_2
X q q

y Zlm[ (18)

@ -Tiq) ¢>— Hr(q)]
By using Egs. (J2), (J7), (J8), and (H9), Eq. (J1) finally
reduces to

My 1sc = —2LT gt to] e 1] TP
1,1,3,c = — 8 Uas el e, la m| (p)

&’k d%q u?
2m)2w 27)* q*(q* + u?)
k-(k+q)

X
k" + 0k +¢9)* + x]

e L B
X |1 —— - — + — .
[ —i¢L gL —z({—E)L:|
J9)

Because M) 4. is a complex conjugate of M; 3 ¢, one
finally obtains

Mi13c+Miac

d3p d3k
. 4 _ap 2 - -
— —ALT (10, 1.] [tc,ta]/(zn)szE'J(P)' f(Zn)32w
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» d*q u? k-(k+q)
Q2n)? q*(q* + 1?) (K + Ik + )% + x]
|:1_ sin¢L B siné L sin(;—S)Li|. J10)
¢L §L (¢ —=8L

APPENDIX K: COMPUTATION OF DIAGRAMS
Mi,1,3,rs M1,1,3,1 M1,1,4,, AND My 14,8

In this appendix we will calculate the cut diagrams M ; 3 &,
M 13,0, M114.r,and M ;1 41 shown in Fig. 10. We start with
My 15 R

5
M3k = / [ [dxi7(xo)AT, (x1 — xo)v, (x1) DI
i=0

X (X = x))v,, o (X2) AT (x5 — x1)
x DI (x5 — x2)v, (x3) DY (x4 — x2)v; (x4)
X A4 (x4 — x3)AZ_(x5 — x4)J (x5)
X 0(xf — xHOGS — xDO2L — (x2 — x0)*]
X 9(x;r — xj)@()czr - x5+)
o o2 dptdip dkfd*ky [ dk
~ = [ o5 520
—ooJo 7 Qm)32p 2m)2ky J Qw)

i

d3p d4q
X S —
2m)32E 2n)*

X [(p1 + p2)! Pyp, (k) PL(K)(p + p3)7 |
x [k + k) D5, (g)(p + p)°]1, (K1)

(=i)g* £ tetyt,

e . | M1 3,r
J(xo)
O P2
J(xo)
0 P4 X1, U i ? XS,V' Xy, O p3 0 O P> X, U Xo, V ? ;X4,0 P3 O
-
| x5—-xg<2L x5—xg<2L |

FIG. 10. Feynman diagrams M, 13 g, M113.1, My 1.4.r, and M ; 41, contributing to the radiative energy loss to first order in opacity, labeled

the same way as in Fig. 1.
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where we used that in soft-gluon, soft-rescattering approxima-
tion (see Egs. (C1)—(C4) in Eq. [8])

(p1+ p2)"(p+ p1)'(p + p3)7 Pup (k1)D () Py, (k)
X ("7 (ki + k) 4 g7 (g — k) + " (ki — ¢)™)
~ [(p1 + P2)* Pup (k) P2 (k)(p + p3)” ]
x [k + k)2 Dy, ()(p + pD)']-
In Eq. (K1) I corresponds to

(K2)

5
I = /1‘[ dxi0(x; — xS — xHICRL — (x2 — x0)™)
i=0

X O(X;r — x;)e(xj — x;)
x e*ipz(xl*Xo)e*ikl(xzfxl)e*ipl(Xsfxl)e*iq(xsfxz)
x e—ik(XA—xz)e—il’(XA—Xz)e—im(xs—JCA)J(XO) J(xs)

= J(PIPQ27)*8[(p2 — p1 — k1) T18%(p, — py — k1)
x (2n)*8[(ky —k + p1 — p)*18°(ky — k + p, — p)
x 2m)*8[(p1 +q — p)"18%(p, + ¢ — p)27)’

x8[(ps —p—k)*18%(ps —p—K) I, (K3)
where
2L ) x5t )
I, =/ dxg' e—é:(kn—k—m—p)’x;*/ dx;+ e~ 3(P=pi—k)7x{
0 0

o0 ) o .
x / dx;r e—é(m-&-q—p)’x;*/ dxf e1(P—p=k) X"
0 0
(K4)
By applying 8 functions from Eq. (K3) and by using
_ 2 MZ
by = p,;}
approximation [see also Eq. (A9)]
M2
E+’
(p3=—p—k) =(P2—p—k =-§,
ki —k+p—p)=¢—-§ (g+pi—p) ®q —q:.
(K5)

we obtain in the soft-gluon, soft-rescattering
Py =p; = (p2—p1 — k)™ =—¢,

By using Eq. (K3), Eq. (K4) becomes (y = %)

= _16_L|:eiEL —1 _ Ok — 1] /OO e 'V dy.
¢§ L isL i€ =L JJo

(K6)

1

Similarly to previous appendices, Eq. (K2) is equal to
{(p1 + P! Pup, (k) PL (k)(p + p2)° }
x {(k + k0D, (9)(p2 + p3)"}

k-(k 2 2
~ g kD), (1 - ?-3) £@" BTt L
x q q
1
x 2Tm - . (K7)
[612 -M(q) ¢>— Hr(q)]

Finally, by using Eqgs. (K3), (K6)—«(H9), Eq. (K1) reduces to
M 13r

= —2Lg"[t,, t] [t t]/d3—p|J( )|2/d_3k
= s e tellleddd |5 S0 E YN | 20
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d'q k- (k+q) ( qg) e
o1-22 L
X (27‘[)4 [(k+q)2 +X](k2 +X) P f(‘ZO) >
X 21m|: — 1 ]
q* —Tiq) ¢>—Tr(q)
e S AL b
X[ L iE— 0oL M et 7dy. (K8

Because M ;4,1 is a complex conjugate of M| 3 g, one
finally obtains

M 138 +MijaL

d3p d3k
. 4 _ap 2 -
— LT M, 1] [fc’fa]/(znsz'J(p)' /(2n)32w

d’q u? k-(k+q)
X
Q) ¢%(q* + 1) [(k+q)* + x1(k* + x)
8 [sinéL _sin(g —S)L}
EL (¢—&L |

Similarly My 13+ Mi14r = Mi13,8 + M1,1.4, lead-
ing to

(K9)

M3+ M3 +Mi14r+Mi4L

d’p d*k
_ 4 _-r 2 - -
= LT ) [ PR [ S
d’q u? k-(k+9q)
X
Q22 q%(q* + 1) [(k+q)* + 1K + x)
[sinéL 3 sin(¢ —é})Lj|
EL ¢—-&L |

(K10)

APPENDIX L: COMPUTATION OF DIAGRAM M, ¢

In Appendices L and M we present in some detail the
calculation of the diagrams where both ends of the exchanged
gluon ¢ are attached to the radiated gluon %, i.e., there are two
three-gluon vertices involved in the process. In this appendix,
we start with the calculation of the diagram M, ; ¢ shown in
Fig. 11.

M c

5
= /ndxif(xo)AL(m — x0)v,} (x)) DK (5 — x1)
=0

M 2.c

’ ¢ ) k2, d
) J(xs)

0

X4,V P2

FIG. 11. Feynman diagram M, , contributing to the radiative
energy loss to first order in opacity, labeled the same way as in
Fig. 1.
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x vy () DEY (x3 — x2) D2V (x3 — x2) A1 (x4 — x1)

X Vg 00, (3) D27 (x4 — x3)0, (x4) AT (x5 — x4)J (x5)
X 9()61 — X )6()c2 ) YO[2L — (x5 — x0) "]
X O(Jc3 — X )0()64 — X5 MO2L — (x5 — x5)1]
/ / dp+d2p, dk; d’k; d’*k
(271)32171 )32k ) 22w
d*p

bac dac
X Qn)2E (27r)4g L
x [(k +k1)* D, 5, (k + ko) 1[(p + p1)" Py, (k1)
X P77 (k) P, (k2)(p + p2)"11,

(L)

where in the second step we only keep the dominant parts from
triple gluon vertices (see Ref. [8]).
In Eq. (L1) I corresponds to

5
I = /1_[ dx,-@(x] — X )9()(2 - X TOQRL — (xp — x0)1)
i=0

PHYSICAL REVIEW C 80, 064909 (2009)

x e~ P1(xi=x0) p—iki(x2=x1) ,—ik(x3—x2) ,—iq(x3—22)

% e*ip()mfxl)e*ikz(xzﬁxs)e*ipz(xs*x4)J(XO)J(XS)

= |J(PIPQr)8[(p1 — p — k)T 18%(py — p — k)(Q27)’s
x [(ki —k — q)"18%(ky — k — q)
x 21)*8[(ky — q — k)"18% (ko — g — k)(27)*S
x[(p2—p—k)"18%(p, — p — ko) I, (L2)

where
2L . xg .
I = / dx;'e*%(kl —k—q)~ x5t [ dxi"r e*%(ﬂlfpfkl)f)‘i+
0 0

-+

2L X3
ig—g—t-t [ iy k)t
» / dxlf ehtama-h / dxit ebpp—iy i
0 0

L3)
+ + +

— xF ot — _ +
H/ire ler x1 xg, Xyt =x3 — x5, x5 =x7 —xJ, and
x,t = x; — xJ. Furthermore, from § functions in Eq. (L2)

it follows that

P2 =Dpi1, ko =k,

(pr—ki—p)y =2~k —p)” =-¢. (L4)

X O2L — (x3 — x5)+]9(x3 —x, )9(x4 — X3 H After using Eq. (L4), Eq. (L3) becomes
|
16 (4sin’[(p1 —p —k —¢)"L/2] — 1 (pr—p—k—q WL 1 (p—p—k—q)
L = - = - - — -
é‘z [(pl p— k — p)‘]z et(m—p—k—Q) L _ 1 kl —_ k —q e_l(.”l_[’_k_Q) L _ 1
elthi—k=arL 4sin®[(ky —k —q)"L/2] — 1 16 _ et —1 etk -
x } 1 1 f wj{ana[(pl—p—k—q) ](1— e )
ki —k—gq [(ky —k —q)7] ¢ i¢L —ilL
_ 16 sin¢ L _ _
+2n L[(ky —k —q)7] =27TL§ 1-2 L 8[(pr—p—k—q) 1+8lki —k—q)7]
_ 64mL ] sin¢ L 5( ) L5)
~ é_z é_IJ qO qZ .
I
As in the previous sections, we here assumed that finite-size Eq. (L1) reduces to
effects are negligible for collisional energy loss. Furthermore, pE
in the last step we used Eq. (A9), ie., (p1—p—k—¢q)” = M s.c = 8LTg*[t,, t.][te, la]/ —3p|](p)|2
(ki =k —q)” ~ qo—q.. (2m)*2E
Similarly as in Ref. [8], for highly energetic jets N / &Pk d’q w?
(2m)20 27)* *(q* + 1?)
(k+q) sin(¢ L)
(P + PV Pup (k) P7P (k) Py (k2)(p + p1)" X 1- . L7
P T P1) Fup (K1 2)p T P1 [k+97 + xI° ‘L (L7)

= (p + PV Pup, (k1) P77 (k) Po o (k)(p + p1)”

4k + )
D ok m(q)(k + ko)
~ KTk ( ) f(q o)qz
[ - |
x 2Im - (L6)
—Mi(q) ¢>-Tz(q)

Finally, by using Egs. (L2), (L5), and (L6), and after
performing the same procedure as in the previous appendices,

APPENDIX M: COMPUTATION OF DIAGRAMS
Mg AND My, 1

In this appendix, we will calculate the cut diagrams M » g
and M, » 1, which are shown in Fig. 12. We start with M|  g:

5
Myog = / [ sty o =

X D*‘“’%xz — xS () DI (x5 — x2)

P1P203
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M12L

" ko, d kood /' A&
’ J(xs) J(x0) ( ,
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X, V P2

0 0

Py X, u

FIG. 12. Feynman diagram M, , contributing to the radiative energy loss to first order in opacity, labeled the same way as in Fig. 1.

x DIP7 (x5 — x2) Ay (xg — x)v) . (x3)
x D7) (x4 — x3)v, (x2)AZ_(x5 — x4)J (x5)
X 9()(1 — X )9()(2 ) )9(x3 - X, AD)

X 9()64 — X5 )9[2L (x2 — x9)]

-/

d3k 3]7 d q cha abd
/ (27)20 27 )2E 2n)t © e
x [(ki + ko)’ D (q)(k + k) 1[(p + pD)*
Py, (ko) P71 (k1) Py, (K)(p + p2)” ]

where in the second step we keep only the dominant parts from
triple gluon vertices (see Ref. [8]).
In Eq. M1) I corresponds to

dp, Fd’p; dk;d’k;
(27‘[)32pl (27 )32k;

&

MI)

5
I = /]_[ dxi0(x; — x0T — xHOCL — (x; — x0)h)
=0

X 9()c3 — X )9(x4 — x+)e*lp|(m —x0)

Xe—ikz(xz xl)e_lkl(x3 %) p=iq(x3=x2) ,—ip(X4—x1)

% e—ik(x4—x3)e—ipz(xs—x4)J(XO)J(XS)

= |J(P)IP27)8[(p1 — p — k)" 18%(py — p — k2)(27)?

x 8[(ka — k)T18% (ks — k)27)*8[(ky +q — k)T]

x 8%(ky +q — k)2rm)’8[(pr — k — p)T]

x8(p,—p—h I, M2)
and where

r+

A it [ i k)~ xl*
I = dx;eii( 2—k)"x, dx1+ e 2(P1—p—k2)"x,
0 0

[e.¢] oo
_i P (e pek)— it
9 / dxlt o= itta—br s / dxlt ehrph
0 0

(M3)

In the last equation we defined x’ = xfr — xaL , x2+ = x;

xg x5t =xf —x), and xf* _x4+ —x7.
After applying § functions from Eq. (M2) and by using

Eq. (C5), we obtain k~ = k, , which reduces the Eq. (M3) to

2L x5t " 00 _—
I =/ dx;'/ etn dxf'/ dxf' e 2%
0 0 0

R P
X / dxit ety
0

§ §L §L 0

(M4)

In the above equation, we also used (p; — k — p) =(py —

p—k ==& ki+qg—k~ ~q andy=
Similarly as in Ref. [8], for highly energenc Jets

4k*
5_2
2 2
q q
— a—g) f(CIO)?

(P + PV Pup, (k) P? (k) Poy o (K)(p + p2)* = —

(k+ k)" D}, (q)k + kp)” ~ k*kf’@(

x 2Im |: (M5)

1
B g% — HT(Q)] '

Finally, by using Eqs. (M2), (M4), and (M5), and after
performing the same procedure as in the previous appendices,
Eq. (M1) reduces to

q> —Ti(q)

M = —4LTg*[t., t,1[t t.]/d3—p|J(p)|2
1,2,R cs talltas tc (27‘[)32E

&’k d*q k? < _ sin§L
2m)2w 2m)* (k> + x)? §L

1— L\ [® . 2\ 1
+iLSE>f dye~i4 ye<1—?—g>—
§L 0 q°/ qo

2
X%ZIH][

(M6)

2 - ¢ - Hr(q)] '

Finally, by using that M;,; is a complex conjugate
of M, r, and by performing the same procedure as in
Egs. (D24)—(D28), one obtains

d*p
M M\, = —4ALTg*t,, tlte, ta] | ——— T (p)|?
12,8 + Mo 8 lta, 11l ]/ (271)32E| ()l

&k d’q u?
(27m)* 20 (27)? q%(q* + 12)

y k? <l_sin§L)
(K + x)? L )

MT7)
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APPENDIX N: COMPUTATION OF THE TADPOLE
DIAGRAMS

In this appendix we calculate tadpole diagrams shown in
Fig. 13 and show that they present negligible contribution to
the radiative energy loss.

4
M g = /]_[dxil(xO)AL(xl — x0)v,} (x) D (xy — x1)

x vt () DT () D7 (x3 — x2)v; (x3)
X A_i(x3 — x))AZ_(x4 — x3)J (x4) O(x]" — x7)
X 9()62 — X TY[2L — (x — xQ)J’]Q(x3 — X, H,
(N1)

where U;UAT (x2)= _gz[fcea fceb(ngU 8rr—8pr8ot —8pr gak)],
leading to

Mg = delf(x())f /

d3p
2 )32E

/ / dk; d’k

)2k
S fceafceh(zgpogkr — 8pr8ot — gptgak)

d*q rT> dk —ik(x3—x2)
) / @ny " (")(_1)/ 12’
ov dp d p2 7l (X4 —X3
x P7"(k )/ 2 2)32 Te PO (ig(p + pa)uty)
X 9(x1 - X, )9()(2 — X 6[2L —
X 9(x3 - X, NI (x)

dpl d’ P1 e~ iP1(x1=x0)
@ny2pt

eI —ig(p + putal(—1)

71k1(X2*X1)PMP(k1) (_g2)

(x2 — x0) "]

d’% q +d2
- / (2n)32w (27 )2E Q) H Qn)32p;

| 4K ki w

— M= feh, Ot P*(k

X o )*2k+ = f 1) (p + P P (k)
X (280081t — 8pr8ot — §pr8or)
x D™ (q)P°*(k)(p + p2)v1, (N2)
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where

4

— /1_[ dx; J(x0)J (xg)e ' P11=30) p=iki(a—x1) o —ik(x3—x2)
i=0

X e—i/’(xa—xl) —ipz(x4—X3)9(x —x] )

X 9(x2 — X NOQRL — (x, — x1)+)9(x3 - X, )

= [J(P)IPQr)8[(p1 — p — k)T 18*(p, — p — k1)
x 27 8[(ki — k)"18%(ky — k)
x (27)8[(p2 — p — K)T18*(p, — p — KL (N3)

and where

+

2 I+ ==k~ x5t - I+ —5(pi—p—kp)xft
I = dxy e ? 2 dx|" e 2 !
0 0

o0
L (pr— )=
X / dxyt et apmp=h T (N4)
0
+ + + L+ + + + oo+t
Here x| —xl —Xg,Xy =X, —Xxy,andxy =x3 —Xx;.

Also, by usmg § functions from Eq. (N3) and Eq. (C5) it
follows that

p2=p1; k=kg;
(pr—p—k) =(@P—p—k~ ~-¢& (N5)

After using relations from (N5), Eq. (N4) becomes

2L -
I =/ dx / ezsxl / /+ 6_;:§x3+
8L sinEL 1 —cos&L
e T . N6
52[ L T } (N6)
By using Egs. (N6) and (N3), Eq. (N2) becomes
d3p
Mg = 8g*L[ty, t.1te, ta T i 7(p)?
k= 88 Lty, 1l ]/ S )
d*k d4q 1 1
(27)20 21)* RQE1)? 2k
X [Sp/*Pup(k)Pf(k)va;,\(q) _ Spupup(k)Dpa>(q)
E*? sinL 1 —cos§L
P, (kp’ _ . '
(N7)

FIG. 13. Tadpole Feynman diagrams M, y and M, ;, labeled the same way as in Fig. 1.
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To proceed further, let us first calculate
P* Pup(K)PL(k)p" D7 *(q) — p" Pyp(k)D > (q) Py (k) p"
= p"Pu(k)p’ D;*(q) — p" Puy(k)D°7 (q) Py (k)p".

(N8)
We here use
k2
" PupPL(K)p" === PHg) =2
Oigr=1- %0 (N9)
q*
leading to
>A _ q(% 0
D" (q) =16 1—¥ [1+ f(g))]
2 | @
x 2Im + 55— . (N10)
g*—IHr(q)  q°—T(g)
Furthermore, in Coulomb gauge
Pup(k)Q"% (q) Py (k) = 0, (N11)
leading to
pMPup(k)Dp”>(Q)Pov(k)pv
= p" Puy(k)P”?(q)Ps;.p"
k)? 2 k k k)(gk)?
2y (pk) n (pa)” _,(P)(pg)gk) | (Pk)(gk)
k2 72 k2q2 (k2)2q2
K2
= -9 ( ) [1+ f(g")]
1 + (q2k)22 1— Q(%
kg @©
x 2Im + (N12)
q* —Tr(g)  ¢q*— Mg
By using Egs. (N8)—-(N12), Eq. (N7) becomes
d*p
M, r = —8Lg*[ty, t\lte, t,] | ——1J(p)|?
o = =8Lg 1] g )
/ &’k dq K
Q21)20 Q1) (K + %2
] sin’;‘L 1—cos$L 1 d*q
X — —
EL + (271')4
a\ T 1- k
X (1 - —g) Z2Im | — K& (N13)
qa/ qo q* — Mr(q)

Because M, ; is a complex conjugate of M, g, one finally
obtains

Mt R+ Mt L = SLTg ta» tc][tc‘s ta

/(2 )*2E| ) /(2 2w

|: smEL:| /
(k2-|—M)cz+mg2)2 eL |

(N14)
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FIG. 14. Ratio % is shown as a function of momentum |q|
for Debye mass u = 0.5.

where

2 [ dg 2\ 1 — o
L =-= 9 (1 ‘f—°> —Im |
(2m) @’/ qo q*—Tr(q)

(N15)

Fmally, we want to show that [, < v(qz) [where v(g?) =
W]’ leading to the conclusion that tadpole contribution
is negligible to the first order in opacity radiative energy loss.

i\2
To do this, we first observe that 0 < gk)

< 1, leading to

g2
0< I < It maxs (N16)
where
2 d* 2
It,max = - q49<1 qg) —2Im |:—2 :|
(2m) qa°/ 9o q*—Tr(q)
dq lql
2/ Jt maXv( ) (N17)
4
where we defined y = | I’ and
Ty man (@) = / x, ! (N18)
max - m - )
et o x L@ —x) + )
Furthermore, we want to show that , ~ [ i—‘f%v(ﬁz).
To do this, we have to prove that J,,max(ﬁz) is comparable
with v(q?). We numerically confirmed that Jimax @) <1, as

v a2
demonstrated in Fig. 14 for typical value of %gbye mass
u = 0.5. That is, in Fig. 14 we see that the absolute values
of the ratios are notably smaller than 1. We also checked
that the same conclusion is valid independently on the value

of Debye mass. Having in mind that \ﬁl <« 1, and by using
I, ~ dq ‘g' v(@?), it becomes evident that I € f 0@,

which leads to the conclusion that tadpoles present a negh gible
contribution to the first order in opacity radiative energy loss.
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